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EXECUTIVE SUMMARY 
The scope of this deliverable is to present the results of application prototype evaluation for the three Use 
Cases: Smart Manufacturing, eHealth, and Smart Agriculture. 

The purpose of “Task 6.4: Use Case Evaluation” is to: 

• Evaluate the functionalities achieved in comparison to requirements defined in WP2 

• Evaluate the application-level KPIs defined in T6.2 

• Evaluate the project outputs regarding usability, flexibility, and adaptability 

• Evaluate the application prototypes against the feedback received by external stakeholders 

According to the Use Cases, the objectives, and then the KPIs, are different: In the Smart Manufacturing Use 
Case, the main concern is the reliability of the service, while in eHealth, the principal objective is to ensure 
a near real time response regardless of the load. In addition, the Smart Agriculture Use Case integrates an 
objective regarding computation time. 

On the other hand, each Use Case presents its own specificities regarding application deployment and will 
then mobilize different PHYSICS components. In the first phase of the project, the Smart Agriculture Use 
Case focused on the deployment on the Edge, while during the intensification period emphasis has been put 
on Cloud deployment of workflows with high computational needs. The eHealth Use Case needs a 
deployment in the Cloud as FaaS, while Smart Manufacturing Use Case requires a hybrid solution with some 
functions running on the Edge while some others are run as FaaS. 

The deliverable “D6.8 PHYSICS Application Prototype Evaluation V2”: 

• Describes the common methodology used to convert Use Case objectives defined in T6.2 into 
measurable performance indicators, called KPIs 

• Details the process of KPIs definition and its outcomes for each Use Case 

• Draws baseline evaluations for selected KPIs from currently deployed applications 

• Reports on first evaluations for selected KPIs based on application prototypes developed in T6.3 
with emphasis on available functionalities 

• Describes a method to evaluate the usability and adaptability of PHYSICS components 

• Analyzes the associated results 

• Provides an overview of the preparation for the impact intensification period 

During the first phase, a set of KPIs has been defined for each Use Case and evaluated using currently 
deployed applications and PHYSICS application prototypes. The comparison of these two evaluations 
highlights the benefits of the PHYSICS Design Environment and components, including the increase in 
reliability and the facilitation and acceleration of application development and deployment. Flexibility and 
adaptability have been demonstrated by developing and deploying three very different application 
prototypes based on PHYSICS components. The usability of the PHYSICS Design Environment and of some 
distinct components has been evaluated through a state-of the art survey, showing that users with different 
backgrounds are able to take advantage of these components, but also that there is room for improving the 
user-friendliness of the Design Environment. 

This is the next version of the above deliverable, i.e., “D6.8 PHYSICS Application Prototype Evaluation V2”, 
which is due to be released in M36 of the project (December 2023). It details the outcomes of the impact 
intensification period, including the evaluation of KPIs related to the more complex version of the 
application prototypes and the reevaluation of the first set of KPIs with the fully integrated PHYSICS 
platform.  
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1. INTRODUCTION  

1.1 Objectives of the Deliverable 
The objective of this deliverable is to evaluate the PHYSICS platform and the platform components from a 
user perspective. This deliverable provides the formal definition of the KPIs, its evaluation for the currently 
deployed Use Case applications, and a complete evaluation using the PHYSICS applications prototypes. 

1.2 Insights from other Tasks and Deliverables 
As depicted in Figure 1, deliverable D6.8: Application prototype evaluation V2 builds on the previously 
delivered documents D6.4: Application scenarios definition V2 and D6.6: Application prototype V2. The 
currently deployed Use Case applications used to estimate the baseline KPIs are detailed in D6.6, and their 
PHYSICS-compliant counterparts are introduced in D6.4 and detailed in D6.6. D6.8 also compares the 
achieved functionalities with the requirements posed during design time, mainly in WP2 and in D2.3: State 
of the Art Analysis and Requirements Definition V2. 

 

Figure 1: Overview on how D6.8 and previous WP2 and WP6 Deliverables relate to each other in terms of the 
requirement engineering of the PHYSICS project. 

 

Moreover, to facilitate the reading of this document, the outcome of Task 6.2 about the definition of 
applications KPIs have been integrated in Section 2. 

1.3 Methodology 
First, the Use Case objectives regarding PHYSICS have been formalized. These objectives are very dependent 
on the application, and in addition, each Use Case has its own set of objectives. Workshops have been 
organized to introduce a common methodology allowing to associate each objective to a measurable 
performance metric. These metrics, called Key Performance Indicators, have been the basis for the PHYSICS 
platform evaluation. 

To quantify the gain induced by using the PHYSICS platform, the KPIs have been evaluated on the currently 
deployed Use Case infrastructure and with the available PHYSICS components. The comparison of these two 
sets of measurements enables to quantify the achievements of the Use Case objectives. 

Another key and transversal evaluation criterion of the PHYSICS platform from a user perspective is its 
usability. Considering the large number of usability evaluation methods, standardized usability 
questionnaires are valuable tools intended for the assessment of perceived usability (Hornbæk, 2006). A 
large variety of standardized usability questionnaires for evaluating software systems are available. 
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Based on the comparative review of (Assila & Ezzedine, 2016) the System Usability Scale has been chosen 
as a baseline. It has been completed to capture relevant background information about the users and to 
assess system capabilities and flaws. 

Flexibility and adaptability are addressed at the Use Case level by monitoring the efforts required to develop 
and deploy each application prototype. And at a global level through the development and deployment of 
application prototypes from three fields: manufacturing, health, and agriculture, with different 
requirements and constraints. In this context, the performance metric at the global level is the success in 
application prototype development and deployment. 

1.4 Structure 
The reminder of the document is structured as follows. Section 2 describes the methodology elaborated 
during Task 6.2 to define Use Case specific KPIs. Section 3 gives a brief overview of PHYSICS components 
that have been used to experiment and evaluate the application prototypes.  

Sections 4, 5 and 6 are dedicated to the pilots Smart Manufacturing, eHealth, and Smart Agriculture 
respectively. These sections have the same structure: In subsection 1, Use Case specific KPIs are detailed; 
in subsection 2, the KPIs evaluation on the infrastructure used in production by the pilots are presented 
with the aim to establish reference metrics that are then compared to those measured when using the 
PHYSICS platform. This metrics comparison is detailed in subsection 3, and the cost/benefit trade-offs 
achieved using PHYSICS are discussed,   

The questionnaire used to evaluate PHYSICS platform’s usability is introduced in section 7.1 and collected 
user feedback are analyzed in section 7.2. Finally, conclusions and an outlook for future work is provided 
in Section 8. 
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2. KPI DEFINITION 

2.1 KPI Design Theory 
Companies have the reason to either maximize their operation, optimize activities, or make better decisions. 
Therefore, they use metrics per definition measures for evaluating efficiency, performance, advantage, or 
quality. Metrics are simply numbers. Per definition, a metric always has one single dimension. If a metric 
unites multiple dimensions, it would not be comprehensible why the value of the metric is low. A measure 
should be tight to only one specific goal. To shape a broader picture of an operation, it makes sense to have 
a set of metrics that measure all relevant facets of an entire operation. Key Performance indicators are 
metrics that are used to gauge how good or bad a company or a business achieves its goals. Companies use 
a huge set of KPIs and rarely get rid of unnecessary ones. KPIs can have motivational effects, can convince 
others, and allow management from remote.  

When wrong things are measured, it will lead to bad decisions, bad behavior and unhappy customers. 
People and specifically managers can also misuse metrics to their own benefit, to the disadvantage of others 
or to deceive others. It is crucial that users recognize that KPIs can provide the value to guide people for 
better decisions or to change behavior and can not only be used to assess, evaluate and analyze. 

2.2 Methodology 
Developing a good metric requires commitment of all stakeholders. There is not a catalog from which 
managers can pick the perfect KPI. However, there exists a very good metric that fits an individual purpose. 
This metric must be measurable, achievable, easy to understand, fraud-proof, and strategically aligned 
(Davilla, 2018) . In terms of this project, we assessed existing methodologies to create a suitable approach 
in a technical environment that aligns performance measures for technical components and the pilots’ 
business. During Task T6.2 we were already collecting desired performance measures of the three pilots. 
The results were reported in Deliverable 6.3 in the Sections 3.19, 3.29 and 3.39. It was determined that good 
KPIs were not possible to be created with a brainstorming or a list. The desired KPIs as collected with a 
questionnaire contained following issues: They contained more than one goal, or they contained fuzzy 
definitions of a performance, like “must be higher”, “less or none” or “should be short”. Number one issue 
was that desired KPIs were formulated as goals instead of measurable indicators for the achievement of a 
goal. Figure 2 shows the process that was created and covered within a workshop which each pilot.  

 

Figure 2: Process used to derive measurable indicators (KPI) from phrased objectives. 

 

In order to create measures that are suitable for the pilots in the context of PHYSICS, we customized existing 
methodologies for our needs. Two steps in the KPI Design Process were adopted from the Performance 
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Measurement Process as described by (Barr, 2014). One step is about mapping of measurable results and 
the translation of goals into results. The other is about finding obvious evidence that a goal was achieved 
and how to measure the level of goal achievement. Another step took the idea of (Doerr, 2018) of measuring 
a KPI at the bottleneck of a process. 

We focused in the first place during step number one on the users of the KPI to be developed to identify the 

reporting line of the KPI. We developed specific questions to identify the connection between the 

operational level that is working with the KPI and the business level that must draw decisions based on the 

performance. Per the Lean methodology and the Theory of Constraints, a KPI should be assigned to the 

bottleneck of a process (Doerr, 2018). Therefore, the second step has the goal to identify what matters most 

for both the business and the operational level and what purpose the KPI should fulfill. This most relevant 

goal got prioritized via a voting of the workshop members and represented the bottleneck of the process. 

The prioritized goals needed to be formulated as performance results. To transform the goals into 

performance results, specific tests were used. The first test qualifies the reformulation into a result. With 

the second test there was ensured that weasel words get replaced with clearly defined definitions and a 

third test ensured that the result only includes one focus. The outcome after going with the original goals 

through this test qualified the goal to be a valid performance result. If a multi-focus gets detected the results 

get separated and individually handled as separate performance results after step three. Step four was 

chosen to be included into the methodology because not in all cases the achievement of a result can be 

detected obviously but only with the observation of an indicator used as sensory evidence. If the 

performance result cannot meet the requirement of providing sensory evidence on its own, evidence must 

be found or created within the workshop. After step four, the performance measure got transformed into a 

key performance indicator that measures the achievement of a goal that aligns business with operation at 

a bottleneck of a process. The second row in the process model characterizes the steps that consider the 

rules of the handling of the KPI. Step five identifies parts of the KPI, how they are collected and if the 

reporting interval of the KPI is in relation with the effort to create the KPI. It checks if the parts of the KPI 

can be measured directly, must be calculated from other data, or can be drawn from an indirect indicator. 

Sometimes there will be combinations possible. Step six consists of two parts. The first considers from this 

baseline of the KPI components the mathematics and the relationship between the components to build the 

KPI. In the Workshop there were sticky notes used to build the formula. The second part is about the 

definition boundaries between a desired optimum, a working area that is acceptable and the area which is 

intolerable. After the mathematics the KPI needs to be assigned to a responsible owner. Step seven audits if 

an existing process can own the responsibility of the KPI creation or if a new one needs to be established. If 

an existing one can own the KPI integration it is checked what adjustments in the process need to be made 

and who will be the person or respectively the role that is responsible. Step number eight is enormously 

important for the actual implementation in the company, because the collection of KPIs will in any case be 

associated with people. There are the people who work with the KPI, others who are responsible for the 

process that the KPI measures, others who report based on the KPIs and possibly also those whose salary 

is linked to the KPI. During the workshop, participants from the relevant areas of the company will be 

sensitized to how KPIs can be abused for their own benefit and to the detriment of others. This task secures 

the misuse of the KPIs by covering possible scenarios with counterpart KPIs. For example, quantitative 

results can be supplemented by qualitative ones.   



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 13 

3. EVALUATED COMPONENTS 
In the context of Use Case evaluation, the users access to, and experiment with different PHYSICS 
components through the Design Environment. The next paragraph provides a short description of the 
PHYSICS Design Environment and the components made available (see (Patiño, et al., 2021) for more 
details). 

The PHYSICS Design Environment is the main entry point for the application developer when interacting 
with the PHYSICS platform. In this environment the latter needs to visually design and implement their 
application, by creating new code segments, importing existing ones, or re-using generic, available 
implementations (in the form of patterns) available from the PHYSICS platform. A key element is the ability 
to dictate workflows of operations among these diverse components, that in the end will be implemented 
during runtime, so that different elements of the application can be deployed according to their envisioned 
operation (i.e., as microservices or as functions, or a combination of the two). 

The overall architectural diagram of the WP3 entry point for the developer appears in the following figure 
(Figure 3). This also includes interactions with the semantic block (Application and Service Semantic 
Models, Inference Engine), the Design Patterns Repository, and the FaaS Platform Deployment. 

 

Figure 3: Design Environment Components and Interactions with other elements of the PHYSICS platform. 

 

In the Smart Agriculture Use Case, the main functionalities tested during the evaluation phase are: 

• Integration of Python codes in existing flows, namely the Edge-ETL flow (see (Patiño, et al., 2021), 
(Fatouros, et al., 2023) and (Kousiouris, et al., 2023)  for more details) 

• Parametrization of the flow using the Node-Red insterface 

• Adaptation, build and deployment of the docker image in which the pipeline will be run on the Edge 

 

In the eHealth Use Case, the main functionalities tested during the evaluation phase are: 
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• Design of flows describing the application with Node-Red 

• Integration of Python codes in existing flows, namely the branchJoin flow (see (Patiño, et al., 2021) 
for more details) 

• Execution of the application as FaaS through the deployment of flows using the DE 

In the Smart Manufacturing Use Case, the main functionalities tested during the evaluation phase are: 

• Design of flows describing the application with Node-Red 

• Integration of Python codes in designed flows 

• Execution of the application as FaaS using OpenWhisk 

• Testing of design environment and the build functionality with the quality control (QC) flow 
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4. PILOT “SMART MANUFACTURING” 

4.1 KPI definition 

4.1.1 Description of key performance indicators 
To evaluate the improvements after deployment of the PHYSICS platform on the Smart Manufacturing Use 
Case, the following KPIs were defined: 

• KPI01 - Time for handling a request: Measures the average request/response time for 8 requests 
with PHYSICS and before PHYSICS. 

• KPI02 - Scalability: Measures request/response time for 8 parallel requests. 
• KPI03 - Number of software logs per QA’ed product: Counts the number of errors with and 

without failover functionality of PHYSICS while using QC function. 
• KPI04 - Reliability: Measures the availability of the QC function and reliability of responses. 
• KPI05 - Interference latency: Same as KPI01, but only calculates the time to complete the QC 

action, without considering the overhead of OpenWhisk. 
• KPI06 - Data protection: Indicates how the transferred data is protected. 
• KPI07 - Number of PHYSICS invocations in software logs per QA’ed product: Similar to KPI03, 

but this measures the ratio between the invocations on PHYSICS and the local QC service. 
• KPI08 - Cost reduction: The bill based on the time multiplied by the cost/time. 

• KPI09 - Performance benefits: Although for the manufacturing Use Case, the reliability (KPI04) is 
more important than performance benefits, this KPI will inspire us to further use FaaS technology 
in our upcoming demonstrators as well as the functionalities of the existing demonstrators. 

4.1.2 KPI Workshop outcomes 
From the complete list of the KPIs written above, during the workshop for the KPI definition process, KPI03 
and KPI07 were selected as the highest priority for the Smart Manufacturing Use Cases. They were assessed 
in this deliverable.  

Using the methodology from §2.2, in Step #1, the actors within DFKI (and its test lab) were identified by 
answering the following questions: 

• Who is to work with the KPI? 
○ Software Developer 
○ Maintenance User 
○ Production Planner 

• Whose work is monitored with this KPI? 
○ Software Developer 
○ Maintenance User 

• To whom is the KPI reported? 
○ Production Planner 
○ Superiors 
○ Management 

In Step #2, the following business goals (BGs) have been defined: 

1. High production rate 
2. High availability (of the software infrastructure) 
3. Less maintenance time (in software failure) 

The high availability (BG2) was chosen as the main goal, as it is crucial for the test lab. If the BG2 is met, the 
BG1 and the BG3 will also be affected indirectly, thus meeting these goals as well. 

In Step #3, the prioritized goals were formulated as measurable performance results. This step enabled to 
identify two of them: 
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• Using PHYSICS should decrease occurrences of software faults by at least 40% compared to without 
PHYSICS. 

• Using PHYSICS should decrease manual QA requests by at least 40% compared to without PHYSICS. 

Since the performance results defined in Step #3 cannot be measured directly, in Step #4 they were 
reformulated as the following KPIs:  

• # of error messages in software logs per QA'ed products (KPI03) 
• # of PHYSICS invocations in software logs per QA'ed products (KPI07) 

Step #5 dealt with how the measurements were supposed to be carried out. Based on the analysis, it was 
determined that the data was both calculated and directly measured by checking the error logs of the 
software. A daily check would also suffice. This KPI was first intended to be for Quality Control (service), 
however, it was also identified that it could be used for different usages. 

Following Step #5, in Step #6, the optimal value was determined to be 0%, which is the ratio of error 
messages in software logs, divided by the number of total QA’d products (where # of QA’d products > 0). 
The desired value range was expected to be between 0% and 10%. 

The last steps (namely Step #7 and Step #8) were to identify whether there was a (business)-process that 
the KPI should be integrated in. However, for the Smart Manufacturing Use Case, it was not the case. 
Nevertheless, it was confirmed that software developers and maintenance users can collect the logs and 
discuss the results with their superiors and management to evaluate their status. If necessary, this could 
have led to making decisions to improve the software. 

4.2 KPI evaluation in the current infrastructure 
The current infrastructure at SmartFactory-KL is implemented as a service-oriented architecture. As seen 
in Figure 4, each software component to complete the production is loosely decoupled from each other. This 
enables to convert the appropriate services into functions, to fully exploit the PHYSICS functionality. Each 
hardware module added to the demonstrator is also using the same idea of this software architecture. This 
means that the hardware modules are able to use the FaaS approach to fulfill their requests or respond to 
the requests from other hardware modules. This Use Case utilizes the QC Module, which controls the 
product for defects before giving it to the customer. 

 

Figure 4: The architectural overview of the SmartFactory-KL demonstrator. 
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For the second version of the deliverable, the KPIs were evaluated by measuring the times using an internal 
tool. The baseline for this KPI was obtained using the following scenario:  

• S01) Python script to request QC → Docker QC → Python in Docker (inference time) → Result 

Table 1: KPI evaluation with remote docker (as-is, without PHYSICS components). 

KPI Objective Current evaluation 

KPI01 Median response time ≤ 1 seconds 0.383 s 

KPI02 Not applicable, existing system was not built with 
scalability in mind 

(3.032 s) 

KPI05 Median interference time < 0.5 seconds 0.056 s 

4.3 KPI evaluation using PHYSICS components. 
For the second version of the deliverable, the KPIs were evaluated by measuring the times using an internal 
tool. To measure these KPIs using PHYSICS components, the following scenarios were identified: 

• S02) Python script → PHYSICS local Edge-deployed QC flow with 2 docker QC functions → Result 

• S03) Python script → PHYSICS Cloud-deployed QC flow with 2 docker QC functions → Result 

S02 uses the local PHYSICS deployment on the Edge within DFKI premises, while S03 uses the Cloud 
PHYSICS deployment. While the first version of this deliverable explored the cold- and warm-start behavior 
of PHYSICS, for the second version, we focus in different aspects such as overall performance and 
availability in line with the much larger timeframe of the measurements. 

We carried out the 3-week tests (from September 4 to 23, 2023) of the PHYSICS platform to assess the 
goals targeted by the Smart Manufacturing Use Cases (see Deliverable 6.4 for complete explanation): 

1. Deployment of substitute service in the Cloud 

2. High Confidence Quality Control 

The evaluation phase was held from 8:00 a.m. to 8:00 p.m., Monday through Saturday. The test consisted 
of calling the High Confidence Quality Control PHYSICS Cloud deployed function, resulting in approximately 
20000 requests per week. This gave the total number of 60177 requests with 59425 successful 
responses (98.75%), even though PHYSICS was still in beta testing. Figure 5 shows the complete 
timeframe for the evaluation phase and all total and action times for each request. The main outliers at the 
beginning of each new day are caused by the required cold-starts of the functions. 

Only one major problem with the PHYSICS platform occurred on September 4th which, once noticed, was 
fixed relatively quickly early next day. This outage is heavily reflected in the weekly results where the 
successful response rate was 96.47% in the first week. The remaining weeks were problem free, with 
99.82% and 99.96% successful response rate for the second and third week respectively. All in all, the 
availability of the PHYSICS Cloud deployment meets the Smart Manufacturing objectives regarding KPI04. 
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Figure 5: Total and action time of all requests during the evaluation phase (2023-09-04 till 2023-09-23). A 
time of -1 indicates a problem (either related to the PHYSICS platform or the connection to it). 

The histogram in Figure 6 depicts all successful request total response time during the evaluation phase. 
While requests requiring the more complex QC function take slightly longer than the objective of less or 
equal one second per request for KPI01, it is only used in 43.33% cases (KPI07), hence the median total 
response time is 0.747 seconds which meets the objective. 

Figure 7 depicts a typical day of requests during the evaluation phase, except for a short period of 
continuously failed requests. This was caused by a load generator demonstration (another feature of the 
PHYSICS Design Environment), that overwhelmed the system during its runtime. The load generator is 
meant to generate as much load as possible, however it had the unintended consequence of interrupting 
every other request. This however is to be expected, since the Cloud infrastructure that PHYSICS is running 
on during the project runtime is limited. 
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Figure 6: Histogram of total time for successful requests during the evaluation phase. 

 

 

Figure 7: Outlier Day because of "Load-Generation" demonstration 
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Regarding KPI03, during the third week, our local Edge PHYSICS deployment had a successful response rate 
of 99.88% (23 errors). With the Failover to the Cloud deployment, the actual successful response rate 
increased to 99.96% (7 errors). 

Table 2: Smart manufacturing KPI evaluation using PHYSICS components. All evaluations done in “warm” 
state with worst case (both simple and complex QC functions are used). 

KPI Objective Evaluation context Current evaluation 

KPI01 Median response time ≤ 1 second 
S02 0.575 s 

S03 0.747 s (3rd week) 

KPI02 
Total time (parallel with 8 requests) < 
Total time (sequential) 

S03 (parallel) 11.803 s  

S03 (sequential) 8 * 0.747 s = 5.976 s 

KPI03 # of errors as close to 0 as possible 
Without Failover 23 (3rd week) 

With Failover 7 (3rd week) 

KPI04 Availability > 99% 
S02 99.88% (3rd week) 

S03 99.96% (3rd week) 

KPI05 
Median interference time < 0.5 
seconds 

S02  0.244 s 

S03 0.451 s 

KPI06 Keep data secure 

S02 
Data never leaves 
company network 

S03 
Data transfer is 
encrypted, and data is 
not stored. 

KPI07 
Minimize manual QC by Operators, 
more PHYSICS invocations mean less 
manual QC. 

# of PHYSICS invocations 8663 (3rd week) 

Ratio 43.33% (3rd week) 

KPI08 
Minimize running costs using 
PHYSICS Cloud 

Worst case (always) ~3.35 USD 

Average case (just 
failover) 

~0 USD 

KPI09 
Performance Benefits when the 
certainty of the simple QC is 
insufficient 

With PHYSICS 4232 s total (3rd week) 

Manual inspections3 10s * 8663 = 86630 s 

Improvement4 20.47x 

In the as-is (non-PHYSICS) scenario, the local deployment on a dedicated virtual machine was running 24/7, 
causing significant power consumption and needing extra maintenance, totaling cost of roughly 60€ per 
month. Without help from experienced DevOps engineers, this deployment required nine person-days. 

With the PHYSICS infrastructure, since the machines used for production are not running 24/7, there is a 
potential for cost savings. The locally deployed PHYSICS on the Edge is running on a shared server and is 
only insignificantly contributing to power consumption while not in use and incurs only minimal additional 

 
3 Manual inspections – it is assumed that the manual inspection takes on average 10s. 
4 Improvement – theoretical improvement based on the assumption regarding manual inspection. 
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maintenance costs equal to approximately 10€. At the time of the experiment, the platform was still 
undergoing fine-tuning, necessitating assistance from other project partners to set up the developing and 
testing environment locally. Consequently, it's challenging to precisely determine the amount of time 
required to deploy PHYSICS at the Edge. However, starting from scratch, the installation of PHYSICS Design 
Environment + stand-alone OpenWhisk (minimal setup of PHYSICS) is estimated to take less than one day 
for an expert, especially with the help of available automation scripts. 

The PHYSICS Cloud deployment only incurs costs while in use (included in Table 2). Since no commercial 
pricing of PHYSICS is available yet, the cost of using FaaS was estimated using competitor AWS Lambda in 
Frankfurt (Europe). Thus, in the Smart Manufacturing case with approximately 20000 requests per week 
taking in the worst case 5s each total to roughly $3.35 (3.08€) monthly. Deployment of the Smart 
Manufacturing functions to PHYSICS Cloud was done in roughly two person-days. This process was 
considerably easier than deploying it locally, especially since previous experience gained from the local 
deployment was applicable. Estimated time is less than 2 hours including the import of already existing 
functions from the previous Edge deployment. 

Regarding data security, the PHYSICS Cloud offers encrypted data transfer, and no data is stored in the 
functions because they are stateless by design (unless the user wants to implement it using the PHYSICS 
component). Additionally, if the user has the requirement of data not leaving the company network, it is 
also possible to deploy and use PHYSICS locally and separated from the Internet. 

4.4 Conclusion 
As discussed in the previous section, the availability of implemented Smart Manufacturing functions is the 
highest priority. PHYSICS achieved satisfactory results both in the Edge Deployment case as well as in the 
combined Edge and Cloud fail-over case, with each having roughly 99.9% availability during the evaluation 
phase. 

Although the performance of the PHYSICS Cloud environment (S03) was found to be slightly slower than 
the local deployment (S02), as defined by the Smart Manufacturing Use Cases, the reliability and availability 
is more important than the performance, as long as downtime is minimized, and it is still high enough not 
to disturb the production. However, the performance results are expected to be enhanced if PHYSICS is used 
commercially, since currently it is restricted by running on limited Cloud resources due to minimizing cost.   

PHYSICS decreases both deployment and running costs compared to using a dedicated virtual machine. The 
PHYSICS Edge deployment reduced costs from approximately 60€ to roughly 10€. Additionally, utilizing 
the PHYSICS Cloud deployment as a fail-over incurs basically no costs on average. Only in the worst-case, 
estimated costs are around 3€ if every request is handled in the Cloud. 

Finally, the PHYSICS environment helps reduce the number of tedious and time-consuming tasks carried 
out by the test lab worker. While similar performance benefits could be achieved without using PHYSICS, 
the development and operational costs would be significantly higher. 
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5. PILOT “EHEALTH” 

5.1 KPI definition 
In the following subsections we describe the process of deriving KPIs for the eHealth Use Case, resulting in 
a Table of measurable KPIs at the end of this subsection. 

5.1.1 Description of key performance indicators 
The starting point for defining the eHealth Use Case KPIs were the following two performance measures 
that were deemed relevant for the pilot at the start of this process: 

▪ The time to infer on some input vectors given a model should scale better than linearly with the 
number of involved vectors. 

▪ The time to redeploy the service utilizing more resources should be short and the process should 
not require human supervision. 

5.1.2 KPI Workshop outcomes 
Starting the KPI definition process as defined in §2.2 (Step #1), we have identified the following set of key 
actors involved in these two KPIs: 

▪ Who is to work with the KPI? 

o Head of Machine Learning 

o Machine Learning Engineer 

o Head of Software Development Team (Service Manager) 

▪ Whose (direct) work is monitored with this KPI? 

o Head of Machine Learning 

o Machine Learning Engineer 

▪ To whom is the KPI reported? 

o CEO 

The actors and their roles as defined above are the same for all relevant KPI’s related to the PHYSICS eHealth 
Use Case. 

As a next step (Step #2), the question of which business goals should be supported was defined as follows. 
Note that from this point on in the KPI-definition workshop, the original KPI definitions (i.e., “time to infer”, 
and “time to deploy”) were let go in order to formulate a set of more exact KPIs as defined here. At the end 
of this section in Table 3, we re-visit these initial statements in order to re-introduce them in the final set of 
KPIs for the eHealth Use Case. 

▪ BG1: “Platform works in a stable way” – A very important high level KPI is that the addition of 
smart services, such as the online inferencing should never negatively impact the overall system 
performance. Additionally, for this business goal, the following daily work goals were defined: 

o Prediction pipeline should be optimized 

o Improve the prediction time 

▪ BG2: “Add the machine learning features to platform” – Perhaps obvious, but it is important that 
the ML features (online inferencing, and later perhaps online model training) are integrated into the 
platform. Additionally, for this business goal, the following daily work goal was defined: 

o Improve the prediction accuracy 
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▪ BG3: “Lower the price of an individual prediction” – Looking ahead, as the number of users of the 
platform grows, performance of the online inferencing cannot become an excessive cost element of 
the platform, therefore the price ($) of individual predictions should be kept to a minimum. 
Eventually this business goal was considered secondary and was not worked out in further detail. 

From these three, BG1 and BG2 were selected for further clarification, and both were marked as 
“Optimization” KPIs on the scale of (Optimization – Orientation – Motivation). 

In the next step (Step #3), both KPI phrasings were clarified as follows: 

▪ KPI-1: Mobile/Webportal Application Requests are handled in 99% of the time within 1 
second 

▪ KPI-2: Add automatic prediction of configurable health outcomes as a platform feature 

Since both KPIs are already considered very well measurable, Step #4 didn’t yield any new results. The final 
four steps (Step #5 – Step #8) have been followed for each of these 2 candidate KPIs, resulting in the 
following information: 

KPI-1: Mobile/Web portal Application Requests are handled in 99% of the time within 1 second 

▪ Step #5: How data is collected:  

o Calculated 

▪ How often data needs to be updated:  

o Daily 

▪ What are the parts of the KPI: 

o Every Page Load Time (automatically collected) 

o Statistics of Page Load Times (automatically collected) 

▪ What it means (Step #6):  

o Ideally, the amount of page load times <1s / total amount of page loads is somewhere 
between 0.9 and 0.99. 

▪ Step #7: In which (business-)process should the KPI be integrated:  

o Integrate into the OKR process handled through JIRA5. 

▪ What has to be done therefore: 

o Automatic calculation has to be implemented 

o Automatic measurement of load times 

o Automatic reporting of statistics to an e-mail inbox 

o Manually updating JIRA 

▪ Which processes have to be created to be able to use the KPI:  

o None. 

▪ Who can do that: 

o  Head of SW Development updates the JIRA Board. 

▪ Step #8: Who uses the KPI to make daily work better: 

 
5 https://www.atlassian.com/software/jira 
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o  Head of SW Development 

▪ Who uses the KPI to make reports:  

o Head of SW Development 

▪ Whose salary/compensation is tied to the KPI:  

o Head of SW Development 

KPI-2: Add automatic prediction of configurable health outcomes as a platform feature 

▪ Step #5: How data is collected:  

o Direct measured 

▪ How often data needs to be updated:  

o Weekly 

▪ What are the parts of the KPI: 

o Presence of the Feature (manually collected) 

▪ What it means (Step #6): There is relevant progress on any of the implementation’s subtasks. 

▪ Step #7: In which (business-)process should the KPI be integrated:  

o Software Development and Planning 

▪ What has to be done therefore: 

o Implement the reporting in the JIRA Agile Tool 

o Talk with participants about the purpose of the KPI 

▪ Which processes have to be created to be able to use the KPI:  

o None. 

▪ Who can do that: 

o Software Development Lead 

o Product Owner 

o Software Developer 

▪ Step #8: Who uses the KPI to make daily work better:  

o Head of Machine Learning 

▪ Who uses the KPI to make reports:  

o Head of Machine Learning 

▪ Whose salary/compensation is tied to the KPI:  

o Head of Machine Learning 

o Head of SW Development 

5.1.3 Building measurable performance results 
This defines KPI-1 and KPI-2 as they were defined in the collaborative KPI Workshop held in January 2022. 
The current set of KPIs for the eHealth Use Case is summarized in Table 3 below. 
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Table 3: List of KPIs for the eHealth Use Case. 

# KPI Clarification 

KPI-1 
Platform requests are handled in 90% of 
the time within 1 second 

Currently the requests arrive in bundles every 
couple of hours. It is important that these 
requests do not block the platform 

KPI-2 
Functionalities offered by the functions 
drive platform features 

Have usable services out of the eHealth 
functions, that can be invoked by the platform 

KPI-3 
The average invocation time of using a 
FaaS should be the same or less 
compared to the traditional deployment  

Cold and hot starts of the FaaS will be 
considered when presented with bursts of 
requests. 

KPI-4 
The time to re-deploy the service (update 
the code or a model) should be shorter 
compared to the traditional deployment. 

The process of redeploying service code or 
models should be simplified ty PHYSICS. 

KPI-5 
The use of PHYSICS should lead to cost 
reductions. 

Cost is important for the uptake of PHYSICS. We 
consider both initial costs (learning PHYSICS) 
and running costs (hosting the services). 

 

5.2 KPI evaluation in the current infrastructure 
The current implementation of the Healthentia Smart Services at Azure exposes API endpoints that expect 
the same input as their new DaaS counterparts detailed in D6.6. The service is a Flask Python web 
application that also features a UI for monitoring purposes. The service does not have any storage needs. 
The input data and the results are fetched from and stored in the database of the Healthentia platform. It is 
dockerized and deployed as part of the Healthentia Kubernetes cluster in its own pod. 

The service is typically invoked once per day for each subject in the Healthentia platform. The feature 
vectors are composed when the information for any day is complete. Since this can happen at any time in 
the following day, vector composition is attempted every two hours, whereupon some new vectors are 
prepared. These are combined in bundles of ten and are sent for inference. 

The models are implemented using different machine learning algorithms, their majority being Neural 
Networks or Random Forests. Our current inference needs are met without the need of any GPU 
acceleration. 

5.2.1 Handling requests 
KPI-1 is fulfilled by the current traditional deployment. All requests result to starting the processing for 
inference well within the 1 second threshold. 

5.2.2 Feature inclusion 
KPI-2 is fulfilled by the current traditional deployment. The deployment is offering the wanted functionality 
via API endpoints. 

5.2.3 Executing requests 
KPI-3 is about comparing traditional deployment and FaaS, but the two approaches cannot be compared 
like that. FaaS introduces an inherent delay for bringing the service online. This is a cold start. Once online, 
a service remains so for some time after the completion of the request. In PHYSICS this is about 12 minutes. 
Any subsequent requests in that period are processed by the service in hot start. A hot-started service has 
the same execution time on the same hardware no matter if it is traditionally deployed or FaaS. 
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5.2.4 Deployment complexity 
KPI-4 is about comparing the deployment of updated functionality in the current Healthentia platform to 
the needed steps when PHYSICS is used. In Healthentia, service code updates are handled by pushing the 
new code in the equivalent branch, whereupon the equivalent CI/CD pipeline builds the docker image and 
deploys it. Model updates are not allowed. Model additions are done by Healthentia’s ML services: Any 
newly learnt model is stored in a data lake, while metadata about it are stored in Healthentia’s database. 

5.2.5 Cost 
KPI-5 is about the initial costs and the hosting ones. Initial costs relate to learning how to set up deployment 
pipelines (in Jenkins) and actually putting them in place. A knowledgeable engineer can become a novice 
DevOps engineer in about 10 person days. A mid-level DevOps engineer can create a new pipeline of the 
complexity of the services at hand in less than 2 person days. Hosting costs for the service’s pod are 
currently at around $80,00 per month. 

5.3 KPI evaluation using PHYSICS components 
The FaaS deployment is achieved using the PHYSICS DE to deploy services from Node-RED flows, as 
described in D6.6. For example, the flow for inference is shown in Figure 8, adapted from D6.6. 

 

Figure 8: Flow for inference service. 

Single requests are sent to the FaaS version of the services using another Node-RED flow, as shown in Figure 
9, adapted from D6.6. 

Multiple requests can be sent using the PHYSICS load generator. The flow for doing so is shown in Figure 
11. This flow benchmarks the timing of the execution of the function, as shown in Figure 10. 

5.3.1 Handling requests 
For the evaluation of KPI-1, the load generation flow is called once, and the results are shown in Figure 12. 
The average start latency is far below the 1 sec limit, at 214ms. But this suffers from a large standard 
deviation of 485ms. While the start latency is clearly not Gaussian-distributed, assuming so leads to 
approximately 95% of the requests having started faster than 1 second, so the KPI is reached. 
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The results obtained from the PHYSICS Load Generator appear in Figure 11, based on the delay definitions 

of Figure 11. Memory is in MB, timestamps in Unix Time milliseconds, the set and achieved rate refer to 

messages per minute while all the delays are in milliseconds. In this case the target is the inference 

function on AWS. 

 

 

Figure 9: Flow utilizing the deployed functions. 

 

Figure 10: Flow for load generation. 

5.3.2 Feature inclusion 
KPI-2 is fulfilled by the SaaS deployment of the services, since it is offering the wanted functionality via API 
endpoints. 
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Figure 11: Load generation flow used for benchmarking the functions. 

 

Figure 12: Load generation results. 

5.3.3 Executing requests 
More experiments have been carried out, with the parameters selected so that we always get the same warm 
container for execution, to investigate its behavior over time. This is shown in Figure 13. This can be used 
to decide for example if the memory used is ok, or if some other aspect of the image can be optimized. For 
example, in the following case the filesystem usage seems to increase over time, indicating that at some part 
of the flow relevant files may need to be deleted. 

In order to compare between a typical service-based deployment and a FaaS based one, the created model 
inference container was deployed as a service container on a 4-core 8GB VM (internal testbed). On the same 
platform, an Openwhisk installation was used with the registered function. Then three different set rates 
were applied (12, 30 and 60 messages per minute), each with 10 inputs needing prediction, to investigate 
the effect in each case. 100 values from each case were approximately obtained. The results appear in Table 
4. One of the main benefits achieved is the increased scalability of the FaaS solution, which is able to 
maintain responsiveness at the highest rate, in contrast to the server-based version. 
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Figure 13: Example container usage metrics from the OKD dashboard 

Table 4: Comparative results between a service-based version and a FaaS-based version on a local testbed 

Type of Execution-Rate Average User Side Delay (ms) 
Server-12  6309.56 
Server-30 6608.54 
Server-60 Timeout, server crashing 
FaaS-12 6646.71 
FaaS-30 21940.93 
FaaS-60 90766.40 

The evaluation proceeds looking into the average rate of processed requests per minute as a function of 
delay between requests, considering both cold and hot start conditions. The average time to process each 
request is 2.6 sec, so delays more than that result to a rate of processed requests that is equal to the 
incoming rate, matching that of an infinite system (one of infinite resources). This is shown in Figure 14. 
For delays smaller than 2 sec, the performance of the system deviates from the infinite one, with the rate of 
processed requests dropping below the expected. There, the performance of the system under hot and cold 
start deviates. The system under hot start still manages to remain close to the infinite system down to 1 sec 
of delay, i.e., about three requests being processed simultaneously. The cold start system already deviates 
a lot, but also fails to infer, even for requests that do arrive for processing (see the dotted lines indicating 
successfully inferred for messages). Performance collapses completely for an intra-request delay of 750ms 
for the cold start, and 500ms for the hot start. 

To alleviate the problem, the PHYSICS Request Aggregator can be used. It collects multiple requests into a 
larger one, actually receiving larger inference requests more sparsely in time. It is evident from Figure 14 
that at an original request rate of 1 per second, problems start even for the hot system. Using the PHYSICS 
Request Aggregator we can manage much larger original request rates, without any unprocessed or failed 
requests. This is shown in Table 5. Note that for all these scenarios the processing delay for the original 
requests is increased or average, but there also is a large standard deviation. This is expected, since when 
using the aggregator, requests simply wait for the buffer to fill, are packed together, are sent for processing, 
the results are unpacked and populate the respective responses. Requests early in the buffer suffer longer 
delays as they wait for the buffer to fill in. The histogram of the processing delay for all scenarios in Table 5 
are shown in Figure 15. 
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Figure 14: Average rate of processed requests as a function of the delay between the incoming requests. 

Table 5: Request Aggregator scenarios for handling request rates of 1 Hz and above with different batch sizes 
aggregated together. 

Rate 
(Hz) 

Batch 
size 

Duration (ms) 

Mean STD 

1 2 7,135 4,429 

2 2 18,315 6,830 

2 10 6,758 1,335 

5 10 17,668 3,707 

 

 

Figure 15: Histogram of request durations when aggregated under the four different scenarios of Table XX.  
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5.3.4 Deployment complexity 
KPI-4 is investigates updating the services, either their code or their underlying models. For the eHealth 
pilot both require re-building the Docker image that contains both the Python scripts and the model files. 
The image is built by Jenkins automatically by the PHYSICS design environment. Placing the models needs 
to be done manually in the model directory to be used for building the image, so this does not benefit from 
the automation already in place in the company. 

Nonetheless, KPI-4 is achieved, since the update complexity is really similar. 

5.3.5 Cost 
As already discussed, the initial and the hosting costs are considered. The initial cost includes learning to 
deploy the PHYSICS way, i.e., learning the Design Environment. It is difficult to estimate the time needed for 
learning the DE for the eHealth pilot engineers, since the process was progressive, and the DE was under 
development. Focusing on the online version of the DE, an engineer knowledgeable in Docker and Node-
RED, was able to deploy simple services in a day. 

Regarding the hosting costs, we consider deployment in AWS, located @ Europe/Frankfurt. Given the 
bursty nature of the requests, each needing 2.6 sec to execute for ten subjects, and the relaxed time 
requirements - each subject requires one inference per day, the cost of the FaaS based version is $1 per 
month for the current needs of 1.5k patients, or $6.8 for a future need of 10k patients. The recurring hosting 
costs in the FaaS case are an order of magnitude lower than that of the server-based deployment. 

Obviously, KPI-5 is easily met by FaaS deployment using PHYSICS. 

5.4 Service resources 
The required resources for running the eHealth services are also considered. Focus is placed in comparing 
one of the inference scenarios (the one for prediction) and the synthesis scenario. The needs of the services 
implementing the two scenarios are compared in Figure 16. The significant differences are in information 
transmitted over the network (synthesis has much larger outcome volume than inference) and in filesystem 
reads (models are read from the filesystem, and the inference random forest model is much larger than the 
Gaussian Mixture Models used by synthesis). 
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Figure 16: Resource needs for the inference (top) and the synthesis (bottom) scenarios of the eHealth pilot. 

Finally, the needs of the two eHealth services are compared to that of every other service deployed by 
PHYSICS. The result is shown in Figure 17. Both eHealth services are of the most demanding in terms of CPU 
and memory, while they are rather low in terms of filesystem writes and input information received via the 
network. They differ in filesystem reads, where inference is very demanding, but synthesis is rather low, 
and in transmitted information over the network, where synthesis is very demanding, but inference is just 
above average. 

    

Figure 17: Comparison of the resource needs of the eHealth scenarios (inference on the left, synthesis on the 
right) to those of all other services deployed using PHYSICS. 
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6. PILOT “SMART AGRICULTURE” 

6.1 KPI definition 

6.1.1 Description of key performance indicators 
Several objectives have been defined to evaluate the performance improvements achieved through the 
PHYSICS platform and project products (Franke, et al., 2021). For each one of the objectives mentioned, we 
give a brief description: 

● Amount of data lost: the data collection pipeline currently deployed in greenhouses is highly 
sensitive to connection failures. When connection failures happen, the data measured by the sensors 
and exposed by the supervisor of the greenhouse are lost. The aim of this indicator is to evaluate the 
gain in robustness induced by the integration of PHYSICS components. 

● Update on plant status: the data collected in the greenhouse are used as input of the numerical 
plant growth model. The outputs of these models are provided to the growers through visualization 
tools allowing them to track hourly changes in the plant status and to support decision making in 
greenhouse management. In case of connection failure to the supervisor, environmental data are 
unavailable, and plant status cannot be updated, leading to service interruption. 

● Time to perform optimization: numerical plant growth models coupled with climate scenarios 
allow to explore different greenhouse management policies. To be relevant, the numerical 
simulation of the scenarios must be run with up-to-date environmental data and the response time 
of the system must be as short as possible. 

● Adaptation time to a new context: according to the greenhouse infrastructure on which the 
pipeline must be deployed, several adjustments could be necessary. 

6.1.2 KPI Workshop outcomes 
From the full list of the objectives written above, during our workshop for the KPI definition process, we 
have selected “Adaptation time to new context” as our highest priority during the PHYSICS project. To 
reflect the methodology in §2.2, as Step #1, here are the identified actors: 

• Who is to work with the KPI? 
○ Commercial 
○ Head of greenhouse project 
○ Head of R&D 

• Whose work is monitored with this KPI? 
○ Engineer in charge of deployment 
○ Software developers 

• To whom is the KPI reported? 
○ Commercial 
○ Head of greenhouse project 
○ Head of R&D 

For the Step #2, we have defined the following business goals (BGs): 

• Scaling up from a couple of greenhouses to tens or hundreds 
• Reducing the cost associated with deployment of the application on the Edge 
• Ease junior installation and then recruitment 

From the three BGs above, high availability (BG2) was chosen as the main goal. If BG2 is met, BG1 and BG3 
will also indirectly be affected, thus meeting our goals. 

In Step #3, goals and the initial KPIs were rephrased to create measurable performance result. After this 
step, the following result has been identified: 
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• Using PHYSICS allow to adapt and deploy the application in a variety of greenhouse context with 
minimal effort in terms of development. 

To even dig deeper and create a potential measure, in Step #4, the results are further evaluated. The created 
measures were the following: 

• Extra-time needed to deploy the solution in a new context 

Step #5 dealt with how the measurements are supposed to be. Based on the analysis, it is determined that 
the data is directly measured by checking the efforts required to adapt the application to new greenhouse 
context. The analysis performed lead to the formalization of what defines a context, which includes:  

• The type of greenhouse supervisor  

• The type of sensors used in the greenhouse 

• The network configuration 

• The operating system present in the greenhouse 

Moreover, two kinds of adaptations could be needed to address a new context: 

• The adaptation of the environment deployed 

• The adaptation of the methods for data collection and preprocessing 

Following Step #5, in Step #6, the optimal value is determined to be 0, which is the extra-time needed to 
deploy the application in a new context, estimated from the time needed to deploy the application in a fully 
mastered context. Desired value range is expected to be between 0 and 2 man-days. 

The last steps (namely Step #7 and Step #8) were to identify whether there is a (business)-process that the 
KPI should be integrated in. The reduction of the time needed for adapting the application to a new context 
has a direct impact on the billing plan and on the developer team planning. 

Once measured on a set of contexts to define an achieved upper limit, the KPI could be easily integrated in 
business scenarios by the commercial director and in the developer, team tasks scheduling by the head of 
greenhouse projects together with head of R&D. 

6.1.3 Building measurable performance results 
Following the methodology experimented during the KPI Workshop we derived measurable performance 
results for each KPI and associated objectives (see Table 6). 

Table 6: Measurable performance results and PHYSICS objectives for smart agriculture Use Case. 

KPI Metrics Objective 

Amount of data lost Number of connection failure 

Number of data lost 

No data lost no matter how many 
connections failure occurs 

Update on plant status Number of interruptions 

Interruption time 

No interruption of service 

Time to perform optimization Response time Optimization must be performed 
in less than 1h 

Adaptation time to new contexts Time to adapt the environment 

Time to adapt the data collection 
procedure 

Adaptation time must be smaller 
than 2 man-days 
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6.2 KPI evaluation in the current infrastructure 

6.2.1 Amount of data lost 
To evaluate this indicator the data collection process has been monitored in two types of greenhouses 
belonging to R&D partners of Cybeletech. Monitoring has been performed from October 2021 to June 2022 
in the first, and from July 2021 to September 2021 in the second. Time series collected during these periods 
are shown in Figure 18 and Figure 19. 

 

Figure 18: Temporal series describing the climate variables collected in greenhouse type 1 with the currently 
deployed data collection pipeline over the experimentation period. 

 

 

Figure 19: Temporal series describing the climate variables collected in greenhouse type 2 with the currently 
deployed data collection pipeline over the experimentation period. 

 

The performance indicator used to quantify the amount of data lost integrates: 

1. The number of connection failure during the monitoring period 

2. The number of data point lost  

3. The amount of data lost, expressed in kilobytes (kB) 

During the monitoring period, six connection failures were encountered for greenhouse Type 1. These 
failures resulted in the loss of 27400 data point or 220 kB. For greenhouse Type 2, three connection failures 
were encountered, resulting in the loss of 8000 data point or 63 kB (Table 7). 
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Table 7: Number of connection failures and corresponding amount of data lost, expressed in number of data 
point and volume, for greenhouse type 1 and type 2 over the experimentation period. 

 Failure number Lost data point Lost data amount 

Greenhouse Type 1 

October 2021 0 0 0 kB 

November 2021 1 5000 40 kB 

December 2021 1 2900 23 kB 

January 2022 1 5800 46 kB 

February 2022 1 8600 69 kB 

March 2022 1 1500 11 kB 

April 2022 0 0 0 kB 

May 2022 1 3600 29 kB 

TOTAL 6 27400 220 kB 

Greenhouse Type 2 

July 2021 2 500 4 kB 

August 2021 1 7500 59 kB 

TOTAL 3 8000 63 kB 

6.2.2 Update on plant status 
To evaluate this indicator the simulation process has been monitored in two types of greenhouses belonging 
to R&D partners of Cybeletech. Monitoring has been performed from October 2021 to June 2022 in the first, 
and from July 2021 to September 2021 in the second. 

The performance indicator used to quantify the failure of plant status update process is composed of two 
metrics: 

1. The number of service interruption during the monitoring period 

2. The interruption times 

During the monitoring period six service interruptions occurred for greenhouse Type 1, with interruption 
duration ranging from 2 to 12 days. For greenhouse Type 2, three interruptions occurred with interruption 
duration ranging from less than one day to four days (Table 8). 

The total interruption duration is 38 days out of eight months (round 15%) for greenhouse Type 1 and four 
days out of two months (round 6.5%) for greenhouse Type 2. 

Table 8: Number of interruption and corresponding interruption time of the plant status monitoring service, 
for greenhouse type 1 and type 2 over the experimentation period. 

 Number of interruptions Interruption time 

 

October 2021 0 0 days 

November 2021 1 7 days 

December 2021 1 4 days 
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January 2022 1 8 days 

February 2022 1 12 days 

March 2022 1 2 days 

April 2022 0 - 

May 2022 1 5 days 

TOTAL 6 38 days 

 

July 2021 2 < 1 day 

August 2021 1 3 days 

TOTAL 3 4 days 

6.2.3 Optimization process performance 
To evaluate this indicator, we focused on the calibration pipeline. The main difference between 
management optimization and calibration pipeline are the model inputs explored. In the case of 
management optimization, we aim at exploring the impact of climate conditions in the greenhouse on plant 
performance, while in the case of calibration we aim at exploring the impact of parameter sets on model 
accuracy. 

The parallelization logic is identical: simulations are distributed over workers and model outputs are 
evaluated according to some metrics specific to the Use Case. The results regarding computational 
performances are then expected to be similar. 

The reference performance is evaluated by monitoring the runtime according to different scenarios. On the 
one hand, we evaluated the runtime variations with the size of the design of the experiment when running 
the pipeline without parallelization. On the other hand, we evaluated the speedup when using the 
parallelized version of the pipeline. The distribution of parameter sets evaluation is implemented with MPI, 
and the pipeline is run on demand on a cluster with 16 nodes. 

The experimental design is a combination of climate variables, aggregators and time window. The objective 
is to identify the combinations and to estimate the associated model parameters allowing to reproduce the 
outcome of a set of physiological processes as precisely as possible. 

For example, we can aggregate the temperature in the greenhouse over an hour by summing the 
temperatures sent by the sensors every 10 minutes and the net radiations received by the leaves of the 
plant over 2 hours by averaging the values sent by the sensors every 30 minutes. These two-input variables 
are fed to a function that estimates biomass production over a period defined according to the in-situ 
observations available. The outcome of this function is compared to the observations and the merit of the 
triplets is quantified through the Root Mean Square Error. This evaluation procedure is repeated over all 
the points of the experimental design to find the most suitable combination. 

According to the physiological process for which we seek to estimate the triplets and associated model 
parameters; the runtime of an estimation can slightly vary. In the experimentation presented in this 
document, we focused on the model describing the yield of the plant. The number of time windows explored 
is fixed to 10, the number of climate variables is varied between 2 and 5, and the number of aggregators is 
varied between 1 and 3. 

According to the design of experiment, the runtime of the parameter set evaluation procedure ranges from 
2.5 seconds when two climate variables and one aggregator are explored, to 50 minutes when 5 climate 
variables and 3 kinds of aggregators are explored. The runtime increases exponentially with both climate 
variables and aggregators (Figure 20.A). 
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In real case scenario, we aim at exploring up to 10 climate variables and 2 to 5 aggregators over 5 to 10 
different physiological models. To perform the parameter set estimation for one model with 8 climate 
variables and 3 aggregators, we need approximately 4 days of computation. To be able to propose accurate 
models to the growers within an acceptable timeframe, a parallelized version of the calibration procedure 
is used. 

The parameter sets are split according to the number of processors and the evaluations are distributed 
using MPI. The calibration pipeline is deployed on a dedicated server with 16 cores. With 16 cores, MPI 
enables a speedup close to 15 (Figure 20.B), which reduces the calibration time to about 7 hours by the 
physiological model. 

 

Figure 20: Runtime of the parameter set evaluation procedure according to the design of experiment (A) and 
MPI scalability evaluated through the speedup (B). 

6.2.4 Adaptation time to new contexts 
The KPI workshop enables to formalize a measurable metric on the adaptation time which is the sum of 
times needed for several distinct tasks. However, when the adaptation of Cybeletech application from type 
1 to type 2 greenhouse has been performed, the needed time has not been monitored with enough details 
to estimate the constructed indicator. 

As a reference evaluation it is then proposed to use a very coarse estimation of the effort invested in the 
adaptation of the application from type 1 to type 2 greenhouse. The estimated time for adapting the 
application is over 15 man-days. 

6.2.5 Reduction of costs 
The data collection pipeline is currently deployed on the greenhouse’s supervisor, which remains on 24 
hour/7 day. The main cost reduction is then a direct outcome of the reduction of adaptation time to new 
contexts. 

Simulation and pipeline is currently deployed on Cybeletech servers with some other applications. For the 
time being, update on plant status is performed automatically every hour to ensure that the growers access 
to up-to-date results. 

As for now, when calibration is needed, a server with 16 cores is leased, the calibration pipeline is deployed 
on this server and the Cybeletech engineer trigger the calibrations according to growers’ objectives and in 
situ measurements provided. The minimal length of the lease is one month, and the cost is around 400 euros. 

To calibrate one physiological model, we need to run around 50000 parameter set evaluations. In general, 
a grower is working on two to three different varieties and is interested in up to five physiological processes. 
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For one grower, we then need to run around 3 (varieties) x 5 (physiological models) x 50000 = 750000 
parameter set evaluation, which corresponds roughly to 5 days of computation when parallelizing on 16 
cores. 

To reach nominal use of the server, we then need to have six growers asking for the integration of new 
varieties and/or physiological processes in a month. In this case, we must ensure that in situ measurements 
are completed for the six growers before starting the server, and we cannot guarantee the same delivery 
time to all because we need to run the calibration one after the other. In case of delay, we need to extend 
the lease of the server, which induces an extra 200 euros cost per month. 

As for now, this kind of servers are under-used since we have at most two to three growers needing to 
integrate new varieties and/or physiological processes per month. As we highly relate to in situ 
measurements provided by the growers, we regularly need to extend the lease to match the growers’ 
operational constraints. 

 

6.3 KPI evaluation using PHYSICS components. 

6.3.1 Amount of data lost 
To evaluate this indicator, the script for sensor data parsing has been adapted and integrated in the Edge-
ETL flow. The flow has then been parametrized and deployed on a Cybeletech computer, acting like a 
greenhouse supervisor, following the local installation procedure (Zarzycki & Labropoulos, 2022). We then 
simulated connection failure of length ranging from 1 hour to 1 day by randomly deactivating the internet 
connection on the computer. 

After 2 weeks of experimentation, the amount of data lost due to connection failure is 0. All the data have 
been sent to the distant database and made available to run model simulations (Fatouros, et al., 2023). 

Data lost can also be due to the greenhouse supervisor restarting (for example for maintenance operation). 
It would be of great interest for Cybeletech to include an automated local deployment procedure of the 
Design Environment to ensure continuity of service in case of supervisor maintenance. 

6.3.2 Update on plant status 
The logic behind the update on plant status in Cybeletech offer has changed since the beginning of the 
project. Initially, it was planned that the simulation pipeline will be deployed in the greenhouse supervisor 
so that growers can trigger the simulation using a local software. However, the Cybeletech decision support 
system is now provided through a web platform, including dashboards providing information on climate 
conditions in the greenhouse, plant status estimated using Cybeletech simulation framework and cost 
monitoring tools. 

The simulation pipeline has then been deployed in the Cloud as FaaS using the Design Environment, so that 
it can be invoked on growers’ demand to provide up-to-date estimation on plant development and needs. 
We envision to usage scenarios regarding invocation of the simulation function: the invocation could be 
made on a regular basis during the growing season to ensure up-to-date dashboards with no visible delay 
for the grower, or it could be made on grower’s demand with some delay due to the function execution and 
associated dashboard update. 

Using the testing interface of the Design Environment, we estimate this delay to be between 20 and 30 
seconds in case of a cold start and between 2 and 5 seconds with a warm start. Cold start could be acceptable 
in the first scenario, but warm start would be needed in the second one. The cost/benefit implications are 
discussed in section 6.2.5. 

6.3.3 Optimization process performance 
The calibration pipeline has been adapted and deployed using the Design Environment. Three 
implementations of the pipeline have been proposed: 
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1. A standard implementation with no parallelization 

2. An implementation using the split and join pattern to parallelize the parameter set evaluations using 
FaaS 

3. An implementation using two split and join instances, one to parallelize the parameter set 
evaluation using FaaS, and the other to take advantage of multiprocessing capabilities of each 
function. 

The performances of these three workflows are compared together, and with the current infrastructure 
evaluation based on runtime and speedup. 

First, we run a performance analysis on the parameter set evaluation function, which is the most time 
consuming, to dimension the size of the splits and of the pods hosting the execution. This performance 
analysis is run using the Design Environment and the profile of the function highlights a memory leak in the 
parameters set evaluation procedure with memory consumption reaching 1Go (Figure 21.A). 

Profiling the parameter set evaluation procedure shows that the memory leak results from the use of the 
cross-validation procedure of the Python library Scikit-learn. We then implement a home-made cross-
validation procedure which allows to reduce significantly the memory consumption of the parameter set 
evaluation procedure (Figure 21.B), and then to run it on smaller pods. 

 

Figure 21: Memory consumption of the parameters set evaluation procedure with (A) and without (B) use of 
the Scikit-learn cross-validation (CV) function. 

We then analyzed the differences between the runtime of the parameter set evaluation procedure over 

three scenarios: 

1. Local execution of the Python script used to perform parameter set evaluation. 

2. Execution on Node-RED server using the local version of the Design Environment. 

3. Execution in the Cloud as FaaS triggered using the test interface of the Design Environment. 
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The execution on Node-RED server is about 50% slower than the local execution irrespective of the number 
of parameter sets evaluated, while the execution as FaaS induces a further increase of around 25% for 10 
parameter sets evaluation and 10% for a larger number of sets (Figure 22). 

 

Figure 22: Runtime for parameter set evaluation procedure using bare Python script in local system, Python 
script embedded in Node-RED flow and run on Node-Red server and Node-RED flow run as FaaS in the Cloud 

(A). The difference between local system and Node-RED. 

To evaluate the gain induced by FaaS parallelization, we run the split and join calibration flow with 40 

parameter sets and split size of 40, 20, 10 and 5, which corresponds to 1, 2, 4 and 8 pods, respectively. The 

flow is run from the local Design Environment using Node-RED server with the parameter set evaluation 

procedure being called as FaaS using the split and join pattern. 

Distributing parameter set evaluation as FaaS along two pods enables to increase the speed of the 

parameter set evaluation phase by 50%. However, increasing further the number of pods increases only 

slightly the runtime (Figure 23). 
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Figure 23: Parameter set evaluations speeding using the FaaS option of the split and join pattern. 

 

To evaluate the gain induced by multiprocessing, we run the split and join calibration flow with 120 

parameter sets and split size of 120, 60, 40, 30, 20, 15 and 12, which corresponds to 1, 2, 3, 4, 6, 8 and 10 

processors, respectively. The flow is run from the local Design Environment using Node-RED server with 

parameter set evaluation procedure being called via the Python script using the split and join pattern. 

Using the multiprocessing option of the split and join pattern allows to efficiently reduce the runtime. For 

the 120 parameters set, evaluation takes around 10 minutes with one processor and less than 3 minutes 

when running on 10 processors, yielding a speedup of 33% (Figure 24). 

 

Figure 24: Parameter set evaluations speeding using the multiprocessing option of the split and join pattern. 

 

6.3.4 Adaptation time to new contexts 
During the first phase, we mainly evaluate the adaptation time for the data collection procedure, assuming 
that the Design Environment is deployed on the greenhouse supervisor. To perform this evaluation, Python 
scripts generating files with different format and content have been implemented. The time required to 
adapt the procedure of data parsing, which is used as input of the Edge-ETL flow, and to adapt and deploy 
the newly constructed flow has been monitored. 

According to the complexity of the data structure and the format of the file, the complete adaptation time 
ranges from a few minutes to a few hours, which is far lower than the time required to perform the same 
adaptation within the existing application. This is mainly achieved thanks to the use of the Edge-ETL 
pattern, which remove the need to develop and configure bash wrappers, and to the docker image made 
available through the Design Environment, which can be directly deployed on the Edge (Table 9). 

Table 9: Tasks and associated times needed to deploy the data collection pipeline developed for greenhouse 
type 1 in greenhouse type 2, compared to times needed to deploy the PHYSICS prototype on the testing server.   

Task For partner greenhouse For the prototype 
Python script for data collection and storage 1 to 2 man-days < 1 man-days 
Python script for connection failure handling 3 to 5 man-days 0 man-day 
Bash scripts for task scheduling 3 to 5 man-days 0 man-day 
Deployment procedure 4 to 6 man-days < 1 man-days 
TOTAL 11 to 18 man-days < 2 man-days 
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During the intensification phase, we focused on simulation and calibration pipelines with deployment in 
the Cloud as FaaS. As for the data collection pipeline, once the baseline Node-RED flow has been defined, 
the adaptation of the different nodes, which in our case are an invocation of Python scripts, is 
straightforward.  

The refactoring cost of the pipelines has been relatively high for Cybeletech since our legacy codes were not 
based on the functional programming paradigm. However, Cybeletech is already reaping the benefits of this 
approach since we enhance our offer to aromatic herbs with very low development costs regarding 
pipelines adaptation. Moreover, it facilitates the continuous improvement of the different nodes, including, 
for example, experimental design generation and parameter set selection with very low dependencies on 
the plant growth models. 

Finally, the parallelization capabilities offered by the split and join pattern, which can be used with any FaaS 
function, or Python script for multiprocessing, without any code adaptation is a real improvement 
compared to tools such as openMP or MPI which requires invasive changes in the codes and are likely to 
introduce some complexity. Besides these technical considerations, it is worth noting that HPC specialists 
are a scarce resource, and even more in the smart agriculture ecosystem. 

6.3.5 Reduction of costs 
The previous section demonstrates the gain in deployment time enabled by the use of the PHYSICS Design 
Environment. In terms of cost, it corresponds to a reduction of more than 50% of the cost associated to the 
deployment of the data collection pipeline in a new type of greenhouse. 

If the reduction costs induced by the refactoring of Cybeletech DSS code base is more difficult to evaluate, 
we can already feel the difference with facilitated continuous improvement of the different modules of the 
DSS and faster installation of new recruits. 

On the other, with the full integration of simulation and optimization pipelines in the prototype during the 
impact intensification phase, these services can now run on demand in the Cloud. This implies that the 
maintenance of Cybeletech computing servers will no longer be necessary leading to a significant reduction 
of operational costs. 

For simulation, we explore two sets of scenarios: in the first one, we assume that the simulation is run daily 
for each greenhouse, as it is currently the case; in the second scenario, we assume that the simulation can 
be run on grower’s demand with a varying maximal number of requests by the grower and by day. 

In the first scenario, the number of requests by month ranges from 30 when the service is made available 
for one greenhouse to 300000 when it is made available for 10000 greenhouses. In the second scenario, we 
explore the same range of variations in greenhouses number with a maximal number of requests varying 
between one and ten. 

The monthly cost of the service is estimated using AWS lambda calculator, with simulation length being set 
to 30 seconds and memory required to 256 Mo. In scenario 1, the monthly cost of the service for Cybeletech 
ranges from 0 when the service is made available in less than 2000 greenhouses to around 22 euros in when 
the service is made available in 10000 greenhouses (Figure 25, green line). The monthly cost per 
greenhouse is then less than one cent. 

When increasing the maximal number of requests per day to 5, the monthly cost by greenhouse remains 
smaller than one cent while the service is made available in less than 1000 greenhouses. For a higher 
number of greenhouses, the monthly cost is around 1.5 cents per. Increasing the maximal number of 
requests to 10 per day induces an increase of approximately1.5 cents by greenhouse (Figure 25). 
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Figure 25: Monthly cost of the simulation service for Cybeletech according to the number of greenhouses for 
which the service is made available and to the number of requests per day allowed. 

For calibration, we explore four scenarios of FaaS parallelization: 

1) 5 parameter sets by function using 256 Mo for 2 minutes. 

2) 10 parameter sets by function using 256 Mo for 2 minutes. 

3) 25 parameter sets by function using 524 Mo for 4 minutes. 

4) 50 parameter sets by function using 1024 Mo for 8 minutes. 

5) 50 parameter sets by function with multiprocessing using 1024 Mo for 2 minutes. 

The AWS calculator allows to explore the trade-off between number of requests from one side and function 
memory and runtime from the other side. The number of parameters set evaluations is simply calculated 
as the number of requests multiplied by the number of evaluations performed by each worker. This study 
shows that the best trade-off is around 10 parameter sets by function (Figure 26). This configuration allows 
to have a cost by grower of around 30 euros, which is half the server-based price (400 euros divided by 6 
growers), assuming maximal efficiency in usage. 

It is interesting to note that the multiprocessing option allows to reduce the time needed to complete a 
request and should then allow to increase the number of evaluations performed by one function without 
increasing the cost. However, the number of processors available to run a function cannot be set using AWS 
lambda, we then assume a similar cost for single processor and multi-processors runners, which can be an 
optimistic assumption. 

As we are not limited by the number of cores, we can expect much faster response time with FaaS approach, 
and it allows to trigger the calibration pipeline as soon as in situ measurements are available without 
prioritization among growers, as it is the case with server-based approach. 
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Figure 26: Cost of calibration using FaaS parallelization according to the number of parameters sets 
evaluations performed and to the number of parameter sets evaluated by each function.  

6.4 Concluding remarks 
The application prototype developed with PHYSICS components enabled to achieve the objective regarding 
the data collection pipeline with no data lost during the experimentation period. Moreover, the time needed 
to adapt the data collection pipeline to the context of PHYSICS was significantly lower than the time needed 
to adapt the pipeline developed for greenhouse type 1 to greenhouse type 2 (Table 10). The speedup of 
application deployment enabled by the use of PHYSICS components will induce a reduction in costs for the 
growers. 

The simulation and calibration pipelines have been fully integrated in the application prototype and 
evaluated during the impact intensification phase. The simulation pipeline has been deployed as FaaS and 
can now be run on demand. The invocation model for this function is still being discussed with business 
partners but in any case, we foresee significant cost reduction and facilitation in the development process. 
The calibration pipeline, which is triggered on demand by Cybeletech agronomic engineer, has been 
packaged as a Node-RED flow and takes advantage of FaaS and multiprocessing parallelization offered by 
the split and join pattern to reduce the runtime. If we expect a reduction in the costs associated to 
calibration, the main benefit of using FaaS is the flexibility and scalability allowed by running thousands of 
functions in parallel with no deployment effort. 

The computation capabilities of the testbed did not allow to run calibration in production conditions. 
However, the proof of concept performed with small samples enables to foresee the benefits of FaaS for 
applications requiring massive parallelization of simulations with limited resource requirement. Moreover, 
the performance monitoring tools developed in PHYSICS will facilitate the identification of bottlenecks and 
will help developers to build thrifty functions in terms of resource consumption. 
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Table 10: Measurable performance results and PHYSICS objectives for smart agriculture Use Case evaluated 
with PHYSICS application prototype and compared to the evaluation performed on the currently deployed 

applications. 

KPI Objective In partners 
greenhouses 

With application 
prototype 

Amount of data lost No data lost no matter 
how many connections 
failure occurs 

500 to 8000 data points 
lost / month 

No data point lost 
during the testing 
period 

Update on plant status No interruption of 
service 

Up to 10 days of 
interruption / month 

Dashboards 
continuously available 
and up to date 

Time to perform 
optimization 

Optimization must be 
performed in less than 
1h 

> 4 hours Runtime reduction up to 
50 times with similar 
costs 

Adaptation time to new 
contexts 

Adaptation time must 
be smaller than 2 man-
days 

> 15 man-days to adapt 
from type 1 to type 2 

< 2 man-days to deploy 
the prototype 
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7. USABILITY EVALUATION 
The previous section shows how the components embedded in the design environment enable  

7.1 Methodology 

7.1.1 The System Usability Scale 
The System Usability Scale (SUS) provides a reliable tool for measuring the usability. It consists of a ten 
items questionnaire with five response options for respondents; from Strongly agree to Strongly disagree 
(Figure 27). Originally created by (Brook, 1996), SUS has become an industry standard, with references in 
over 1300 articles and publications ( (Assila & Ezzedine, 2016)).  The noted benefits of using SUS include 
that: 

• It is a very easy scale to administer to participants 

• It can be used on small sample sizes with reliable results 

• It is valid – it can effectively differentiate between usable and unusable systems 

Figure 27: Standard version of the System Usability Scale. 

 

7.1.2 Scoring and interpretation 
The total score is 100 and each of the questions has a weight of 10 points. For each of the respondents the 

SUS score is calculated according to the formula: 

SUS Score = (X + Y) x 2.5 

Where: 

• X = sum of the points for all odd-numbered questions 

• Y = 20 – Sum of the points for all even-numbered questions 

• Points range from 0 when response is “Strongly disagree” to 4 when response is “Strongly agree” 
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As even-numbered questions are all in a negative tone, subtracting the points of each question from 4 

ensures that: 

• If the response is “Strongly agree”, the minimum point, which is 0 for each question, is given. 

• If the response is “Strongly disagree”, the maximum point which is 4 is given.  

The sum obtained is then multiplied by 2.5, enabling a score out of a scale of 100 to be assigned to each 

respondent. 

The SUS score allows to easily compare product usability from iteration-to-iteration. On the other hand, 

(Bangor, Kortum, & Miller, 2009) lead a study to associate an “absolute usability” to a SUS score. They used 

a seven-point, adjective-anchored Likert scale to determine if a word or phrase could be associated with a 

small range of SUS scores. The obtained mapping of SUS score and qualitative evaluation of the usability is 

detailed in Table 11. 

Table 11: Descriptive Statistics of SUS Scores for Adjective Ratings (from (Bangor, Kortum, & Miller, 2009)) 

Adjective Mean SUS score Standard Deviation 

Worst Imaginable 12.5 13.1 

Awful 20.3 11.3 

Poor 35.7 12.6 

OK 50.9 13.8 

Good 71.4 11.6 

Excellent 85.5 10.4 

Best Imaginable 90.9 13.4 

7.1.3 Adaptation to PHYSICS context 
The interface allowing end-users to access to PHYSICS components is the so-called Design Environment 

(DE). The SUS has then been applied to evaluate the usability of the DE (section 4, Figure 28 in Appendix). 

Moreover, it has been completed with a short questionnaire on user background with the objective to 

identify the main areas for improvement according to target users of PHYSICS platform (section 1-3, Figure 

28 in Appendix). 

Finally, to get a more precise understanding of the global evaluation of the DE performed through SUS 

survey, a set of questions regarding specific components has been proposed to the end users (section 5-7, 

Figure 28 in Appendix). 

 

7.2 Results 
For the first iteration, the survey has been submitted to the Use Case partners involved in the 

experimentation of PHYSICS components. Two members of the eHealth team, two members of the smart 

manufacturing team and one member of the smart agriculture team have responded to the survey.  

Based on the user background survey, each Use Case respondents have its own specificities: 

• eHealth respondents have little experience in building and using docker images and a substantial 

experience in event driven applications and application deployment (not serverless). 
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• Smart Agriculture respondents have some experience in building and using docker images but no 

experience in event driven applications or application deployment (not serverless). 

• Smart Manufacturing respondents have sound experience in building and using docker images and 

in event driven applications and has some background regarding application deployment (not 

serverless). 

None of the respondents have sound experience in:  

1. Using automation servers 

2. Functional programming concepts 

3. Creating, deploying, and executing serverless applications 

The respondents have all experimented with the Design Environment with different levels of intensity. One 

respondent evaluated it as “very high”, while others evaluated it as “high”. 

The total SUS score range from 30, which according to (Bangor, Kortum, & Miller, 2009) corresponds to 

”poor usability”, to 72.5, which correspond to “good usability” (Table 11). The mean value across 

respondents is 51.25 and correspond to “OK usability” (Table 12). 

Table 12: Minimal, maximal, and mean SUS scores obtained for each statement of the survey (out of ten) and 
for the global evaluation (out of 100) in the end of the first period (V1) and after the intensification period 

(V2). 

Questions Min Max Mean 

 V1 V2 V1 V2 V1 V2 

1. I think that I would use the DE 0 5 7.5 10 3.1 7.5 

2. I found the DE unnecessarily complex 2.5 5 7.5 7.5 5.6 6.7 

3. I thought the DE was easy to use 2.5 5 10 7.5 6.3 5.8 

4. I think that I would need the support of a 

technical person to be able to use the DE 

0 2.5 10 5 4.4 4.2 

5. I found the various functions in the DE were 

well integrated 

5 2.5 7.5 7.5 5.6 5 

6. I thought there was too much inconsistency 

in the DE 

5 5 10 7.5 7.5 6.7 

7. I would imagine that most developers would 

learn to use the DE very quickly 

0 7.5 7.5 10 5.0 8.3 

8. I found the DE very cumbersome to use 0 5 10 7.5 5.6 6.7 

9. I felt very confident using the DE 5 5 7.5 7.5 5.6 6.7 

10. I need to learn a lot of things before I could 

get going with the DE 

0 5 5 7.5 2.5 6.7 

TOTAL SCORE 30 47.5 72.5 77.5 51.25 64.3 

 

The users found the DE consistent (statement 6) and easy to use (statement 3), except for one respondent 

who disagree with this statement (Table 12).  

The lowest scores have been obtained for statements 1, 4 and 10, which means that: 
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1. The users don’t think they would use the DE frequently. 

2. The users think that they would need the support of a technical person to be able to use the DE. 

3. The users consider that they need to learn a lot of things before being confident with the DE. 

During the intensification period, the improvements of the Design Environment made it more use friendly 

and reliable, which is highlighted by the significant increase in the score obtained for questions 1., 7., 10., 

and to a less extent in that obtained for questions 2., 8., and 9. 

For questions 3., 4., 5., and 6., the score did not significantly vary during the intensification period, even if 

the minimum over the participant has increased, pointing out that the main flaws of the DE have been fixed. 

The average score obtained for questions 3. and 6. was already good in the first period evaluation, likely 

because the backbone of the Design Environment did not change significantly. However, the average score 

for question 4., and 5. remains below the average after the intensification period. This is probably due to 

the fact that the infrastructure used for UC experimentation and evaluation, and PHYSICS platform 

development were not separated, leading to errors during experimentation that cannot be understand 

easily by end-user. These kinds of errors should not happen on a production infrastructure, alleviating the 

feeling that technical expertise is needed to use the Design Environment. 

Overall, the total average SUS score increased between the end of first and second phases from 51.25 to 

64.3, which move its usability from “OK” to “good” (Bangor, Kortum, & Miller, 2009). Moreover, for the most 

challenging evaluator, the DE obtained a score of 47.5, compared to 30 at the end of the first phase, while 

for the less challenging evaluator the DE obtained a score of 77.5, which bring its usability close to excellent. 

Regarding specific components, in the end of the first period, most of the respondent estimate that Node-

RED ease the transition to the functional programming concepts and that the patterns can be adapted to 

support modifications needed for the application. To a slightly lesser extent they estimate that the provided 

patterns aid in abstracting details and offers useful ready-made functionality. In contrast all the 

respondents have a neutral opinion on annotations, and most of them consider that using the DE does not 

ease the deployment and testing of their applications (Table 13). 

In the end of the second period the score obtained for question 3. significantly increased (+2 points), likely 

because the number of patterns available increased, but also because their development has been guided 

by Use Cases, and evaluator get more familiar with the pattern-oriented coding style promoted by Node-

RED. The score for questions 5. and 6. increases as well, confirming the DE adoption by evaluators pointed 

out by the SUS survey. 

Scores for question 2. remains the same, suggesting that the adoption of annotation by evaluators is still not 

very strong. This could be because annotations do not have a strong impact on experimentations performed. 

Indeed, the expected added value of annotations lies in cost and energy optimization, which have not been 

extensively explored during UC evaluation. 

Scores for questions 1. and 4. did not significantly change either, remaining slightly higher than the median 

score. The high variance in the scores obtained for question 1. suggests that the transition to functional 

programming is not mandatory for using the PHYSICS platform but is eased by Node-RED when addressed. 

Likewise, the score obtained for question 4.  remains constant highlight different level of pattern adaptation 

according to the Use Case. When needed, evaluators considered the adaptation relatively easy to pull off. 



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 51 

Table 13: Minimal, maximal, and mean SUS scores obtained for each statement of the survey (out of ten) and 
for the global evaluation (out of 60) in the end of the first period (V1) and after the intensification period 

(V2). 

Questions Min Max Mean 

 V1 V2 V1 V2 V1 V2 

1. Node-RED eases the transition to the functional 

programming concepts 

2.5 2.5 10 10 6.2 5.8 

2. The annotations provided by the PHYSICS environment are 

useful 

5 5 5 5 5.0 5.0 

3. The provided patterns aid in abstracting details and offering 

ready-made functionality I find useful 

2.5 5 10 10 5.6 7.5 

4. The patterns can be adapted in order to support 

modifications that I need 

5 5 7.5 7.5 6.2 6.7 

5. The DE ease the deployment of my applications 0 5 7.5 7.5 5.0 6.7 

6. The DE ease the testing of my applications 0 2.5 7.5 10 3.7 6.7 

TOTAL SCORE 15.0 30.0 42.5 47.5 31.9 38.4 

 

7.3 Concluding remarks 
In the end of the first period, the survey highlights the consistency of the DE and the facilities offered by 

Node-RED regarding application adaptation. However, users do not feel very confident in using the DE in 

total autonomy and seem to have difficulties projecting themselves into extensive usage. At this stage of the 

project, various enhancements on the DE and components are still ongoing and Use Case end-users do not 

apprehend fully all the functionalities offered by PHYSICS DE, probably explaining their low confidence in 

mastering and exploiting the DE. 

After the intensification period, the evaluators reported greater confidence in the use of the Design 

Environment with good adoption of the use of patterns and visual programming tools. To perform Use Case 

experimentations and evaluations, the evaluators have extensively used the deployment and testing 

capabilities of the DE and pointed out the gain induced by these integrated tools. The SUS survey also 

confirms the diversity of usage of the patterns and visual programming tools across Use Cases and shows 

that the flexibility of the Design Environment enables addressing this diversity. 

To move from “good” to “excellent” usability, the PHYSICS platform needs to migrate from a development 

infrastructure with inherent limitations and fuzziness, to a production grade infrastructure. This should 

alleviate the feeling that technical expertise is required to use the Design Environment and put emphasis 

on some of the functionalities that have been less extensively explored by the UC, such as the annotations. 

A first step in this direction as already been made with the release of the Cloud version of the Design 

Environment. The cloud version significantly eases the onboarding of new users and increases the market 

attractiveness of the DE since the local installation phase, which required some expertise in docker 

management and knowledge about development tools underlying the DE, are no longer needed. In the same 

vein, no action from users is needed to benefit from the updates and new features of the DE since they are 

made available automatically.  
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8. CONCLUSIONS 
This final version of the Use Case Evaluation deliverable describes a set of KPIs constructed from the 

objectives defined in T6.2 following state-of-the-art methodology. Each Use Case has constructed its own 

set of KPIs to measure the achievement of objectives related to application adaptation and deployment with 

the PHYSICS platform and components.  

A subset of these indicators has been selected according to the available PHYSICS components and to the 

prototypes built during T6.3. They have been evaluated with the currently deployed applications to draw a 

starting point and use the PHYSICS Design Environment as well as specific components. The comparison of 

the two sets of evaluations enables to give a snapshot of the objectives achieved during the first phase of 

the project. It shows that:  

• The use of PHYSICS Design Environment facilitates the adaptation of applications to new contexts, 

profiling of the functions for optimal allocation of resources, and alleviates the effort needed for 

deploying a new service. 

• The use of the Edge-ETL pattern significantly increases the reliability of data collection. 

• The increase in application runtime due to component interactions remains in an acceptable range 

for evaluated applications. 

• FaaS increases the scalability of the services, allowing them to maintain responsiveness at the 

highest request rate, in contrast to the server-based version. 

• FaaS can be used to massively and easily parallelize function invocation while collecting function 

outputs for further processing. 

• FaaS enables significant cost reduction, particularly when applications can be run on demand with 

punctual associated infrastructure costs. 

On the other hand, an evaluation of the usability of the PHYSICS Design Environment and components based 

on the System Usability Scale has been conducted. This survey highlights the consistency of the DE and the 

facilities offered by Node-RED regarding application adaptation. At the end of the first period, users do not 

feel very confident in using the DE with total autonomy and seem to have difficulties to project themselves 

into an extensive usage. Since then, many developments on the DE and components have been made; and 

Use Case end-users apprehend better the functionalities offered by PHYSICS DE, probably explaining their 

increased confidence in mastering, and exploiting the DE. 
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9. APPENDIX 
Figure 28: Survey proposed to Use Case users to evaluate the usability of PHYSICS Design Environment and 

components. 

 

 



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 54 

 

 



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 55 

 

 



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 56 

 

 



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 57 

 

  



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 58 

REFERENCES 
Assila, A., & Ezzedine, H. (2016). Standardized usability questionnaires: Features and quality focus. 

Electronic Journal of Computer Science and Information Technology. 

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an 
adjective rating scale. Journal of usability studies, 114-123. 

Barr, S. (2014). Practical performance measurement: Using the PuMP blueprint for fast, easy and engaging 
KPIs. Samford: PuMP Press. Retrieved from https://www.staceybarr.com/. 

Brook, J. (1996). SUS: a" quick and dirty" usability scale." Usability evaluation in industry.  

Davilla, E. (2018). Die Unternehmensleistung messen. Retrieved from 
https://www.linkedin.com/learning/die-unternehmensleistung-messen/warum-wir-
messen?autoAdvance=true&autoSkip=false&autoplay=true&resume=false&u=83641554 

Doerr, J. (2018). Measure What Matters. London: Penguin Random House. 

Fatouros, G., Kousiouris, G., Lohier, T., Makridis, G., Polyviou, A., Soldatos, J., & Kyriazis, D. (2023). Enhancing 
Smart Agriculture Scenarios with Low-code, Pattern-oriented functionalities for Cloud/Edge 
collaboration. 2023 19th International Conference on Distributed Computing in Smart Systems and 
the Internet of Things (DCOSS-IoT), (pp. 285-292). 

Franke, N., Hennecke, A., Gezer, V., Harms, C., Akker, H. o., Pnevmatikakis, A., . . . Touloupou, M. (2021). D6.3 
- Application Scenarios Definition V1. PHYSICS Consortium. 

Hornbæk, K. (2006). Current practice in measuring usability: Challenges to usability studies and research. 
International journal of human-computer studies, 79-102. 

Kousiouris, G., Ambroziak, S., Zarzycki, B., Costantino, D., Tsarsitalidis, S., Katevas, V., . . . Stamati, T. (2023). 
A Pattern-based Function and Workflow Visual Environment for FaaS Development across the 
Continuum. Companion of the 2023 ACM/SPEC International Conference on Performance Engineering, 
(pp. 165-172). 

Patiño, M., Azqueta, A., Mengual, L., Li, T., Kousiouris, G., Tsarsitalidis, S., . . . Georgiou, Y. (2021). D2.4 - 
PHYSICS Reference Architecture Specification V1. PHYSICS Consortium. 

Zarzycki, B., & Labropoulos, G. (2022). Local Installation Guide. PHYSICS CONSORTIUM. 

  



H2020-ICT-40-2020 (RIA)  PHYSICS - 101017047 

D6.8 – PHYSICS APPLICATION PROTOTYPES EVALUATION V2
  P a g e  | 59 

DISCLAIMER 

The sole responsibility for the content of this publication lies with the authors. It does not necessarily 
reflect the opinion of the European Union. Neither the EASME nor the European Commission is 
responsible for any use that may be made of the information contained therein. 

 

COPYRIGHT MESSAGE 

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are 
free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, 
and build upon the material for any purpose, even commercially) under the following terms: (i) 
attribution (you must give appropriate credit, provide a link to the license, and indicate if changes were 
made; you may do so in any reasonable manner, but not in any way that suggests the licensor endorses 
you or your use); (ii) no additional restrictions (you may not apply legal terms or technological measures 
that legally restrict others from doing anything the license permits). 

 

 


