H2020-I1CT-40-2020 (RIA)

B FSAGS (20O o767 B0/11/2023

%2 PHYSICS

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

D6.6 - PHYSICS APPLICATION PROTOTYPE V2

Lead Beneficiary

iISPRINT

Work Package Ref. WP6 - UC Adaptation, Experimentation, Evaluation
Task Ref. T6.3 — Use Cases Adaptation & Experimentation
Deliverable Title D6.6 - PHYSICS Application Prototype V2

Due Date 2023-11-30

Delivered Date 2023-11-30

Revision Number 3.0

Dissemination Level Public (PU)

Type Demonstrator (DEM)

Document Status Release

Review Status

Internally Reviewed and Quality Assurance Reviewed

Document Acceptance

WP Leader Accepted and Coordinator Accepted

EC Project Officer

Mr. Stefano Foglietta

D6.6 - PHYSICS Application Prototype V2 Page |1

H2020-I1CT-40-2020 (RIA)

PHYSICS - 101017047

CONTRIBUTING PARTNERS
Partner Acronym Role!? Name Surname?
iSPRINT Lead Beneficiary Aristodemos Pnevmatikakis,

George Labropoulos

FTDS André Hennecke, Niklas Franke
CYBE Théophile Lohier
DFKI Volkan Gezer, Carsten Harms,
Maciej Kolek
UPM
INNOV Ariana Polyviou
GFT
REVISION HISTORY
Version Date Partner(s) Description
0.1 2023-10-04 iSPRINT Initial version based on D6.5
0.2 | 2023-10-31 DFKI Updated Smart Manufacturing use case
0.3 2023-11-01 iSPRINT Updated eHealth use case
0.4 2023-11-02 CYBE First version of updates to smart agriculture use case
0.5 2023-11-04 iSPRINT Harmonization, sections common to all use cases
0.6 2023-11-08 CYBE Final version of updates to smart agriculture use case
1.0 | 2023-11-09 iSPRINT Ready for internal review
1.1 2023-11-19 iSPRINT Incorporating general review comments and improving
section 4.2.2
1.2 | 2023-11-20 DFKI Incorporating review comments for smart manufacturing
1.3 | 2023-11-22 CYBE Incorporating review comments for smart agriculture
2.0 | 2023-11-29 iSPRINT Version for QA
2.1 | 2023-11-30 INNOV QA
2.2 | 2023-11-30 iSPRINT Integrated QA comments
3.0 | 2023-11-30 GFT Version ready for the submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance
2 Can be left void

D6.6 - PHYSICS Application Prototype V2 Page |2

H2020-I1CT-40-2020 (RIA)

PHYSICS - 101017047

LIST OF ABBREVIATIONS

Term Explanation

BPMN Business Process Model and Notation

CLA Command Line Argument

CSP Cloud Service Provider

CYBE CybeleTech

D Deliverable

DEM Demonstrator

DFKI Deutsches Forschungszentrum fiir Kiinstliche Intelligenz [German Research Centre
for Artificial Intelligence]

ETL Extract, Transform, Load

FaaS Function as a Service

GPU Graphics Processing Unit

HTTP HyperText Transfer Protocol

iSPRINT Innovation Sprint

JSON JavaScript Object Notation

NRT Near-Real-Time

ow OpenWhisk

QC Quality Control

RAMP Reusable Artefacts Marketplace Platform

RIA Research and Innovation Action

Saa$ Software as a Service

T Task

WP Work Package

D6.6 - PHYSICS Application Prototype V2 Page |3

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

EXECUTIVE SUMMARY

The goal of this deliverable, which is of type Demonstrator, is to accompany the three demonstrators built
for the three pilots: Smart Manufacturing, eHealth, and Smart Agriculture and document the internal
prototype milestone of the project.

These use-cases cover three very distinct application scenarios (i.e., manufacturing, health, and agriculture)
that cover three major areas of European everyday life and economic activity. We thus demonstrate the
benefits of the PHYSICS platform in a broad range of application scenarios and show how to improve agility
and adoption by applying more advanced computing models and cover a wide and diverse range of available
edge resources (e.g., small [oT sensors, mobile devices, or Edge nodes in diverse clusters).

The current document D6.6: PHYSICS Application Prototype V2 is the final of a series of 2 deliverables that
mark the “Version 1” and “Version 2” releases of these prototypes and are being produced in the context of
Task T6.3: Use Cases Adaptation and Experimentation.

In this document you will find, the following elements:

» A brief overview of the PHYSICS Project and the PHYSICS Platform - to provide the necessary
context for the remainder of the document we describe the high level aims of the PHYSICS project,
as well as the high-level PHYSICS technical architecture, consisting of Infrastructure Layer,
Continuum Deployment Layer, and Application Developer Layer - the last of which allows the
development of the three prototypes as described in this document.

» An overview and short description of design decisions that were made in the process of producing
the demonstrators for the three use cases. For all three use cases we provide a short summary of
their aims and objectives and highlight the major Functional Requirements that have been fulfilled.

» Descriptions of the three demonstrators produced, covering the use cases of Smart Manufacturing,
eHealth, and Smart Agriculture. For each use case, it is described how Node-RED flows are designed
and used to implement the application flow, and how the use cases are deployed in the PHYSICS
Platform. For each use case, the fulfillment of functional requirements is detailed, leading to the final
versions of the services for evaluation.

D6.6 - PHYSICS Application Prototype V2 Page |4

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

CONTENTS

B 0 U ¢ 0T L (i o) o U 9
1.1 Objectives Of the DElIVETable.. ...ttt s bbb s 9
1.2 Insights from other Tasks and DElIVETADIES ... sssssssssesssssans 9
1.3 N DT 10 10
1.4 Changes SINCE DB.5 ...ttt se et s s bbb bbbt 10

2 Overview Of PHYSICS ATCRITECTUTEovvreeeeereereesseesseessessesssesssesssessssssesssess s sssesssesssessssssssssssssssessssssssesssesssessssssasessnes 11
2.1 The PHYSICS PIrOJECT..cuiircssssisss s s sesssssss s ssssssssssssessssssssssssssssssanes 11
2.2 BaSIC ATCRITECTUT c..ouvivucreisiesiesses s 11

3 Use Cases: OVErvieW and DESIGN .. .orereerereessessssessesssesssessssssssssssssssessssssssesssesssessssssssssssesssessssssssesssesssessssssassssnes 13
3.1 Use Case: “SMart ManULaCtUTING”oeeneineereeeeeseesessesssessssssssssssssssesssesssssssssssssssssssssssssssssssssssessssssssssnns 13
3.1.1 SYTIOPISIS coreeeucrrerreee sttt s e s s R R e 13
3.1.2 DESIZN & SPECIICALIONS c.uverrerrermeeseeseersrersress s sess s s s s 13

3.2 LT 08 S H =] 5 (ST= Ll o PPN 15
3.2.1 STTIOPISIS coreuierceueeseesressresseess e eesse e es e bsees s sseE e R s A SRR AR R R R R 15
3.2.2 DESIGN & SPECIICATIONS ..ovevreereeniereeteet sttt ss bbb bbb s bbb 16

3.3 Use Case: “SMart AGLICUITUIE” ... vuueueerrersreesseesseessesesseessessseessesssesssessssesssesssssssesssessssssssesssessssesssssasssasesssesssessasees 16
3.3.1 N2 0013 TP 16
3.3.2 DESIGN & SPECIICATIONS c.oveereerrenieeeeteet sttt sse e es b ss bbb b 17

4 Prototype DeSCIIPLIONS ..o bbb s bbb b 18
4.1 Use Case “Smart ManUfaCtUIING”oeeeeereeseesessesssesssesssesssessseesssssssssssesssessssssssesssesssesssssssssssesssessssssssees 18
411 Quality CoNtrol PHYSICS FIOW ..o seersessessseesseesssesssesssesssessssssssssssesssessssssssssssessssssssssssssssesssssssnees 18
4.1.2 Fail-OVer PHYSICS FIOW ..t ssssssssssesssas 21
4.1.3 CONCIUAING TEIMATKS ...euvuiereureeeesersees et sessseseessesssssse s s essse s sss s ses bbb bbbt 22

4.2 USE CaSE “EHEAITN ...t s e s s s s s 23
421 The eHealth PHYSICS flOWereercererseeseesseessesssess s seesssssssssssesssessssesssssssssssssssssssssssssssessssssssssssesssseeas 23
4.2.2 Experimentation on the eHealth PHYSICS flOWS.....c.onencneneseseeisneesesssesssesssssisssssesssesenees 26
4.2.3 eHealth use-case local design environment iNStrUCLIONSeeeeemeereesseesseesseersersess e seesseesseeseeens 27
424 CONCIUAING TEMATKS w.vureeiereersreseessesseesssesssess s s st s st sess s s bR b s s 29

4.3 USE CaSe “SMArt AGTICUITUIE ..c..cuueeeeeeeeee et asse s ssse s sesssess bbb bbb bbb 30
4.3.1 Data COIECION PIPEIIIIE ..ottt s 30
4.3.2 N3 1001 = Um (o) o 18 03§ 0T=] 11 U= TP 33
4.3.3 L0 1000 =10 (0] 0T 0 0 1= V0o L RPN 38
4.3.4 CONCIUAING FEIMATKS ..euvuiereureeeeseeseetsesssessessseeeessessssssessses s sss b ses e b s s bbbt 43

LT 010) o 1ol 1D] (o) 3P 48
LT 2310 D 0= = o |20 TP 49

D6.6 - PHYSICS Application Prototype V2 Page |5

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

TABLE OF FIGURES
Figure 1: Timeline for T6.3 including dependencies between the various relevant deliverables.ccucuue... 9
Figure 2: The PHYSICS Software Components’ ArChiteCTUTE.curerieneeereeseise s ssesssssssssessssssssssssssssseens 12
Figure 3: BPMN Diagram of Scenario #2 of the Smart Manufacturing Pilot. ... 14
Figure 4: Screenshots of the Healthentia mobile appliCation. ... eseessessessssssesanes 15
Figure 5: Overview of the Cybeletech solution for greenhouUSES. ... seesssesesseens 17
Figure 6: Smart Manufacturing Scenario #2, Final QC Node-RED FIOW......ccorninnrnseneenenneessseseeseesesseesseeseesseens 20
Figure 7: “QC - Check Certainty” SUD flOW. ... ceseeeeissessesssessessss e sssess st ss s sssess e sssssss st sassssnes 21
Figure 8: “Check RESUILS” SUD flOW......iiiiiineeisecesecteiseiseeise st sess sttt s bbb 21
Figure 9 Fail-Over flow for Smart Manufacturing USE CaSE.cmumereeneeneenmesneesessssssesssssssssesssssssssesssssssssssssssssssns 22
Figure 10 Fail-Over Router setup for Smart Manufacturing USE CaSE.ccourrenmeeneeureensesneensesssesesseessessssssssssesseens 22
Figure 11: Admin Panel showing the flows exposed by Node-RED in the eHealth local workflow................. 24
Figure 12: Jenkins build job initiated by the PHYSICS design environment (Admin panel) for the inference
4 (0PN 24
Figure 13: Node-RED interface depicting in inference flow in the eHealth local implementation (a) and zoom
10 0 230 00 b= 0 010 (0} (o) PP 25
Figure 14: Properties of the “Infer with Python” execution node (left), the “Prepare CLA” function node
(middle) and the “Prepare response” function node (Fight).....oeeemeeeeeeeresseeeesessessseesseesessssssessnes 25
Figure 15: The OpenWhisk experimentation flow for the deployed flows of the three cases.cccuuenneunne. 27
Figure 16: Screenshot of the Gogs eHealth rePOSItOTY. ...t ss s 27
Figure 17: Implementation Flow for the Edge ETL Pattern.ooeeeeeenermeesseesseessessesssessssesssssssesssesssessssssssssnes 30
Figure 18: Settings of Node-RED ETL flow for data collection pipeline.eeermeemeemeeneeesseeseesseeseesseennes 31
FIGUIE 19: ETL flOW LESTITIZ. c.oeveueeueenieseetseeisesssesssesssesssesssesssessse s sssesssess s s s bbb e 32
Figure 20: Example of data returned by the greenhouse supervisor and outcome of the Node-RED ETL flow.
.. 33
Figure 21: Example of data stored in the local database in case of connection failure and outcome of the
NOAE-RED ETL flOW...otutiituiiriisusisiseisssesssssssssessssssssessssesssssssssessssssssss s ss s sss s bbb ssssans 33
Figure 22: Node-RED flow describing the simulation pipeline........oneneeeeeeeesesseseesesssesssesanes 34
Figure 23: Node-RED function node for specification of /0 of simulation pipeline.ccomreeneerneernneenne. 34
Figure 24: Adaptation of Python script for simulation pipeline eXeCution. ... 35
Figure 25: Adaptation of Python script for simulation pipeline eXeCution. ... 36
Figure 26: Local testing of the simulation pipeline using the Node-RED debug window.........c.ccoreeneerneernneenne. 36
Figure 27: Simulation pipeline deployment using the Design Environment (A) and deployment monitoring
WILH JENKINS (B coutieeeieueit ittt ess s es s RS REE et 37
Figure 28: Local testing of the simulation pipeline using the Node-RED debug window........ccccoeovineeneeneeeneens 37
Figure 29: Local testing of the simulation pipeline using the Node-RED debug window.........coreneerneernneenne. 38
Figure 30: Node-RED flow describing the calibration pipeline. ... 39
Figure 31: Node-RED flow allowing to run calibration from an array of nodes such as generated by the
Python script for experimental desSign GENETatioN. ...t sess s 39
Figure 32: Calibration pipeline as a Node-RED flow using the split and join pattern for parallelization. 40

Figure 33: Node-RED flow allowing to run parameter set evaluation from an array of nodes such as
generated by the Python script for experimental design generation with parallelization over processors.41

Figure 34: Adaptation of legacy codes for experimental design evaluation.........cceeeneeneeeneeseeseesseessseennes 41
Figure 35: Adaptation of legacy codes for parameter set merit evaluation.........coeeeeeneerneeenseeseeseeseesseennes 42
Figure 36: Adaptation of legacy codes for parameter Set SEIECTION.c.oeeureereereenneeneesseereese s 42
Figure 37: Parameter set evaluation flow deployment (A) and testing (B) using the Design Environment.43
Figure 38: Flow for local invocation of the split and join calibration pipeline.......oenenreenneenseeseessneenne. 44
Figure 39: Input, output and logs of the Generate experimental design node for the running example....... 44

Figure 40: Output of the Generate experimental design node formatted for the SplitjoinMultiple node and
output of each worker. In this context a worker is an instance of the parameter set evaluation function
deployed and INVOKEA S FAAS.c.eeeeeeeeeesseessess s sessessss s sssess st sess s s s bbbt eees 46

D6.6 - PHYSICS Application Prototype V2 Page |6

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Figure 41: Raw output of the SplitjoinMultiple node and formatted string used as input of the Run clustering
node, output of the clustering and cOrreSPONAING LOZS.crurrreernmeenmeeneesseessesesessesssesssssssssssesssssssesssssssesssesssessssees 47

D6.6 - PHYSICS Application Prototype V2 Page |7

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

TABLE OF TABLES
Table 1: Functional Requirements of the Smart Manufacturing Use Case.cueneereenmeereesesneessesnsessessesssesseenns 15
Table 2: Functional requirements for the eHealth USE CaSE. ..o 16
Table 3: Functional requirements for the Smart AGriculture USE CASE.couwrermeemeeereesseessessnnesssesssessssssssessseeseeens 17
Table 4: Summary of Status Codes of Use Case #2 in Smart Manufacturing Pilot.ccooonenenneenneeneenennns 19
Table 5: Fulfilment of the functional specifications for the eHealth USe case......cconemineecrieneeneensereinseeseeneenne 29
Table 6: Fulfillment of the Functional requirements for the Smart Agriculture use case.........comeerereereenn. 45

D6.6 - PHYSICS Application Prototype V2 Page |8

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

1 INTRODUCTION

This document, D6.6: PHYSICS Application Prototype V2, accompanies the final version of three separate
demonstrators that are delivered under this Task 6.3 Use Cases Adaptation & Experimentation. As the name
of the task implies, the activities in this slice of the PHYSICS project deal with adapting the Use Cases (Smart
Manufacturing, eHealth, and Smart Agriculture) to the PHYSICS Platform-to-be in an experimental fashion.
The three use cases mentioned have in some detail been defined in T6.2: Use Case Scenarios, as described
in D6.4: PHYSICS Application Scenarios Definition V2 (Franke, et al., 2022). For the current document to be
understandable in isolation, we provide a short summary of each of the use cases in the relevant subsection
of Section 3, but we refer to the details regarding requirements for each of the Use Cases to the D6.4
document. We also built this document on top of its predecessor, D6.5: PHYSICS Application Prototype V1
(op den Akker, et al, 2022), resulting in a single document containing all relevant information on
experimentation.

Although requirements have been captured in a very systematic way, this Use Case “Adaptation &
Experimentation” is indeed a more experimental process. Due to the dynamic nature of the PHYSICS
platform in the early stages of the project’s development, in which new features and functionalities are
implemented continuously. Nevertheless, and again to maintain a document that is self-contained, we aim
to provide a quick overview of the PHYSICS platform and architecture in Section 2 of this document.

The core contents of this deliverable describe the final version of the application demonstrators as
developed by the three use case partners. This is described in Section 4 of this document.

1.1 Objectives of the Deliverable

The objective of this deliverable is to demonstrate three use case prototypes, in the Smart Manufacturing,
eHealth, and Smart Agriculture domains respectively, and how they use the PHYSICS Platform and platform
components. This document is part of the deliverable, accompanying those prototypes and serving as a
guide for the preparation and experimentation leading to their delivery for evaluation.

1.2 Insights from other Tasks and Deliverables

Figure 1 shows the timeline of activities for Task 6.3 under which this document is delivered. As shown, this
document builds on the previously delivered documents D2.5: PHYSICS Reference Architecture
Specification V2 (Patifio, et al., 2022) - describing the reference architecture of PHYSICS and D6.2:
Prototype of the Integrated PHYSICS solution framework and RAMP V2 (Mamelli, et al,, 2023) - describing
a recent state of the integrated PHYSICS platform, as well as D6.4: Application scenarios definition V2
(Franke, et al,, 2022) - describing the definitions and requirements for the use cases.

D6.7: PHYSICS | D6.8: PHYSICS |
application application
T6.3: Use Cases Adaptation & Experimentation - Timeline evataton V1 evaloaion V2
(CYBE) (CYBE)
Mo M7 M9 M15 M7 M23 M32 M34 MIBG
D2.4: PHYSICS | ms-mvsuc;" f
" D6.5: PHYSICS o i D6.6: PHYSICS
S| application Relererce i | application
e i Vi i s v2
oo R ot N
3 e
H ~ E H N . A
De3 pHvIce 08.1: |mn:k D6.4: PHYSICS DS E Pnpet
application o : Nopfosn. | PHYSICS m“
(FTDS;) framework and H (FTDS;) ramework
ik J RAMP V1 (HPE) hi) RAMP V2 (HPE)
Preparation S Development Yay My Pilot Running & il
Development Iterations
[Extemal Deiiverables " External Deliverabl
[escoomerais pleeei koot

Figure 1: Timeline for T6.3 including dependencies between the various relevant deliverables.

D6.6 - PHYSICS Application Prototype V2 Page |9

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

1.3 Structure

The remainder of this document is structured as follows. Section 2 gives a brief overview of the PHYSICS
architecture. This overview is not meant to be exhaustive, but merely provides some context to better
understand the contents of the following sections. Section 3 provides a short overview as well as any
potentially relevant design specifications of the three different use cases: Smart Manufacturing, eHealth and
Smart Agriculture. In Section 4, the actual prototype demonstrators for the use cases are described, and
finally conclusions and an outlook for future work is provided in Section 5.

1.4 Changes since D6.5

The changes in this document compared to the previous version (op den Akker, et al., 2022) are grouped
per use case. For the smart manufacturing, the changes are as follows:

» Minor changes in section 3.1.

» Input & Output JSON specifications updated in section 4.1.1.

» Updated existing flow to final version in section 4.1.1.

» Added newly implemented flow in section 4.1.2.

» Updated function requirement fulfillment section 4.1.3.

For the eHealth use case, the main area of update is the optimization and finalization of the inference
scenario, as well as the introduction of two more scenarios on phenotyping and synthesis. In detail the
following sections have been updated as explained:
» Introduced patient phenotyping and data synthesis cases alongside inferencing as goals of the use
case in section 3.2.1.
» Updated the specifications of the use case in section 3.2.2.
» Updated sections 4.2.1 and 4.2.2, to include the flows on phenotyping and synthesis. Also updated
the figures therein to reflect the latest version of the design environment.
» Completely re-written section 4.2.4, to reflect the final experimentation results.

Finally, for the smart agriculture use case the main area of update is the introduction of two more pipelines.
The changes are as follows:
» Minor updates in section 4.3.1 (introduction of subsections for conformity)
» Implementation, deployment and testing of simulation pipeline as a service in a new section 4.3.2.
» Implementation, deployment and testing of calibration pipeline as a service in a new section 4.3.3.
» Parallelization of the calibration pipeline taking advantage of FaaS in section 4.3.3.

There are also horizontal changes across the use cases, that are as follows:
The introduction section 1 is updated.

This section (1.4) is new.

The references have been updated throughout the document.

The concluding section 5 is re-written.

YVVY

D6.6 - PHYSICS Application Prototype V2 Page |10

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

2 OVERVIEW OF PHYSICS ARCHITECTURE

The PHYSICS platform architecture is described in D2.5: PHYSICS Reference Architecture Specification V2
(Patifio, et al., 2022). In the rest of this section we provide a short summary of the overall objectives for the
PHYSICS project and platform (section 2.1), as well as the platform architecture (section 2.2), in order to
help better understand the prototypes as described in Section 4.

2.1 The PHYSICS Project

PHYSICS empowers European Cloud Service Providers (CSPs) to exploit the most modern, scalable and cost-
effective cloud model, operated across multiple service and hardware types, provider locations, edge, and
multi-cloud resources. To this end, it applies a unified continuum approach, including functional and
operational management across sites and service stacks, performance through the relativity of space
(location of execution) and time (of execution), enhanced by semantics of application components and
services. PHYSICS applies this scope via a vertical solution consisting of:

» A Cloud Design Environment, enabling design of visual workflows for applications, exploiting
provided generalized Cloud design patterns functionalities with existing application components,
easily integrated and used with Faa$ platforms, including incorporation of application-level control
logic and adaptation to the FaaS model.

» An Optimized Platform Level FaaS Service, enabling CSPs to acquire a cross-site FaaS platform
middleware including multiconstraint deployment optimization, runtime orchestration and
reconfiguration capabilities, optimizing FaaS application placement and execution as well as state
handling within functions, while cooperating with provider-local policies.

» A Backend Optimization Toolkit, enabling CSPs to enhance their baseline resources performance,
tackling issues such as cold-start problems, multi-tenant interference and data locality through
automated and multi-purpose techniques.

Furthermore, PHYSICS will produce an Artefacts Marketplace (RAMP) (see (Mamellj, et al., 2023)), in which
internal and external entities (developers, researchers, etc.) will be able to contribute fine-grained reusable
artifacts (such as functions, flows, or controllers). PHYSICS will validate the outcomes in 3 real-world
applications (eHealth, Agriculture and Manufacturing), making a business, societal and environmental
impact on the lives of EU citizens.

2.2 Basic Architecture

The following summary of the PHYSICS Architecture has been adopted from (Mamelli, et al.,, 2023). The
main components of the PHYSICS architecture are shown in Figure 2. There three layers are depicted from
top to bottom: (1) the Application Developer Layer, (2) the Continuum Deployment Layer and (3) the
Infrastructure Layer, which correspond to the developments in the three technical work packages of the
PHYSICS project:

» WP3: Functional and Semantic Continuum Services Design Framework (Application Layer)

» WP4: Cloud Platform Services for Global Space-Time Continuum Interplay (Continuum Deployment

Layer)
» WP5: Extended Infrastructure Services with Adaptable Algorithms (Infrastructure Layer)

The top layer, Application Developer Layer, is the entry point for users that design their applications using
a Visual Workflow tool. The design of applications is eased by reusing common design patterns such as split-
join for function parallelization, batch processing, data collection, and more, provided by the Design
Patterns Repository. Application components (e.g., functions) can be semantically annotated providing
information to lower layers that may affect the placement, deployment, operation and configuration of the
application (Semantic Models). Application components may have elasticity controllers that regulate the
algorithms and resources needed for scaling a component.

D6.6 - PHYSICS Application Prototype V2 Page |11

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

| Application Developer Layer
T3.1 T3.3
Application . o . o Design Patterns
TrrITE Instantiate—] Design Environment Reuse— FarTeie
———oend App :—.I';‘;I‘4I
Describe netantia I-|
; Functional Continuum Deployment Layer
l Semantics Constraints pLoy! - y
h 4 Global Continuum
T3.2 antic or) Placement
Models Calculate Deployment
TRTETEMCE
41 Engine/Reasoning
framework .
3.1 services Capabilities J T4.2
Benchmark periodigally
Performance Evaluation |
DevOps Processes

Describe
I ETTERETISEET I Distributed Memory Service Ta.4
I Jenkins Pipelines I | Faa$ Execution Layer Faa$ Execution Layer Faa$ Execution Layer

| Image Registry ||

Resource Management T5.3 Resource Management Resource Management
Scheduling 5.2 Scheduling Scheduling
Algorithms) Algorithms Algorithms
v ¥ : |
L | Cloud Service A I | Cloud Service B | | Edge System A | | Edge System B | I Exotic System B Il<
-
T5. Infrastructure Layer
T54 Elasticity Controller

T3.4

Figure 2: The PHYSICS Software Components’ Architecture.

The Continuum Deployment Layer oversees providing uniform access to the diverse cloud services
provided by one or more cloud providers. The Global Continuum Placement oversees deciding on the most
suitable deployment of applications taking into account the performance of the services, costs and affinity
constraints of components. For that purpose, it receives the list of candidate services that the Reasoning
Framework has filtered taking into account the application graph needs and the performance of the services
provided by the cloud services and edge devices Performance Evaluation component. The placement of the
components is done by the Global FaaS Layer component. The Global FaaS Layer abstracts the usage of
different data centers from one or more cloud providers. The management of data shared by functions of
applications is provided at this level by the Distributed Memory Service.

The Infrastructure Layer provides a view and interface for enabling an optimized operation of the edge and
cloud services utilized for the realization of the application service graph. To this end, the Service
Capabilities component depicts and models the abilities of each service and resource type. The analysis of
different algorithmic approaches for adaptive and real-time provider level scheduling (Scheduling
algorithms) so that resources are adapted to current application needs while maintaining overall QoS levels
is done by the Resource Management component. The co-allocation strategies component provides, on
behalf of the provider strategies, optimizations to maximize performance.

D6.6 - PHYSICS Application Prototype V2 Page |12

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

3 USE CASES: OVERVIEW AND DESIGN

As explained in the introduction section of this deliverable document, the main contents of the document
are split into two parts. This section provides short overviews of the three different use cases and gives
room to document any design decisions or functional specifications that were used to create the actual
prototypes that are described in Section 4.

In the following three sub-sections, we provide for each of the three use cases, a short summary or synopsis
to refresh the reader on the context of the use case, as well as any design or specifications that may be of
interest or required to understand certain development choices that were made in the development of the
prototypes. Note that each of the use cases define their own design and functional specifications, based on
the use-case specific requirements that were finalized earlier in D6.4 (Franke, et al., 2022).

3.1 Use Case: “Smart Manufacturing”
3.1.1 Synopsis

SmartFactory-KL provides an Industry 4.0-compliant and manufacturer-independent demonstrator for the
PHYSICS-Project. The integration of SmartFactory-KL with the PHYSICS platform enables the decoupling of
the available services in the production line. The initial version of the pilot plant already follows a service-
oriented approach, which made it easier to convert it into a Function-as-a-Service (FaaS) system. Within
the Smart Manufacturing use case, two scenarios were defined. One of the scenarios implements a failover
case. In case of the local Quality Control (QC) service failure, the system is expected to forward the QC
request to the PHYSICS-Platform and continue the QC without downtime. The second use case develops a
more complex QC service following FaaS approach, which is expected to increase the certainty level3, in case
the local QC service fails to provide an adequate value. Initially, the local QC service utilizing PHYSICS at the
edge with low computing resources will be used for a faster analysis. If the certainty level is not satisfactory,
then the system will forward the QC data to the complex QC service and perform computations with more
available resources.

An important factor in both use cases is the priority of the Local and Cloud version of the services. In both,
the local services have precedence. If the local QC service does not function properly or not at all, then the
QC service in the Cloud will be used. The PHYSICS-Platform (which will be used at the edge and Cloud) and
FaaS$ approach enable higher availability which was not available at the initial version of the pilot plant.

3.1.2 Design & Specifications

As stated above, for the Smart Manufacturing pilot, two scenarios were defined. The first prototype
implemented only the second scenario since it had minimum dependency with the development progress
of the PHYSICS components. Now that all required PHYSICS components are available, both smart
manufacturing scenarios are implemented.

The “to-be” BPMN diagrams for the scenario have been defined in Deliverable 6.3 (Franke, et al.,, 2022). For
easier trackability, the diagram of the second scenario is also given in Figure 3.

To realize the Smart Manufacturing use cases, the functional requirements shown in the Table 1 are defined.

3 0r “score” of Al-based results.

D6.6 - PHYSICS Application Prototype V2 Page |13

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

(]
Check Quality Send Results
Quality checked

PHYSICS Faa$S Platform
QC Service

[—

certainty
above

threshold

. | Forward Quality :
D cn"“m Dala
: certainty
Check uah;y Quality Data below
o ~ Ihreshold
2
3 Collect Quality Check Cloud _/x Notity Opsrator Wait for manual
w Control Data Conneclivity connectivity - inspection results
g issues
. S
certainty
i ,—l—\ below
ot threshold
Report Quality Check
Check Quality ———< x certainty Results .
above
o J threshold Quality checked
5
E Inspect Product En\grf:;su?tescnon

Figure 3: BPMN Diagram of Scenario #2 of the Smart Manufacturing Pilot.

D6.6 - PHYSICS Application Prototype V2 Page | 14

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Table 1: Functional Requirements of the Smart Manufacturing Use Case.

Code Functional Requirements
FRS-UC1-01 An inference service for quality control must be provided to be invoked by
DFKI.

FRS-UC1-02 The inference service is to be deployed according to the principles of the
PHYSICS project through the OpenWhisk platform.

FRS-UC1-03 The inference service is to be utilized via the endpoints exposed by Node-
RED flows.

FRS-UC1-04 The inference will take place in a custom docker-based OpenWhisk action.

FRS-UC1-05 The inference service is to be invoked by specifying the inputs (image and
other quality related data) to infer upon and the model to be used.

FRS-UC1-06 The inference service tolerates the server failures by utilizing the PHYSICS
platform (Edge & Cloud).

FRS-UC1-07 The inference service runs preferably on the local Edge.

3.2 Use Case: “eHealth”
3.2.1 Synopsis

The aim of the “eHealth” Pilot is to improve the performance and maintainability of the Healthentia
platform, developed by Innovation Sprint (iSPRINT), by using Function-as-a-Service (FaaS) technologies as
provided by the PHYSICS Platform for some of the smart services on offer. Healthentia is an eClinical
Software-as-a-Service (SaaS) platform, consisting of a mobile app for patients/citizens, a web portal for
healthcare professionals and researchers, and a server-platform for data storage and processing (see Figure
4 for an impression of the mobile app and its functionalities - as taken from (Franke, et al., 2022)).

1367 Wi - 387 Wi - 10:06 7 wl o - 10:03 7 o - 10:03 7 wiw

Q = < CHATBOT
{ Skip < CONSENTS — X
What would you like to report?
Healthentia allows you to report and manitor 2 pay
your outcomes (e.g. symptoms), your activity | 4 sLo0D PressURE Q
. 2
.o P pp——
= == Infinitech WEEK 50 | & coven N
may invite you to participate in research 5 Reported Positive Health .
- studies. o131.21/0a/2 — | o1arRHEA Q i how con | heip you
Do you have an Invitation for a I have read and ag with the full
Clinical Study Program 2 taxt of tha Privacy Policy * o | 7 Famicue
Enter your invitation code I have read and agreed with the Terms () Sleep [
of use® HEADACHE
1am 16 years old and above * [@)
! MEALS
Further to the privacy terms that are i |
prosanted in the above ink, ploase provide o
your explicit consent, if interested, to the: (G tos) |2y mooo
following:
Sali-reparting of healih-related data * () Liquids 1) Messages [J | e pan
Contacted by sponsors for clinical = @ Youhaveo °°
studies Py spensorsfor unread messages (=) weienr
0glasses
250mi each
Continue o —
If not, you can skip this step 88 e Q

Figure 4: Screenshots of the Healthentia mobile application.

Deliverable 6.3 (Franke, et al., 2022) provides all details and requirements for this Use Case. In order to
better understand the provided functional specifications and prototype description (see section 4) we
include a summary of a typical usage scenario here:

An individual interested in monitoring or improving their health or lifestyle will download the Healthentia
mobile application to their phone. The user provides an email address and password and finalizes their
account creation by consenting to their data being used for research purposes. Once in the application, the
user can link their Fitbit or Garmin account to Healthentia to start providing activity and sleep data.

D6.6 - PHYSICS Application Prototype V2 Page |15

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Additionally, they can report various symptoms and events and will be able to regularly answer
questionnaires related to their overall health status. After sufficient data has been collected for a particular
user, the Healthentia platform will start to offer its inference services. Depending on the specific study
configuration, this inference can be e.g., a prediction of future health status. The predictions that are made
in an online fashion serve as input to a virtual coaching component - a conversational agent that can discuss
the prediction with the user in natural language dialogues.

A healthcare professional is interested in grouping their patients to handle them. Generative models are
learnt to describe the derived clusters of patients. The models corresponding to clusters that healthcare
professionals find meaningful are termed phenotypes. Patients are then grouped into those clusters based
on the similarity of their data to the different generative data, a process called phenotyping.

A data engineer is interested in working with Healthentia data. To do so, data is synthesized from the
generative models.

3.2.2 Design & Specifications

The goal of the eHealth use case is thus to demonstrate the benefits of the PHYSICS FaaS approach on three
scenarios:

» Inference for patients

» Patient phenotyping

» Data synthesis

To implement all three of them, several use case specific functional requirements have been derived, as
shown in Table 2. These functional requirements are used as practical goals for the development of the first
prototype described in Section 4.2 and as indications of its progress.

Table 2: Functional requirements for the eHealth use case.

Code Functional Requirements

FRS-UC2-01 Service must be provided to be invoked by third parties

FRS-UC2-02 The services are to be deployed according to the principles of the PHYSICS
project through OpenWhisk

FRS-UC2-03 The services are to be utilized via the endpoints exposed by functions
deployed from Node-RED flows

FRS-UC2-04 The flows will utilize ML scripts written in Python

FRS-UC2-05 The ML scripts are to be invoked by specifying the model(s) to be used and
if applicable, the vectors to infer upon

The fulfillment of these requirements in the current implementation of the eHealth use case is discussed in
Section 4.2.

3.3 Use Case: “Smart Agriculture”

3.3.1 Synopsis

The smart agriculture pilot aims to provide growers enhancing greenhouse management scenarios. To
achieve this goal, it is necessary to have: 1) A reliable tool to gather data collected in the greenhouse; 2)
high performing simulation and optimization; 3) Up-to-date agronomic model parametrization obtained
through calibration on empiric measurements. Figure 5 shows a global overview of the CybeleTech
solution for greenhouses.

D6.4 (Franke, et al.,, 2022) provides all details and requirements for this Use Case. To better understand the
provided functional specifications and prototype description (see section 4) we include a summary of a
typical usage scenario here.

D6.6 - PHYSICS Application Prototype V2 Page |16

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

|

Greenhouse

management scenarios
| Simulation &3 o Indoor climate Simulation 03

— Outdoor climate = - .
scenarios

Optimisation)

= Agronomic model

Data preprocessing (J Upon request

8
o
L]
Every 10mn . =

N g Every day |——— = Indoorclimate =

Agronomic
— X
observations

Simulation) Calibration

Agronomic

Agronomic model
parameters

Upon request

Figure 5: Overview of the Cybeletech solution for greenhouses.

Growers interested in monitoring plant development in their greenhouses and in improving the
management of the environmental conditions will contact Cybeletech. Cybeltech will audit the computer
infrastructure, adapt the solution to the greenhouse constraints and deploy it. Once Cybeletech’s solution is
deployed in the greenhouse, the data collected by greenhouse sensors are automatically retrieved,
preprocessed, and stored in Cybeletech databases. The grower can visualize these data through the
Cybeletech platform in near real time (NRT) to follow the environmental conditions in the greenhouse.
Moreover, the system uses agronomic models developed by Cybeletech to give an overview of the plant
status (e.g., healthy, heating of the leaves, water stress) in NRT. On the other hand, the grower can provide
greenhouse management scenarios. Dedicated statistical models are then used to convert these scenarios
in environmental conditions, which are in turn used to simulate plant development. Finally, the growers
can ask for optimal greenhouse management scenarios. In this case, several scenarios are automatically
generated and the best scenarios according to the tradeoff between plant development and environmental
cost are returned.

3.3.2 Design & Specifications

The goal of the smart agriculture use case is thus to demonstrate: 1) how PHYSICS components can be
deployed and used in the context of fog computing; and 2) the benefits of the PHYSICS FaaS approach on
NRT simulation of plant development and optimization of greenhouse management. To achieve this, several
use case specific functional requirements have been derived, as shown in Table 3.

Table 3: Functional requirements for the Smart Agriculture use case.

Code Functional Requirements

FRS-UC3-01 A data collection pipeline that takes as input the Python script for data pre-
processing must be provided.

FRS-UC3-02 The data collection pipeline is triggered automatically at regular time step
and store data locally when connection is lost.

FRS-UC3-03 A minimal version of the docker image allowing to run the data collection
pipeline is built during the deployment phase and can be pull from the edge.

FRS-UC3-04 A simulation / optimization flow must be provided to be invoked by
Cybeletech greenhouse management suite.

FRS-UC3-05 The simulation / optimization service is to be deployed according to the
principles of the PHYSICS project through the OpenWhisk platform.
FRS-UC3-07 The optimization service must take advantage of parallelization

As the first prototype, the emphasis was on adapting the pipeline for data collection. The fulfillment of these
requirements in the current implementation of the Smart Agriculture use case is discussed in Section 4.3.

D6.6 - PHYSICS Application Prototype V2 Page |17

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

4 PROTOTYPE DESCRIPTIONS

4.1 Use Case “Smart Manufacturing”

Based on the BPMN diagram presented in Section §3.1.2, a flow was designed with the PHYSICS design
environment in Node-RED as shown in Figure 6. This flow contains two OpenWhisk (OW) Actions: 1)
Quality Control, 2) Complex Quality Control. OW Action (1) the same quality control as in “as-is” scenario -
packaged as a custom OW Action-compatible docker-container. The OW Action (2) performs, as the name
suggests, a more complex quality control requiring GPU acceleration. Both OW Actions contain proprietary
code and Al models developed prior to PHYSICS project and thus will not be disclosed. The actions just
encapsulate those to be usable within PHYSICS platform following its requirements and are imported to
PHYSICS with the “Custom Image Upload” functionality.

4.1.1 Quality Control PHYSICS Flow

The flow starts after it receives a base64-encoded image data in JSON-format through a POST request to
“/run” (standard interface for any OpenWhisk function). An example of the request can be seen in Code
Snippet 1. Apart from the base64-encoded image, it also contains the expected product configuration
depending on the customer order.

{
"mime": "image/jpeg",
"encoding": "base64",
"image": "base64-encoded input image",
"expected": [
{
"name": "UsbPenDrive 2x4 Blue",
"type": "USB-PenDrive",
"color": "blue",
"size": "2x4",
"horizontal position": O,
"vertical position": 0
by
{
"name": "FlatStone 2x4 Black",
"type": "FlatStone",
"color": "black",
"size": "2x4",
"horizontal position": O,
"vertical position": 1
}
]
}

Code Snippet 1: Example JSON input for the quality control inference service.

After each quality control operation, the certainty of the results is checked. An example output is given in
Code Snippet 2. Apart from the processed base64-encoded image, it contains the Object Detection results
(bounding boxes, labels, and confidence of prediction) for each object as well as the time taken in
milliseconds for performance measurement purposes.

D6.6 - PHYSICS Application Prototype V2 Page |18

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

"complex": true,

"encoding": "base64",

"image": "base64-encoded output image"
"mime": "image/jpeg",

"results": [

{
"confidence": 0.9248585104942322,

"label": "UsbPenDrive 2x4 Blue",
"xQ": 2,

"x1": 778,

"y0": 687,

"y1"™: 877

"confidence": 0.9240514039993286,

"label": "FlatStone 2x4 Black",
"x0": O,

"x1": 777,

"yO": 413,

"yl": 701

}

1,
"time taken": 0.66082,
"yversion": "1.3.0"

Code Snippet 2: Example JSON output for the quality control inference service.

The resulting array scores are inspected, and the minimum confidence of all results is used for “certainty”.
Based on the threshold, in the following manner:
1. After simple QC
a) If certainty is above the threshold, the quality result is checked,
b) If certainty is below the threshold, the image data is forwarded to complex QC.
2. After complex QC
a) If certainty is above the threshold, the quality result is checked,
b) If certainty is below the threshold, a manual inspection will be required.

Based on the conditions written above, three different status codes are generated. The computation results
are summarized in Table 4.

Table 4: Summary of Status Codes of Use Case #2 in Smart Manufacturing Pilot.

Quality OK Quality Not OK
Certainty OK AlIOK Certainty OK, Quality Not OK
Cortainty Not OK CertaintyNotOK R

If certainty is not OK, the operator will be notified by the caller of the Node-RED flow.

Figure 6 shows a prototype of the second scenario of manufacturing use case depicted in BPMN diagram
(See Figure 3). The two “Dynamic simple/complex QC action” nodes are used to call the actual QC functions
(custom images) dynamically via PHYSICS “Dynamic OW action”. The sub flow “QC - Check Certainty”
checks whether the certainty is above the threshold. The “Check Results” sub flow checks whether the
results of the QC function match the expected product parts. Sub flows were used for reusability and status
reported for debugging. Note that the notification of the operator is handled outside of this flow.

D6.6 - PHYSICS Application Prototype V2 Page |19

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

PollITOPushConverterFC %
e S - D
[)

A § o

J=]| —
Q CertaintyOK QualityNotOK |]

S, W)
] = :]
D

ST & v b .
Certainty=0.791261494 1596985

/ " Dynamic complex QC action (=
/.

B
<) " Dynamic simple QC action

ﬂ .

f’. 5" FlatStone_2x4_Black” "score™0.7912614941506985,"x0™0,"x 1779 *y0*:420,"y1":604}
(] H ()

{"class™:"UsbPenDrive_2x4 Blue","score™0.9911681413650513,"x0™3,"x1":760,"y0":688,"y1":88 1}

-x: setze msg.payload[1].complex @

. Notify Operator

e[]

Figure 6: Smart Manufacturing Scenario #2, Final QC Node-RED Flow.

D6.6 - PHYSICS Application Prototype V2 Pa ge |20

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

In Figure 7, the “QC - Check Certainty” sub flow is shown. It needs both the original message and the quality
check result message, but Node-RED does not support nodes with multiple inputs, hence the join node is
used for working around that limitation. Status is red if an error occurs, yellow if certainty is below the
threshold and green otherwise.

Jjoin 2 msg [;—{] check certainty

output
) 1 above]

output
) 2 below]

-

The “Check results” sub flow is illustrated in Figure 8. The status is red if an error occurred, yellow if quality
is not OK and green if it is OK.

Figure 7: “QC - Check Certainty” sub flow.

OK

input ()) Check Results Not OK

Figure 8: “Check Results” sub flow.

4.1.2 Fail-Over PHYSICS Flow

The complete Quality Check function discussed in section 4.1.1 is deployed both on the local edge instance
of PHYSICS as well as in the cloud. The flow deciding which instance to use is shown in Figure 9. The “Edge
OW MONITOR AND LOGGER” PHYSICS component monitors the local OpenWhisk instance. The “Router”
PHYSICS component uses this information to route incoming requests according to its configuration. It is
setup such that if the edge instance is not available or overloaded, the cloud instance is used instead (see in
Figure 10). Further information about the router component can be found in Deliverable D3.2 Section 4.12.
Because the OW monitor needs to run constantly, this flow is deployed as a service rather than a function.

D6.6 - PHYSICS Application Prototype V2 Page |21

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

['\,/ DEFAULT ENDPOINT J

[[post] /qc_fail_over

Router

http

[(' REDIRECTION ENDPOINT]

Figure 9 Fail-Over flow for Smart Manufacturing Use Case.

¥ Name Name
redirectionMetric waitTime v
redirectifLarger « ©® true v

redirectionValue + % 1000

strategy fallBack v

Figure 10 Fail-Over Router setup for Smart Manufacturing Use Case.

4.1.3 Concluding remarks

The source material for the prototype described here can be found on the internal PHYSICS repository:

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/dfki

Access to this repository is limited to members of the PHYSICS Consortium but may be granted upon
request.

Based on the prototypes and the functional requirements defined in section 3.1.2, a summary of fulfilment
statuses of the requirements is shown in Table 5.

D6.6 - PHYSICS Application Prototype V2 Page |22

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/dfki

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Table 5: Fulfillment of the functional requirements for the Smart Manufacturing use case.

Code Functional Specification Fulfilment

FRS-UC1-01 Fulfilled. Endpoint is available at Kubernetes cluster with POST to “/qc”.

FRS-UC1-02 Fulfilled. Final version of Node-RED flows and quality control inference as
OW-Action deployed.

FRS-UC1-03 Fulfilled. Integrated into the Node-RED flows.

FRS-UC1-04 Fulfilled. The inference takes place in a custom docker-based
OpenWhisk action.

FRS-UC1-05 Fulfilled. Two separate functions for simple and complex QC are used
instead of specifying the model.

FRS-UC1-06 Fulfilled. Both edge and cloud PHYSICS deployments use identical functions.
Fail-Over is implemented using the PHYSICS Router Pattern.

FRS-UC1-07 Fulfilled. PHYSICS Router is setup to prefer edge deployment unless it is not
available or overloaded.

The smart manufacturing use case has successfully fulfilled the respective functional requirements. Several
components of the PHYSICS platform are utilized to exploit the FaaS benefits.

4.2 Use Case “eHealth”

The eHealth use case is utilizing a local deployment of the PHYSICS design environment to prepare the
necessary flows, and then invokes their version deployed on OpenWhisk to run inference on healthcare
data, given pre-trained ML models. The use of the PHYSICS design environment to implement and build the
inference flow and the use of Python for the actual inference script as discussed in Section 4.2.1. The
experimentation that can currently be carried out is demonstrated in Section 4.2.2. This demonstration is
followed in Section 4.2.3 by instructions on running and using the system, as well as by a description of how
the necessary docker image is built. Finally, the fulfillment of the use case functional specifications is
considered in the concluding Section 4.2.4.

4.2.1 The eHealth PHYSICS flow

Once the local implementation of the PHYSICS Design Environment is up and running, one can access the
Admin Panel to see the flows exposed by Node-RED, as shown in Figure 11.

Selecting any of the flows allows the user to build the flow using Jenkins (see Figure 12) and then have the
resulting image deployed at OpenWhisk, whereupon the flow is available for inference both from the Node-
RED environment, but also via external invocation.

Selecting Node-RED from the menu, one accesses the Node-RED flow editor, where all the flows in the local
implementation (in this case the flows of the eHealth use case) are loaded, together with the PHYSICS Node-
RED components. This is shown in Figure 13.

Three of the flows of the editor correspond to the inference, phenotyping and synthesis cases. Each of those
flows are divided in three sections. The annotations section on the top utilizes PHYSICS annotations to allow
the user to add information on the behavior of the flow as deployed in OpenWhisk. The endpoints definition
section defines the two endpoints exposed by the flow, adapted to the Openwhisk Action specification:

= POST init handles initialization and is currently a stub (empty top row sub-flow), and

= POST run performs the inference (middle row sub-flow).

At the heart of the run endpoint lies the “Infer with Python” execution node, invoking the Python inference
script, passing it the command-line arguments prepared by the “Prepare CLA” (Command Line Argument)
Javascript function node that manipulates the “message” object into the “cla” one. The “Prepare response”
Javascript function node considers the standard and error output streams of the execution node, as they are
concatenated together using the PHYSICS Branch-Join pattern. The configuration of all three nodes is shown
in Figure 14.

D6.6 - PHYSICS Application Prototype V2 Page |23

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

PHYSICS BLEGLLLE] TEST GRAPHS IMAGE IMPORT SUBFLOW EXPORT Aristodemos Pnevmatikakis €2

Admin Panel Available Flows

Node Red Python

Dashboard o

Inference_file faaoft

Branch:

Inference - Energy optimization cdBe6011e15212bc v

Logs m

Infer 5772094116164 v

Document ID URL Action name Built date
registry.opps.ocphub phys Infer _ehealth_7f2db4bo-8092-4d3b-8ak 1219/22, ¢

> faas.eu/custom/ehealth:3) 22b9e0411609 js0 M

1/9/23, 2:48 PM

_31dd7206-5a02- 4b83

phub phys Infe

Jehealth:3 6bdat63ad08

cphub phy
v/ehealth:s

d2da70!

cphub phys
‘ehealth .6

Version: 1.1.0

Phenotype 5667bea3640be97f v

Figure 11: Admin Panel showing the flows exposed by Node-RED in the eHealth local workflow.

% Jenkins Q, avalfitnon @ .‘ . o 1 2 Aristodemos Pnevmatikakis Em:om'mSean

Dashboard ‘* test-BUILD » #358

& Back to Project

(¥) Build #358 (23 Mai 2022, 9:09:45 Tt.p1.)

o~ Started 2 days O hr ago
— £ NpooBiikn mepiypapic aay 9
= Changes Took 5 min 18 sec

Console Output <

"= Edit Build Information ﬂ § ' This run spent:

® Delete build ‘#358" * 6.7 sec waiting;
* 5 min 18 sec build duration;

| L, Status

Y

To Eekivnoe o XprioTng Aristodemos Pnevmatikakis

Parameters * 5 min 25 sec total from scheduled to completion.

_ . Revision: 10e712ed4a4a5ade394542235fcAdf8009179f92b
@ Timings Q}glt X -)
Repository: https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test.git

(} Git Build Data * refs/remotes/origin/master

» Replay | The following steps that have been detected may have insecure interpolation of sensitive variables (click here for an explanation):

* sh: [JENKINS_PASSWORD]

- [
Pipeline Steps ® sh: [JENKINS_PASSWORD]

® sh: [

[

* sh:

MINIO KEY, MINIO_SECRET, JEMKINS PASSWORD]

B8 workspaces JENKINS_PASSWORD]

¥ Previous Build

Figure 12: Jenkins build job initiated by the PHYSICS design environment (Admin panel) for the inference flow.

D6.6 - PHYSICS Application Prototype V2 Page |24

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

4} -Energy . Infer Phenatype Synthesize OW invocations Benchmark - Load (| Benchmark - Reque | Benchmark - Hea + - it debug # i 8 o
Admin Panel ~ common . = Yallnodes ~| | @all ~
Annotalions section
Node Red (5 ’
IR EEE———— ot
pashboard [
complate 1
Branch: shealth == Endpaints' defintion section
o B e
staws | [post] finit (- hitp
lim in)
g = 8 f BranchJoin } -
= i TR
commant
Prepare response —Dm L
- tunction } ntp
. R
function 1
— Manual invocalion section
switch
(o R s e — S ®
5 range
deley O
d tigger ()
) fer -
Version: 1.1.0 ~Tole =

f BranchJeoin () -
. C : (join 0
(u) - | }E 1]
[post] frun (] Prepare CLA I_:—I-;—I_: BranchJoin .,

) Prepare response
Y ba P!

 r 1
=) Error handlin, C
_ St - J

(b)
Figure 13: Node-RED interface depicting in inference flow in the eHealth local implementation (a) and zoom in
the main flow (b).

http

Edit exec node SRR Edit function node

Delete Cancel Delete Cancel Delete Cancel

@ Properties o) (@ [H)||| @ Propertes & BBl o Properties CHENES
W Command | python3 scriptsiinference. py ® Name Prepare CLA o~ % Name Prepare response &~
+Appena msg. cla © Setup ©n Start ©On Message Cn Stop @ Setup On Start ©On Message ©On Stop
1 msg.cla - msg.payload.value.input + * * + msg.payload.value.model; 1+ 1F (nsg.payload(e] == ™) {
2 . 2 errors = msg.payload[1];
3 return nsg; 3 nsg.payload.errors = JSON.stringify(errors);
& Output when the command is complete - exec mode v 4 msg.statusCode - 56€;
5=} else {
6 nsg.payload = msg.payload[e];
@ Timeout plional | seconds Z g 8-payloadie]
8 return msg;

o Hide console [

% Name Infer with Python

Figure 14: Properties of the “Infer with Python” execution node (left), the “Prepare CLA” function node (middle)
and the “Prepare response” function node (right).

The manual invocation section of the flows, as well as the OW inference flow are considered in the
experimentation section.

D6.6 - PHYSICS Application Prototype V2 Page |25

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

4.2.2 Experimentation on the eHealth PHYSICS flows

Any of the three flows can be executed within the Node-RED environment by manually activating the
timestamp node in the manual invocation section of each flow. This is quite useful for debugging the flow at
the creation stage, without having to undergo the OpenWhisk deployment phase.

The inference flow expects two input parameters: the input vectors to infer upon (given in
msg.payload.value.input), and the name of the model to be wused (given in
msg.payload.value.model) for inference in the inference.py Python script. The JSON string to be
passed tomsg.payload.value. input for the inference is as follows:

[
{
"patient":"4140D",
"date":"10-06-2022",
"vector":[-0.1756308,0.3731949,0.2202068,0.8069529, -0.1448357,0.8299854, -0.3774286,
1.6622097,-0.6561496,-0.1429273,-0.3793805,0.7972746,0.1187435,-0.0117112,0.3693147]
s

This outputs the inferences, one per provided vector. A second Python script, inference_test.py, is
provided that also tests the inference using the known inference results, providing the classification
accuracy.

Manually invoking the POST run of the flow results in successful inference as indicated by the inference
results at the logs shown in the right column of Figure 13.

The phenotyping flow expects the input vectors to be phenotyped and the name of the joblib file containing
all the generative models to compare each vector against. The synthesis flow expects the joblib file with the
generative models, an array of the initial phenotype of each of the synthetic patients (the length of the array
thus determines the number of synthetic patients), the number of time steps to infer for each synthetic
patient and the phenotype transition probability matrix.

Any flow deployed in OpenWhisk can be executed by POSTing at its init and run endpoints from outside the
PHYSICS design environment, or within an OpenWhisk experimentation flow. This is the OW inference flow,
shown in Figure 15.

Admin Panel v common v e
omm | ‘ - pER] o
Node Red) s M [0~ mlerence Ancton Infecence parameters |~ hitp request - Coce check
. Ve 0
OW actvation id from repry =~ POITOPUSHCOnvenerFrC —l.
Bronch: ohealth
i
Logs o]
n— \ - RS SIscEssAy] ©
=] yong [%) params - nip request (< Code checx
T Tseeesiio
e OW activation & from reply - POITOPUShCOOVeneFC 1.
PR E
function
- : _— e SRcesa] ©
m ;&.}: Syntnesis function — Syntnesis parameters (— nitp request > Coce check
eSO
OWactvaton dfom reply C—~ | POITOPUHCONEREFC ‘)
T E
Version: 1.1.0 -0+ b

D6.6 - PHYSICS Application Prototype V2 Page |26

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Figure 15: The OpenWhisk experimentation flow for the deployed flows of the three cases.

The flow is designed for manual-only invocation via any of the three inject nodes “Inference function”,
“Phenotyping function”, or “Synthesis function”, where the respective deployed action name is given. The
user can find this action name in the Jenkins build. The POST URL is reconstructed from this action name,
and the expected parameters of the endpoint are given in the “Action invocation url” Javascript function.
The log of executing the deployed flow is shown on the right column of Figure 15, where the final success is
indicated.

4.2.3 eHealth use-case local design environment instructions

This section provides the installation and usage instructions for the local PHYSICS design environment for
the eHealth use case. The system can be found in the ehealth branch of the PHYSICS Design Environment
project in Gogs:

https://repo.apps.ocphub.physics-faas.eu/PHYSICS /test/src/ehealth

Access to this repository is limited to members of the PHYSICS Consortium but may be granted upon
request.

A screenshot of the repository is shown in Figure 16.
@ Dashboard Issues Pull Requests Explore + - {}v
1 PHYSICS / test mwatch |2 | frsr 0| Yrok | 0

[l Files @ 1ssues @ 1 Pull Requests @ EE wiki

Mo Description

P 134 Commits ¥ 9 Branches % 0 Releases
I Branch: ehealth = test \E SSH htpsyfreposppsocphuby B &
E“_: apnevmatikakis @daifedb2 README.md improvements 1 week ago
i data faa0fecssf Handle input arguments 1 month ago
El .gitignore rifeziasaz Dockerfile update 1 menth ago
El Dockerfile s4z738254d Setup instructions in README md 1 week ago
Bl Dockerfile debian fiaeaszess Add proper debian base image url 1 month ago
B Dockerfilecustom ecieisdsa commit to deploy 2 months ago
B Dockerfiledome eEcieisgaa commit to deploy 2 months ago
B Jenkinsfile 5f3e57571F Merge branch 'master into ehealth 1 month ago
Bl Jenkinsfile-base erbibitcce add proper bibeline for building debian image 1 menth ago
B Jenkinsfile-dome ecieisdsa commit to deploy 2 months ago
B Jenkinsfile-ow sfie57571F Merge branch 'master into ehealth 1 month ago
El READMEmd edazfedhzs README.md improvements 1 week ago
B python-requirements txt 718c2459F7 commit to deploy 2 months ago
B test-deployyam Jeceaardc commit to deploy 2 months ago

EH README.md

Local workflow for PHYSICS Healthcare use case

This is the system for Mode-RED inferencing used in the PHYSICS Healthcare use case. Information on running and using the
system are given first, followed by a description of how he necessary docker image iz build.

Running

On Windows, first run Docker Desctop

Figure 16: Screenshot of the Gogs eHealth repository.

D6.6 - PHYSICS Application Prototype V2 Page |27

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/ehealth

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

To run the adapted PHYSICS Design Environment for the eHealth use case locally, first pull the repository
in an ehealth directory. Add to the parent of the ehealth directory two files. The credentials.env
environment file should have a number of tokens defined, as given by the PHYSICS project (see Code Snippet
3).

JENKINS_USERNAME=XXX
JENKINS_TOKEN= XXX
GIT_NODE_RED_TOKEN= XXX
GIT_NODE_RED_PATH=/repository
MINIO_ACCESS_KEY= XXX
MINIO_SECRET_KEY= XXX
MONGODB_PASSWORD= XXX
MONGODB_USER= XXX
JENKINS_PIPELINE_TOKEN= XXX
API_KEY= XXX

Code Snippet 3: Example credentials.env file with the required tokens to run the eHealth inference system.

The docker-compose.yml configuration file gives the information on how to build the three images of the
system (see Code Snippet 4), namely the admin panel U], the Node-RED and the SFG backend.

version: "3.9"
services:
ui:
container_name: ui
image: registry.apps.ocphub.physics-faas.eu/design-environment/control-ui/design-environment-
ui:latest
ports:
- "4200:4200"
node-red:
container_name: node-red
build: ./<ehealth directory>
volumes:
- ./<ehealth directory>/data:/data
ports:
- "1880:1880"
sfg:
container_name: sfg
image: registry.apps.ocphub.physics-faas.eu/design-environment/sfg/design-environment:latest
volumes:
- ./<ehealth directory>:/repository
ports:
- "3001:3001"
links:
- node-red
env_file:
- credentials.env

Code Snippet 4: Docker-compose.yml configuration file.

Where <ehealth directory> isreplaced with the actual ehealth directory name.
Then run Docker Desktop. Open a terminal and:

e (o to the parent directory of the <ehealth directory>
e docker-compose up --build

The Node-RED image that is built also includes Python, the necessary libraries, the scripts for inference and
the models. Details on using and building the system follow.

To wuse the system, go to http://localhost:4200/ for the Admin Panel, or to
http://localhost:4200/node-red for the Node-RED instance where the created flows are already
loaded. After any useful modification of the flows, click on "Deploy" to actually store the changes in
data/flows.json.

D6.6 - PHYSICS Application Prototype V2 Page |28

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Deployed flows can then be built via the Admin panel (via Jenkins behind the scene) and be registered in
OpenWhisk.

The Python scripts and the model data to be used in the flows are in data/scripts. In detail, the contents
are:

e requirements.txt: It is used to setup the Python environment by installing the necessary libraries

e *py: The different scripts to be used in the Node-RED flows

e *joblib: Data to be used for inference and model metadata (complete model in the case of a Random
Forest one)

e Neural Network models in directories

The Dockerfile found at the root of the project is used to set up the Node-RED and Python image needed for
the use case. The starting point is the Debian image from the PHYSICS consortium:

FROM registry.apps.ocphub.physics-faas.eu/wp3/debian-base:latest

In there, as ROOT user, first the scripts directory is created and populated:

USER root
RUN mkdir -p /usr/src/node-red/scripts
COPY data/scripts /usr/src/node-red/scripts

Then Python is installed:

RUN apt install -y python3-dev python3-pip
RUN pip3 install --upgrade pip

To be followed by the 3rd party library requirements:

RUN pip3 install -r scripts/requirements.txt

Finally, the properties of the data folder are set and the working user is set to node-red:

RUN chown -R node-red /data
RUN chmod -R 775 /data
USER node-red

4.2.4 Concluding remarks

After having described the eHealth use case flows and the implementation of services from them, we now
look back at the functional specifications that were defined in section 3.2.2. For each of the Functional
Specifications, we discuss how the specifications are fulfilled. The fulfillment of the functional specifications
introduced in Table 2 is discussed in Table 5.

Table 5: Fulfilment of the functional specifications for the eHealth use case.

Code Functional Specification Fulfilment

FRS-UC2-01 Fulfilled. Three services have been generated from the respective flows, and
URLs are provided for their invocation. Any 3rd party system can utilize
these URLs.

FRS-UC2-02 Fulfilled. Deployed flows can then be built via the admin panel, whereupon
they are registered in OpenWhisk.

FRS-UC2-03 Fulfilled via the run endpoint exposed by the Node-RED inference,
phenotyping and synthesis flows.

D6.6 - PHYSICS Application Prototype V2 Page |29

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

FRS-UC2-04 Fulfilled, since a Python script is provided for each of the three cases of
interest (inference, phenotyping and synthesis). Specifically for inference,
two scripts are provided, one just for inference and another for both
inference and testing, to be used in the case the correct inference results are
known.

FRS-UC2-05 Fulfilled: Each service requires its own set of parameters to be POSTed.
These parameters are passed to the underlying Python scripts.

The eHealth use case has successfully fulfilled the respective functional requirements. Several components
of the PHYSICS platform are utilized to exploit the FaaS benefits.

4.3 Use Case “Smart Agriculture”
4.3.1 Data collection pipeline

4.3.1.1 Pipeline definition using Node-Red

The pipeline is implemented as a Node-RED flow and packaged as a subflow (Edge ETL Service). The
implementation appears in Figure 17. Initially an input is provided so that the developer can plug in any
kind of means to obtain the primary data value, encapsulated in the payload field of the message. Then any
custom ETL logic can be applied through one or more functions and apply any needed transformation,
filtering, or other operation on the data. Once this is finalized, the generic part of the pattern begins. Given
that any output nodes, such as the HTTP out node used in this example, may substitute the contents of the
msg.payload field with the results of the call that pushes the data to the central system, it is necessary to
maintain the original data for future use (in case the transmission fails). For this reason, these are moved
in the "Keep contents" function in the msg.originalpayload field. This function is also responsible for
inserting a retry counter in the message, as well as differentiating the origin of the message (new data that
have arrived or past data that have failed and have been stored locally, see (Kousiouris, 2023) for more
details).

Flow 1 [Edge ETL Service toHTT || Flow2 Flow 3. Flow 4 LR 4t debug i@ & @& S -
¢

O status node | | @ detete subfiow T all nodes

Y, o — [~

RETRY PAST FAILS

T p— |

INPUT PHASE- Value in msg.payioad

EXAMPLE HTTP OUTPUT PHASE

Status code>=400 .~ Delele fomDB

0 ADDETLLOGIC ¢) Keep contents/etry def 5 pusnot)

E

E

(S e s |
\ ™ insertio Datatoss DB
[-l
POINTS OF ATTENTION

NS o

H

Rid

areare o toss mece YRR

Figure 17: Implementation Flow for the Edge ETL Pattern.

Besides the adaptation of the Python script managing the parsing of the file containing the data collected by
the sensors passed as an argument of the Edge ETL flow, some parameters must be defined including the

D6.6 - PHYSICS Application Prototype V2 Page |30

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

frequency of pipeline triggering, the number of retries before storage of data in the local database, and the
authentication information for API connection to Cybeletech database (Figure 18).

4.3.1.2 Adaptation of legacy codes
According to the greenhouse supervisor specifications, the data collection logic must be adapted. As today

Cybeletech application enables to deal with two types of supervisors.

One automatically generates a plain .txt file at regular time intervals. In this case a Python script is run at
regular time intervals with a cron. This script:
1. Read the plain.txt file.
2. Perform preprocessing operations to ensure compliance between sensor data collected by the
supervisor and Cybeletech data model.
3. Check the existence of the preprocessed data in Cybeletech database
4. Insert the data via a dedicated SQLite driver developed by Cybeletech if they are not already in the
database.

In case of connection failure between the supervisor and Cybeletech server, the plain.txt file is archived and
will be parsed the next time the script runs.

a)Frequency of pipeline triggering b) Number of retry in case of failure ¢) API authentification
(node CRON JOB) (node input) (node pushout)
Edit inject node Edit subflow instance: Edge ETL Service to HTTP out Edit http request node
© Properties. ol B H © Properties o = = © Properties o =
® Name CRON JOB ® Name B Method POST v

retrylimit -0 2 QURL hitps /est-sdence cybeletech filraw-climates
msg. payload = = timestamp

O Enable secure (SSUTLS) connection

targetur = % hitpsiiest-science cybeletech friraw-cimate:

msg. topic
B Use authentication

A Type bearer authentication v

R
(O Enable connection keep-alive
| ousepor
‘ Donly send non-2xx responses to Catch node

Inject once ater seconds, then
€ Retum a UTF-8 string v

C Repeat interval ~
% Name pushout

Figure 18: Settings of Node-RED ETL flow for data collection pipeline.

The other provides access to the data collected by the sensor via an API. In this case a Python script is run
at regular time intervals with a cron. This script:
1. Send arequest to the supervisor APIL.
2. Check if sensor data have been archived during the previous runs and read the archive files if they
exist.
3. Perform preprocessing operations to ensure compliance between sensor data obtained with the
AP], and eventually from the archived files, and Cybeletech data model.
4. Insert the data via a dedicated SQLite driver developed by Cybeletech.

In case of connection failure between the supervisor and Cybeletech server the data obtained with the API
are archived in a .json file, which will be parsed the next time the script runs.

During the adaptation phase the supervisor dependent part of the data collection logic has been extracted
of the legacy codes and adapted so that it can be run using the Edge ETL Pattern.

Moreover, an API for data transfer from the supervisor to Cybeletech server has been developed so that the
http node can be used.

D6.6 - PHYSICS Application Prototype V2 Page |31

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Once this adaptation is implemented, the Python script can be passed as argument to the generic Edge ETL
Pattern (see Figure 19).

As the data collection pipeline logic is defined in a generic pattern, it allows to decorrelate the part of the
code dedicated to data gathering from the sensors and data preprocessing, from the part dedicated to the
job running and connection failure management. This has considerably simplified the Python code base
used for data collection and will ease their maintenance and adaptation to new contexts.

4.3.1.3 Pipeline testing using the design environment
The pipeline of data collection has been created and tested using the PHYSICS Design Environment. For this

test the Python script performing data parsing and a .txt file such as those produced by the supervisor of
type 1 have been uploaded in the /data repository of the test project. This repository is shared with the
docker container hosting the Design Environment and allows the use of scripts and data in the Node-RED
flows.

a
Y2R2022, 65742 PM node: pushout -
mag ; sting[23]

"ne response from server”

VY2B2022, 6:57:42 PM nods: 462621455

ng(@]

mag.s

"ETIMEDOUT"

meg.url - string{34]
"http://18.188.59.183:1881/pushdata"

YAA2Z, 65747 PM node: 45 26etadSa5aTD
msg.payload - stringl121832]

e ————mmEm o "[{'greenhouse': °chateauneuf-sur-loire', 'station': 'Chapelle
o) 2°, 'date’: '2021-05-31T00:02:00+02:900', ‘data’:
timestal e) Edge ETL Service to HTTP out 1 . - ro
[]3 _ Ao be el B . {'Température, Serre utilisée': 1.0, 'Temperature, N° de plage
horaire en cours': 4, 'Température, T°C air mesurée par la
sonde N°1': 19.1, 'Température, T°C air mesurée par la sonde

We2': 18.8, ‘Température, T°C air ambiante mesurée': 18.5,
‘Température, T°C air moyenne sur 1/2h': 18.7, 'Température,

E. T°C air moyenne sur 24h': 22., ‘Température, Alarme T°C
ambiante': 0.0, ‘Température, ALARME ecart entre les 2 sondes
de T°C ambiante': 6.0, 'Humidite, Humidité regulé en fonction
du déficit hydrique': 1.8, 'Humidité, Hygrometrie ambiante
mesurée par la sonde N°L *: 75, 'Humidité, Hygrométrie
ambiante mesurée par la sonde N°2°: 77, 'Hunidité, Hygrométrie
ambiante mesurée': 76, "Humidité, Quantité d'eau dans 1'air
ambiant®: 10.1, ‘Humidité, Déficit hydrique ambiant': 3.3,
"Humidité, Alarme taux d'hygrométrie ambiant®: 0.8, ‘Humidité,
Alarme déficit hydrique ambiant': 0.8, "Humid..."®

VY2B2022, 6:57:42 PM nods: 462621455
msg.thisratry ; number

5

Y2R2022, 6:57:42 PM node: 4626eiadSaliSar

meg - error

“"Error: SQLITE ERROR: near "Humidité": syntax error* -

Figure 19: ETL flow testing.

Three scenarios have been tested:

1. In the first scenario it was assumed that no connection failure occurs during the data collection
procedure. It validates the integration of the Python script in the Edge ETL Pattern and the
configuration of the nodes.

2. In the second scenario it was assumed that temporary connection failure occurs during the data
collection procedure. It validates that the retry procedure allows to overcome transient connection
troubleshooting.

3. Inthe third scenario it was assumed that extended connection loss occurs during the data collection
procedure. It validates that while the API cannot be reached the data are stored locally with no
duplicate and that these data are sent to the distant database as soon as the connection is restored.

The outcome of the first scenario is presented in Figure 20. In this case the pipeline succeeded, and all the
data collected by the sensors have been preprocessed and sent to Cybeletech database using the API at the
first try.

D6.6 - PHYSICS Application Prototype V2 Page |32

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

a) Brut data returned by the sensor supervisor of the greenhouse b) Data sent using the API

Chapelle 2 .

Date Heure Tenplrature, Serre utilisbe TempBrature, N& de plage horaire en cours TempGrature, TC air mesure par la sonde NGl TempBrature, TGC air mesure par [l At
1a sonde WG2 Temphrature, TBC air ambiante mesure Tempfrature, TC air moyenne sur 1/2h Température, TEC air moyenne sur 24h TempBrature, Alarme T6C ambiante
Temp@rature, ALARME Bicart entre les 2 sondes de TGC ambiante Humidit®, Humidité régulé en fonction du déficit hydrique Humidit®, Hygrombtrie ambiante mesurtie
par la sonde N&1 Humidité, Hygrométrie ambiante mesurée par la sonde N62 Humidit®, Hygrométrie ambiante mesurée Humidit@, Quantité d eau dans L air ambiant
Humidit®, Deficit hydrique ambiant Humidit®, Alarme taux d hygromgtrie ambiant Humidit®, Alarme d&ficit hydrique ambiant Humidllﬁ ALARME @icart entre les 2
sondes d hygronétrie ambiante Humidit#, Seuil d hygroméitrie pour déiclenchement d un assainissement Humidith, Seuil de déficit hydrique pour diiclenchement d un
assainissement Humidité, Assainissement en cours Humidité, Seuil d hygrométrie pour déiclenchement du FOG Humiditd, Seuil de dbficit hydrique pour diiclenchement
du FOG Humidit®, Demande de marche du FOG Humidit®, Pourcentage du temps de fenctionnement du FOG CTA, TGC chauffe ambiance CTA, Mode int@gration CTA, TeC
ambiante moyenne objectif THC refroidissement, T6C air ambiant pour debut refroidissement Ecran, Mode de déploierent des toiles d Gcran Ecran, Pourcentage de
déploienent d Gcran dfsirh CO6, Mode d enrichissewent (06, Taux de (OB ambiant dsirt COB, Taux COW mesuré CO6, Pourcentage du temps d injection de 06
ncessaire (06, ALARME taux de C0G Eclairage 1, Autorisation générale Eclairage 1, Dans la plage horaire d autorisation Eclairage 1, Retour marche Mudhus
Eclairage 1, Niveau d @clairage en PAR dlsir& Eclairage 1, Niveau d Gclairage PAR mesurﬁ Medbus Eclairage 1, Niveau d Gclairage moyen en PAR Eclairage
Eclairage PAR cunulé Eclairage 1, Interdit / THC ambiante Eclairage 1, Cumul du temps de fonctionnement de 1 ficlairage Eclairage 1, Puissance actuelle canal 1
Eclairage 1, Puissance actuelle canal 2 Eclairage 1, Puissance actuelle canal 3 Eclairage 1, Puissance actuelle canal 4 Eclairage 2, Autorisation généra =Ca)
Eclairage 2, Dans la plage horaire d autorisation Eclairage 2, Retour marche Modbus Eclairage 2, Niveau d ©clairage en PAR désir® Eclairage 2, Niveau d ﬁc'laxragu dant 13 e s poeicerie
PAR mesur® Modbus Eclairage 2, Niveau d @clairage moyen en PAR Eclairage 2, Eclairage PAR cumulé Eclairage 2, Interdit / TEC amblante Eclairage 2, Cumul du St 0 it h Maree GiLhfictt

temps de fonctionnement de 1 @iclairage Eclairage 2, Puissance actuelle canal 1 Eclairage 2, Puissance actuelle canal 2 Eclairage 2, Puissance actuelle canal 3

Eclairage 2, Puissance actuelle canal 4 Eclairage 3, Autorisation générale Eclairage 3, Dans la plage horaire d autorisation Eclairage 3, Retour marche Modbus

Eclairage 3, Niveau d Gclairage en PAR dsirB Eclairage 3, Niveau d Gclairage PAR mesur@ Modbus Eclairage 3, Niveau d clairage moyen en PAR Eclairage 3,

Eclairage PAR cumul§ Eclairage 3, Interdit / T&C ambiante Eclairage 3, Cumul du temps de fonctionnement de | @iclairage Eclairage 3, Puissance actuelle canal 1

Eclairage 3, Puissance actuelle canal 2 Eclairage 3, Puissance actuelle canal 3 Eclairage 3, Puissance actuelle canal 4 Eclairage 4, Autorisation générale

Eclairage 4, Dans la plage horaire d autorisation Eclairage 4, Retour marche Modbus Eclairage 4, Niveau d @clairage en PAR dsire Eclairage 4, Niveau d Gclairage

PAR mesur® Modbus Eclairage 4, Niveau d iclairage moyen en PAR Eclairage 4, Eclairage PAR cunuléi Eclairage 4, Interdit / T6C ambiante Eclairage 4, Cumul du

temps de fonctionnement de 1 ®clairage Eclairage 4, Puissance actuelle canal 1 Eclairage 4, Puissance actuelle canal 2 Eclairage 4, Puissance actuelle canal 3

Eclairage 4, Puissance actuelle canal 4 Pression, Pression désire Pression, Pression mesur@le Pression, ALARME pression ambiante T&C CTA, T&C de soufflage

calculbe TGC CTA, TOC de soufflage mesurbe TGC CTA, Taux d hygrométrie dans circuit de soufflage mesurl TGC CTA, ALARME TGC soufflage TGC CTA, Pnsltinn vanne

chaud_ souhaitge T6C CTA, Position vanne froid souhaitbe CTA en ventilation, Arrét CTA sur défaut CTA en ventilation, Dépression reprise désirée

ventilation, Dépression reprise mesurfie CTA en ventilation, Vitesse reprise (TA en ventilation, Alarme variateur reprise CTA en ventilation, ALARME delta P

reprise CTA en ventilation, Contact pressostat dépression reprise CTA en ventilation, Dépression en soufflage dbsirfe CTA en ventilation, Dépression en soufflage

mesur§e CTA en ventilation, Vitesse soufflage CTA en ventilation, Alarme variateur soufflage CTA en ventilation, ALARME delta P soufflage CTA en vemilatiun.

Contact pressostat déipression soufflage CTA en ventilation, Demande arrét de la CTA CTA en ventilation, Fin de course de fermeture volet air neuf CTA es

ventilation, Fin de course de fermeture volet rejet CTA en ventilation, Fin de course de fermeture volet mélange CTA en ventilation, Gache de snufflage CTA en

ventilation, Gache de reprise CTA en ventilation, Synth@ise ALARME CTA CTA en ventilation, Demande arrt CTA CTA en ventilation, RGarmement CTA CTA

climatisation, TGC réiseau froid mesurfe CTA en cllmatlsatmr\ TGC extraction CTA en dlmatjsatjnn, TGC air de mGlange mesurfie CTA en Cllmatlﬂatlﬁn‘ Taux d

nygromtrls de | air de mélange mesuré CTA en climatisation, Quantit® d eau air mélange CTA en climatisation, TC air froid mesurée CTA en climatisation, Taux d

%grnm(rlg de 1 air freid CTA en climatisation, Position volet air neuf CTA en climatisation, Position wolet extraction CTA en climatisation, Position wolet de

m

31/05/2021 00:02 Oui 4 +19,1 +18,0 +18,5 +18,7 +22,0 Non Non Qui 75 77 76 10,1 ©3,3 Non Non Non 99 ©3,0 Non 08 08,0 MNon 909 16,0 Non 00,0 19,0 Arrét
000 Arrét 0008 0400 008 Non Oui Non Non 0100 0000 6000 0267 Non 03:34 080 600 000 800 Oui Non Non 0160 6800 00PO 0296 HNon 62:42 00O 080 860 A0 Qui Non
Non 6166 8686 ©600 06320 Non 62:27 0608 080 086 €66 Oui Non Non G160 6801 6862 6271 Non 63:36 006 606 008 088 +6B83 -601 Non 18,8 18,4 95 HNon 086 686
Non 0170 8155 056 Non Non Non 8232 0247 53 Non Mon Non Non Absent Préisent Absent Fermbe Fermfe MNon Non Non +817 18,5 18,5 78 10,4 18,3 86 610 000
osa

Figure 20: Example of data returned by the greenhouse supervisor and outcome of the Node-RED ETL flow.

The outcome of the second scenario is presented in Figure 21. In this scenario the pipeline failed three times,
and at the fourth attempt, when the connection has been restored, data collected by the sensors have been
preprocessed and sent to Cybeletech database using the API.

a) Content of the local database after connection failure occurs b) Node-RED debug message

Tempiok

Figure 21: Example of data stored in the local database in case of connection failure and outcome of the Node-
RED ETL flow.

In scenario 3 the pipeline failed five times, which is the maximum number of retries. The data is then stored
in alocal SQlite instance. After a while the pipeline is re-run and the data stored in the local database as well
as the new data were sent to Cybeletech database.

4.3.2 Simulation pipeline

4.3.2.1 Pipeline definition using Node-Red
The pipeline is implemented as a Node-RED flow as described in Figure 22. This flow allows to build the

input required by the python script called in the “Run agronomical simulation” node from the message
payload (Figure 23-A). The output of the simulation script is collected using the Branch]oin pattern, which
allows to aggregate the results of the simulation together with the logging output used for monitoring in a
single message. The node labeled “Prepare response” reads this message and gives the output its final shape
(Figure 23-B).

D6.6 - PHYSICS Application Prototype V2 Page |33

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Annotations section

S || o (R

Endpoints’ definition section

[POSH finit (] hitp

BranchJoin

[[post] frun Prepare CLA

Manual invocation section

O e s —)0

Figure 22: Node-RED flow describing the simulation pipeline.

A. Function node for input preparation

Edit function node

Delete Cancel

J 4 Properties | & B =
¥ Name Prepare CLA &~
| £ Setup || On Start || On Message H On Stop
1 msg.cla = msg.payload.value.greenhouse id + " " + msg.payload.value.specie + " " + msg.payload.value. feature; ,r
2

3 return msg;

B. Function node for output preparation

Edit function node

Delete Cancel

J#Propenies | [B =

W Name Prepare response a-

| £ Setup || On Start || On Message | ‘ On Stop

1 var input = msg.payload; -
2
3 msg.payload = {};

4

5+ if (inputfel 1= ""} {

& msg.payload.predictions = JSON.parse(input[0]);
i 1

8

g9~ if (input[1] != "No error”){

10 msg.payload.errorInfo = input[1].split{/\ri\n/);
11- }

12

13 return msg;

14

Figure 23: Node-RED function node for specification of I/0 of simulation pipeline.

D6.6 - PHYSICS Application Prototype V2 Page |34

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

4.3.2.2 Adaptation of legacy codes

The integration of the Python script in the Node-RED flow is straightforward. The main change introduced
is the adaptation of the input / output management: the inputs are collected using the sys module, which
enables to get the command line arguments passed to the python script; the output is formatted as a json
string and returned using the standard output channel (Figure 24).

Moreover, we introduced the use of the logging module to collect the logs of the script execution. This allows
us to write info, warnings and errors in the standard error channel and to collect them at the end of the
execution.

name ==

asicConfig(level=1logging.INFO}

simulation output = main{env)

out.write(json.dumps(simulation output))

Figure 24: Adaptation of Python script for simulation pipeline execution.

4.3.2.3 Pipeline deployment and testing

First, the simulation pipeline has been tested locally using the Node-RED panel of the Design Environment.
The manual invocation of the flow is done using the http request node with a specific URL. The preparation
of the input message is done using the function node (Figure 25).

The different steps of the pipeline can be monitored using the debug nodes, which output messages in the
debug window of the Node-RED user interface. In a typical run, the user provides the id of its greenhouse,
the species grown and the properties of interest. The simulation script looks for model parameters
according to the species and uses them to provide an estimation of the target properties according to
environmental conditions in the greenhouse (Figure 26). Here the climate conditions and models’
parameters are made available through plain files embedded in the docker image.

D6.6 - PHYSICS Application Prototype V2 Page |35

H2020-I1CT-40-2020 (RIA)

i PHYSICS

Admin Panel

Node Red
asnooara [
Branch: smartagr

Logs (]

version: 11.0

Manual invocation section

DR oo S

Edit function node
Delete

Properties

® Name Prepare input

Setup on Start

msg-payload = {};
msg.payload.value = {};

NonE Wl

return msg;

Cancel Done
® 3=
e
On Message on Stop

msq.payload.value.greenhouse id = "56';
msg.payload.value.specie = "orge”
msg.payload.value. feature = *rendement”;

N

Edit htip request node

Delete

% Properties

== Method POST

@ URL localnost:1880frunSim

() Enable secure (SSLITLS) connection

Use authentication
& Type basic authentication
& Username
& Password

[JEnable connection keep-alive

0 Use proxy

[JOnly send nan-2xx responses to Catch node

€ Retum a parsed JSON object

% Name Send request

PHYSICS - 101017047

Cancel Done

BIDE

Tip: If the JSON parse fails the fetched string is returned as-is.

Figure 25: Adaptation of Python script for simulation pipeline execution.

4 L imulation

R

—
e prr———

........ :

SR (] oo v
=
Enpors deen sechon

S aen 3
'J 5 [past] Anit
i

G delar
G v o
g e

T Maruat invocation = —

' — [0 mestamp ©— . prepare inpur
=

& pytham - &

i Mo o

Ca—

network

autput

sonoreaest —] ®

(2] mchiecture Localiylfowievet) | Optemizaion Gosi (Fiw Level)
/‘l
preme = 1

Figure 26: Local testing of the simulation pipeline using the Node-RED debug window.

Once the local tests passed, the simulation pipeline has been deployed using the admin panel of the Design
Environment (Figure 27-A). The steps of the deployment process can be monitored using Jenkin (Figure 27-

B).

D6.6 - PHYSICS Application Prototype V2 Page |36

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

A. Deployment of the simulation pipeline with the Design Environment

%2 PHYSICS [REGEE]

Admin Fanel
Node Red Fythan BAISc4d055171824
Dashboord [
dE5d95lcedabTad 8
eranch:
™
Logs ® BaBosebeadladan0oBazZca etar_deRl1All-oedt- 7§50

BARGEIEREIAaN0 46220 HiSGRiOREd acs wadd asez

/2123, 148
a

wjafanae
a0 o

wjafaa e
e

[s)
wialaio o
N o

10)16[23, 256

652d326THITTLSSedbT0 o

Jorikins build has stortodink to jankin job

B. Deployment monitoring using Jenkins

Tableaudebord » TEST-mutti + smarAgri »
* Up . . .
Pipeline smartAgri

9, s
| . Full project name: TEST-mult/smartdgrl

257 Rocan: Changes

Stage View

Testing Chack Push Base BildCuem PuhCumom
condition <ondiion image Image lager Depley
@ Fipeline Symax
G4ms 828ms amin s oms 265 7
(hve . 3
G Wistoriquedesbulds tendance a
o um
om ouz0 = . 2min 255

Figure 27: Simulation pipeline deployment using the Design Environment (A) and deployment monitoring with

Jenkins (B).

Once the deployment is completed, the Design Environment allows us to test the workflow as FaaS. The
input of the pipeline can be specified via a form and the output is provided in a table when execution
succeeds (Figure 28).

R =RYSelfll ~dmin Panel suios GRAPHS IMAGEWMPORT § Théophile Lohler £

Admin Parel

Node Red

ashboard [

Branch

Logs

Put JSON for porometers.

Paran o v
greenhouse_id 50

o]
parar parar
specie orge
feature rendement
+

Gheck automaticelly unfil success - requests: 9, updated at 41552 P

Checkresuit Activation ID: 1055642000214b0095842a002{eb00be

Run_simulation_smortAgri_21703006-0051-48c1-8108-74d7c80409et json 1065642002140
Params
foature rendement

gresnhouse_id | 50

spocio orge

Result

srrorinfo

prodictions

Version: 1.0

Figure 28: Local testing of the simulation pipeline using the Node-RED debug window.

D6.6 - PHYSICS Application Prototype V2 Page |37

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Moreover, the admin panel provides access to detailed logs in which the debug messages defined in the flow
are made available (Figure XX).

Put JSON for parametars.

g PHYS
AdminPall] 2023-10-20T1415:44.9260256742 stdout: ",

K 2 stelout: » 22 start fuse/ s
*2023-10-20TI415:44 9260268742 sldout: » node SNODE_OPTIONS node_meodules/node-red/red js SFLOWS \'--userDir\" \"/data\",
"2023-10-20T1415:44 9260258742 stdout:”,
*2023-10-20T1415:45.50361042 stclout: 20 Oct 141545 - [info] *,
*2023-10-2071416:45 50361042 stelout:,
P 50361042
*2023-10-20TI416:45.50361042 stelout:
*2023-10-20TI15:45 50361042 stefout:”,
*2023-10-20T1415:45 5042726332 stlout: 20 Oct 141545 - [info] Made-RED versior: v22.2,
*2023-10-20T1416:45, 5044421152 stdout: 20 Oct 1415:45 - [info] Nodejs version: V1419,
*2023-10-20TI215:45 5045257852 stdout: 20 0ct 1415:45 - [infe] Lnux 6.018-200fc 36,06 _64 x84 L',
*2023-10-20T1415:45 7716538017 stdout: 20 Oct 1416:45 - [info] Loading palette nades’
*2023-10-20T1415:45 6776883192 stdout: 20 Oct 1415:46 - [infa] Dashboard version 323 started at [ul’
'2023-10-2071415:46. 7878594362 stdout; 20 Oct 14715:46 - [info] Settinge file : fdata/ssttings js’,
*2023-10-2071415:45.78832652Z stdout: 20 Oct 1415:46 - [info] Context stere : ‘default’ [medule=memory],
*2023-10-207115:45 7888046792 stdout: 20 Ot 1415:46 - [info] user directary : [data’,
*2023-10-20T1415:45.7899906 482 stclout: 20 Oct 141546 - [warn] Proj seditor
*2023-10-20T1415:45 7895031832 stdoul: 20 Oct 1415:46 - [infe] Flows file [data/flows json,
*2023-10-20T1416:46 BUI09BIBHZ stelout: 20 Oct 14:15:46 - [info] Server now running at hitp:[/127.0.018080/",
*2023-10-20TI415:46 8131421792 stclout: 20 Oct 1431546 - [info) Starting flows’,
*2023-10-2071415:46 B20BIGA562 stdout: 20 Oct 1415:46 - [info| Started flows”,
*2023-10-20TI215:48 1167553562 stdout: 20 Oct 141548 - [info] |debug‘Blut response] N
2023-10-20T1415:48. 1167653667 stdout. [,

Node Red

Dashboar

Bronch: s

Logs

*2023-10-20TI415:48 1167553662 stdout: [{\'id\" \ 50\, | facture\” \'rendement\’, \specie\ \"orge\", 'value\ 731]] ",
16:15:52,0) 2023-10-20T1415:48.167553562 stdout: INFOTootloading targ: from file Just/: redfinput_datofogro_models_setupgeojson..\\n'+,
'2023-10-2071415:48.1167553562 stdout INFOroot...Done. 3 have been loaded.} \n”,
t *2023-10-2071415:48. 1157553562 stdout: |,
"2023-18 "2023-10-20TI415:48.17251722 stdout 20 Oct 1415:48 - [info] [debugPrepared respanse] .
2623+ *2023-10-20TI416:48.117351722 stdout. {7,
"2023-18| *2023-10-2071415:48 117351722 stdout predictions: [{ idt 50, feature: rendement, spacie: ‘orge’, value: 731} |,
"2023-18 "2023-10-20T1416:48.117351722 stdout ermorinfo: [,
"2023- *2023-10-20T415:48.117351722 stdeut INFOrootioading target areas from file /ust/stcfnode-red/input_datofagro_models_setup.geojson...’,
"2023-181 "2023-10-20T1415:48.17251722 stdout INFOToot..Done. 3 have been loaded,
"2023-! ‘2023-10-20TI416:48.11735172Z stdout ™,
2023~ '2023-10-20TI415:48 117351722 stdout |,
"2023-18 “2073-10-20T1416:48.117351722 stdout
2023
20231

2023165

Figure 29: Local testing of the simulation pipeline using the Node-RED debug window.

4.3.3 Calibration pipeline

4.3.3.1 Pipeline definition using Node-Red

The pipeline is made up of three main steps:
1. Generation of a design of experiment. In its simplest form it consists of a grid where each node
represents a model parameter set.
2. Running the simulation pipeline for each parameter set and evaluating the results regarding in situ
observations.
3. Clustering of the model parameters set based on the evaluation with the objective of identifying
groups of parameters sets which reproduce part or full plant behavior.

We propose three implementations for this pipeline:

1. The first implementation is used as a baseline for implementation and testing of the different
components required. All the steps are embedded in one flow and the parameter set evaluations
(step 2) are run sequentially.

2. Inthe second implementation we seek to take advantage of the FaaS approach by parallelizing the
run of the simulation pipeline. All the steps are embedded in one flow and the parameter set
evaluations are run in parallel using the split and join pattern.

3. In the third implementation we seek to integrate multi-processing at the function level: the
parameter set evaluations will be distributed in FaaS mode as in the second implementation, but we
add a level of parallelization with each function being able to distribute the evaluations over the
processors available on the pod. This distribution is enabled by the split and join pattern with
specific parametrization.

The first and third steps of the pipeline should not be parallelized since they are respectively input
generation and output gathering and analyzing. The second step is highly parallelizable since each
simulation can be run and evaluated independently from the others. In the first version of the flow each
step is defined as an independent exec node triggering a dedicated Python script. The communication
between the nodes is ensured by function nodes, writing the output of the previous node in the input field
of the message retrieved by the current node (Figure 30).

D6.6 - PHYSICS Application Prototype V2 Page |38

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Figure 30: Node-RED flow describing the calibration pipeline.

To take advantage of the split and join pattern we first defined a dedicated parameter set evaluation flow
which takes as input a vector with every element being a node of the design of experiment. The formatting
of the input vector as a string is operated by a dedicated node. This input string is then decoded by the
calibration script, implemented in Python and triggered using the exec node (Figure 31).

Dl | oo [l [vt Gon ooy
ey ——
[pasi] firit hitp
a7 11

Figure 31: Node-RED flow allowing to run calibration from an array of nodes such as generated by the Python
script for experimental design generation.

Then we can call this calibration flow using the split and join node. The routine allowing to prepare the
input for the calibration script from the message sent by the split and join node is embedded in the
calibration flow (Figure 32). On the other hand, the output of the split and join node needs to be aggregated
before being sent to the clustering node (Figure 32). The parametrization of the split and join node is

D6.6 - PHYSICS Application Prototype V2 Page |39

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

straightforward and can be done using the Node-RED UI. It required the URL of the function to run in
parallel (innerActionURL field in the node setup) which in our case is described by the calibration flow and
the number of splits to perform (splitsize field in the node setup).

The split and join pattern allow us to take advantage of FaaS approach to run the parameter set evaluation
in parallel. This pattern also includes an option to distribute the evaluations over the processors of a server.
In the third implementation of the calibration pipeline, we combine FaaS and multiprocessing.

To achieve this double parallelization, we adapt the dedicated parameter set evaluation flow used in the
second version. The main difference lies in the calling of python script describing the parameter set
evaluation procedure. In the second implementation the script was run using an exec node (see node called
Run calibration, XXXXXX31) while here the script is run in parallel over the processors thanks to the split
and join pattern. The parameterization of the split and join node is very straightforward with the command
to run the script being specified through the Shell script field of the subflow. We also need to specify that
we want to run it using multiprocessing (field execution of the subflow) and the number of evaluations we
want to run on each processor (field splitsize of the subflow, Figure 33).

To ensure consistency between the FaaS and the FaaS-multiprocessing pipeline we added a formatting
sequence after the split and join node.

To use the FaaS-multiprocessing version of the calibration pipeline we only need to change the
innerActionURL field in the split and join pattern so that it points on the multiprocessing version of the
parameter set evaluation function (Figure 32).

1 PuTORComuRe

Figure 32: Calibration pipeline as a Node-RED flow using the split and join pattern for parallelization.

D6.6 - PHYSICS Application Prototype V2 Page |40

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

R (o == -} Cptriain Gou P Lo

Figure 33: Node-RED flow allowing to run parameter set evaluation from an array of nodes such as generated
by the Python script for experimental design generation with parallelization over processors.

4.3.3.2 Adaptation of legacy codes

To take advantage of FaaS the three steps of the calibration pipeline should be run separately. In this way
each step could be run as a function with optimal placement according to resources needed and the
simulations run during the calibration process could be parallelized using the split and join pattern. The
legacy codes, consisting in one main script has then been split into three distinct scripts with ad-hoc I/0
management and logging.

The script for experimental design generation has been implemented based on the legacy codes describing
the calibration pipeline. It takes as input two lists, one describing the climate variables to use in the model
and the other the way these variables are post-processed (Figure 34). The parameters to evaluate depend
on the target agronomic variables, which are defined in the file referenced as AREA_FILE (read by the script
for parameter set merit evaluation, Figure 35.A).

A. Main for Experimental design generation B. Input formatting function

ng.INFO)

erimental design))

Figure 34: Adaptation of legacy codes for experimental design evaluation.

The script for parameter set merit evaluation integrates a main function which run the simulations with
one or several parameters sets and perform the estimation its merit according to in situ measurements
provided in the file referenced in the code as AREA_FILE (Figure 35.A). The parameter set list is built from
the string provided as input using the prepare_input function (Figure 35.B).

D6.6 - PHYSICS Application Prototype V2 Page |41

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

A. Calibration main function B. Parameter sets formatting

ring[ind][start_ind: (len(input_string[ind]) - 1)]

evaluation = main enta ets) input_string[ind]) - 2)]

sys.stdout.write(json.dumps sal
ut_string[ind]) - 1)]

Figure 35: Adaptation of legacy codes for parameter set merit evaluation.

The clustering of parameter sets according to their merit is a novel feature of the calibration pipeline
implemented in PHYSICS. It allows to build a probability distribution for each target agronomic features,
increasing the reliability and robustness of the method. The script integrates a function for building the
dataset provided as input to the clustering algorithm from the output of Splitjoin node (Figure 36).

4.3.3.3 Pipeline deployment and testing

First, the calibration pipeline has been tested as a function to ensure that the /O management between the
different nodes of the pipeline is correct. Moreover, this flow will provide a baseline for performance
evaluation.

Then we deploy (Figure 37.A) and test the parameter set evaluation flow both locally and using the Design
Environment (Figure 37.B) to ensure that messages sent by the split and join node will be handled correctly.

Once the parameter set evaluation flow has been validated, the FaaS parallelized calibration pipeline has
been tested. In real condition, this pipeline will be triggered by a Cybeletech engineer when needed and
there is no gain in deploying it as a function. The testing has then been performed using the Node-RED panel
of the Design Environment with parameter set evaluation being split and run as FaaS.

A. Dataset construction function B. Main function for Parameter set selection

Figure 36: Adaptation of legacy codes for parameter set selection.

In the running example depicted in Figure 38, a parameter set grid including 27 nodes is generated by the
Generate experimental design node (Figure 39). The string returned by this node is parsed in order to create
an array of parameter sets which is sent to the SplitjoinMultiple node. The nodes are divided into three

D6.6 - PHYSICS Application Prototype V2 Page |42

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

groups and three functions are invoked as FaaS$, each processing one of the groups (Figure 40). The three
evaluations outputted by the SplitjoinMultiple node are aggregated in a single string which is sent to the
Run clustering node. The parameter sets are sorted according to their score and the best parameters sets
are returned (Figure 41).

The same experiment has been conducted for the multiprocessing version of the parameter set evaluation
with deployment and testing of the multiprocessed flow.

4.3.4 Concluding remarks

The source material for the prototype as described here can be found on the PHYSICS project internal Git
repository, here:

https://repo.apps.ocphub.physics-faas.eu/PHYSICS /test/src/smart agriculture/

Access to this repository is limited to members of the PHYSICS Consortium but may be granted upon
request.

A. Deployement of the parameter set evaluation function

Run_callbration e67808ceeb3bc29a v -~

Document ID URL Action name EBuiltdate

registry.apps.ocphub.physics-

Run_calibration_smartAgri_aaa43779-0176-41bf-984a-

10/13/23,10:04

652819177513 TbS6edbAD | s eufcustomfsmartAgri10 bedd87768Ifc json AM [u}
e o aiird i rton smetson B DS e | g
sssasseosedsosscn ST TP B AT S0 403 be 0z 449
553B0d54e44cdBe531dalE1T ;:2:::f:zz:Di;FShr:Z.rT:;?l.z:— :;;_Ec;:lflg;::\;r;‘:murtAgrl_34]4]93f—0490—4d6b—5a]e— :\0&25,’23 ms Iﬁ
553908cEe44cdac531dalEln registry.apps.ocphub.physics- Run_calibration_smartAgri_e4a3d7f0-bd0c-4fbl-bela- 10/25/23, 2:23 E

B. Testing of the parameter set evaluation function

Run_calibration _smartAgri_ed4a3d7i0-bd0c-4ibl-bela-c538fafdaBaa.json

Params

input | [object Object],[object Object] <

Result

faas.eu/custom/smartagri:41

c538faf4adaan json

3148143b052c463388143b052ccE3302

"M Tsumt,

"net_radiation”: "sum",

"prec”:

"score”

predictions {
-

"sum",
1.3901066630534906

"sum",

"net_radiation": "min",

"prec”:

"score”

"sum",
5.3045410908518521

D6.6 - PHYSICS Application Prototype V2 Page |43

PM

Figure 37: Parameter set evaluation flow deployment (A) and testing (B) using the Design Environment.

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/smart_agriculture/

H2020-I1CT-40-2020 (RIA)

Edit function node

Delate

O Properties o 2=
W hame Prepare input &~
© Sctup On Start On Mecssage On Stop
1 msqg.payload - {};
2 msg.payload value = {}:
3 msg.payload value. climate varisbles net radiation
4 msg.payload.value. aggregator = “sum,
5
& return msg;
Manual invocation section
[" N
Oy ——— e

PHYSICS - 101017047

Send request

Figure 38: Flow for local invocation of the split and join calibration pipeline.

Input for parameter sets generation

211172023 11:57T:568 node: experimental design input
ad : Object

robject

*value: object
climate wariables: "TM,prec,net radiation®
aggregator: "sum,min,max"

Output of experimental design node

211172023 11:57:58 node: experimental design output
3 : string]1458]

", "prec”: "sum", "net_radiation®: “"sum"},
{"TM": "sum", "prec": “sum™, "net radiation": "min"},
{"TM": "sum", "prec": “sum®, "net radiation": "max"}.
{"TM": "sum", "prec": "min*, "net radiation": "sum"},
{"TM": "sum", “prec": “"min”, "net radiation": "min"},
{"TM": "sum", "prec": "min”, "net radiation": "max"}.
{"TM": "sum", "prec": "max", "net radiation":
{"TM": "sum", "prec": “"max”, "net radiation": "min"
{"TM": "sum", "prec": "max", "net radiation":

. "prec": . "net_radiation":
", "net_radiation": “"min"

. "net radiation"

"net
"net_radiation"
. "net_radiation": "min"},
", "net radiation": "max"}.

Logs of experimental design node

211172023 11:57:58 node: experimental design logs

msg

*stringf7d]

d : string|74]

INFO:root:Generating parameter sets...
INFO:root:27 have been generated.

Figure 39: Input, output and logs of the Generate experimental design node for the running example.

After having described the first version of the “smart agriculture Prototype”, we now look back at the initial
functional specifications that were defined in section 3.3. For each of the Functional Specifications, we
discuss if and how the specifications are fulfilled, and - in case of a partial fulfillment - the work that remains
to be done in the next iteration(s) of the prototype. The fulfillment of the functional specifications
introduced in Table 3 is discussed in Table 6.

D6.6 - PHYSICS Application Prototype V2 Page |44

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Table 6: Fulfillment of the Functional requirements for the Smart Agriculture use case.

Code Functional Requirements
FRS-UC3-01 Fulfilled. A first script for data collection has been integrated in the Node-
RED ETL flow.

FRS-UC3-02 Fulfilled. The pipeline runs if the docker is up with a user-defined time step
and is resilient to connection failure.

FRS-UC3-03 Fulfilled. A first deployment has been performed on Cybeletech by using the
PHYSICS Design Environment. Moreover, the image built during the
deployment phase has been pull and used to deploy the data collection
pipeline.

FRS-UC3-04 Fulfilled. The simulation and calibration pipelines can be invoked using the
test panel of the Design Environment or the endpoint exposed by the Node-
Red flow.

FRS-UC3-05 Fulfilled. The simulation and calibration pipelines have been deployed as
Faa$ using the DE and benefits from annotations and patterns developed in
PHYSICS.

FRS-UC3-06 Fulfilled. The split and join pattern has been integrated in the calibration
flow in order to parallelized the runs, allowing to reduce the runtime.

In the smart Agriculture Use Case, three applications have been adapted and tested using the components
developed in PHYSICS. The data collection pipeline, adapted during the first period, takes advantage of the
Edge-ETL pattern to increase the reliability of the process and reduce the adaptation time from one
greenhouse to another. The deployment on the edge is facilitated by the Design Environment interface
which allows to build and retrieve an image embedding all the required components. The simulation
pipeline has been adapted so that it can be easily deployed and run as FaaS, significantly reducing the
infrastructure costs. Finally, the calibration pipeline has been adapted to integrate the split and join pattern,
which enables high level of parallelization using the FaaS paradigm. These two last applications have been
successfully deployed in the cloud and tested using the Design Environment.

D6.6 - PHYSICS Application Prototype V2 Page |45

H2020-I1CT-40-2020 (RIA)

232073 15TSH rode: spltin s

net_radiation: “sus®
12 object

™: “sum®

prec: “sum’

net_radiation: “min

cre

LANErACTIONURL: "ATTpS://OpEnwhisk.apps. 0CpHUD . PhyS1CS -Ta8S €0/ap1/v]/ManesDaCes/ /3CTLONS/RUn cal1bration

Worker #2

PRS-

Worker #1

“TH,prec,net_radiation sus,min, nax"

- payload: opject

BCtivationld: *08Cd629cBSA943B560626CHS0943956D"

» annotations: array|s

Guration: 84001
end: 1798564362598

> logs: array[75]
Rus_calibration SsartAgri 34141931-0430-4d6b-8ale-7a12BeSr5c0L. Json nase:
nanespace; *guest
he fals

* logs: array(75]
Run_calibration SmartAgri 34141931-0490- 406b-8ale-Tal28e5rScol. | son”

nane.
nanespace: "guest”

pubLish: false

~predictions: array[9]

- predictions: array[9]

prec: “sum”

prec: “sum®
scors: 1.3901966639534985

sum
net_radiation: ‘min

prec: “sum® prec; “sum®
score: 0,3045419999518521 score: 0.7476865556581754

+2: ob,
V3
ra

: object
+8: object

size: 6

status: *success*

start: 1708564278628

uccess: true
subject: “guest”

1760564278593

subject; “guest”

version: *8.0.3"

version: "0.8.3"

PHYSICS - 101017047

"174239c2- 627 -3ed5 - 688 - 325 ce413c104 : 45903 xUERSNZOv2BLUL4RYFpL PhccOFoud 1LdAsMGRU4V riZIdhORZGULIGT F
smartAgri_34141931-8496-4060-83le-7a128e515CH1. 1500

Worker #3

1709564464724
array[75]

“Run_Calibration SeartAgri 34141931-0490-4d6b-Bale-7al28e515¢01. json’
namespace: "guest”

publiah
= response: object

false

- result: object
~predictions: array(9
~0: ab;

net_radiation
prec: “sum
score: 1,§52814268338113

=1: abje

net_radiation: “min®
prec: “sum
scare: B,6921545619407781

start: 1700564278504
subject: “guest”
versien: "0.8.3"

Figure 40: Output of the Generate experimental design node formatted for the SplitjoinMultiple node and
output of each worker. In this context a worker is an instance of the parameter set evaluation function

deployed and invoked as Faas$.

D6.6 - PHYSICS Application Prototype V2 Page |46

H2020-I1CT-40-2020 (RIA)

Brut SplitJoinMultiple output

211112023 1220121 node: splitjoin output

PHYSICS - 101017047

SplitjoinMultiple output formated for clustering

21112023 12°01:21 node: clustasing input

Object msg.cla : string[1851]
~abject “[{TM: sum, net_radiation: sum, prec: sum, score: 1.39018668630534986},
~value: array[3] {TM: sum, net radiation: min, prec: sum, score: 0.3045419990518521}F,
) {TM: sum, net radiation: max, prec: sum, score: B.29954778629887885},
v0: object {TM: sum, net radiation: sum, prec: min, score: 2.043490818766501},
wresult: abject {TM: sum, net_radiation: min, prec: min, score: B.48930878585632214},
. b TH: sum, net radiation: max, prec: min, score: B.8846742372158805},
wpredictions: array(9 {
L : vl {TM: sum, net radiation: sum, prec: max, score: 1.3379380314525164},
*0: object {TM: sum, net radiation: min, prec: max, score: 0.42483982778756537},
TM: "sum” {TM: sum, net radiation: max, prec: max, scaore: B.7996883168129649},
net radiation: “sum" {TM: min, net radiation: sum, prec: sum, score: 1.652814268338113},
- : {TM: min, net_radiation: min, prec: sum, scare: B.6921545619487781},
prec: “sum® {TM: min, net_radiation: max, prec: sum, score: B.8566379863776183},
score: 1.3901868038534906 {TM: min, net radiation: sum, prec: min, score: 1.7549554587525567},
“1: obj {TM: min, net radiation: min, pre i score: B.8512159708963796},
i object {TM: min, net_radiation: max, pr..."
TH: "sum"
net_radiation: "min"
prec: "sum”
score: 0.3045419998518521
»2: object
»3: pbject
v4: object
»5: object
»6: object
V7t object Output of clustering node
» 8t object 210112025 1220122 node: clustering output
size: 694

msq.payload : string[343]

status: "success"

"sum", "net_radiation” “sum", "score”: "6.3045419998518521"},

success: true “sum", "net_radiation’ "sum", "score": "0.29954778629887885"},
-1: object "sum”, "net_radiation’ "min®, "score": "0.4B938878505632214"},
“sum", "net radiation": "max", "score": "0.42493902778756537"}]"

= result: object
wpredictions: array(9]

" 0: object Logs of clustering node
TH: "min"
net radiation: "sum® 2111112023 12:0122 made: clustering logs
prec: “sum* msg payload : sting[975]
score: 1.652614268338113 ~ string[975]
w1: pbject INFO:root:Building dataset for clustering...
TM: "min® INFO:root:...Done. (27, 7}
INFO:root:Clustering parameter sets...
net_radiation: "min" INFO:root:6 clusters have been generated.
prec: "sum® INFO:root:Collecting best parameter sets...
INFO:root:4 have been retained.
score: 0.6921545619487781 INFO:root:[{*TM': 'sum', 'net radiation’: 'min', 'prec': 'sum', 'score': '.3045419998518521'},
»2: object {'TM': 'sum', "net_radiation': 'max', ‘prec': 'sum', ‘score': '0.29954778629887885'},
R . {'TM': 'sum', "net_radiation '‘min', 'prec': 'min', ‘'score': '0.48930878505632214'},
¥ 31 object {'TM': 'sum’', "net_radiation': 'min', 'prec': 'max', 'score': '0.42493962778756537'}]

vd: object
»5: object
»6: object
»7: object
»8: object
size: 6B9
status: "success"
success: true
*2: object
*result: object
=predictions: array(9]
=0: object
TH: "max"

net_radiation:

sum

prec: "sum
score: 1.3957930149248599
*1: object
TH: "max"

net_radiation: "min

prec: sum
score: 0.7476B65558581754
»2: object
»3: object
v 4: phject
v 5: pbject
»6: ohject
v 7: object
»8: object
size: 690
status: "success"

success: true

Figure 41: Raw output of the SplitJoinMultiple node and formatted string used as input of the Run clustering
node, output of the clustering and corresponding logs.

D6.6 - PHYSICS Application Prototype V2 Page |47

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

5 CONCLUSIONS

This document accompanies the delivery of the very first three demonstrators that have been developed to
run on top of the PHYSICS Platform. The Smart Manufacturing use case demonstrates a quality control
scenario, the eHealth use case demonstrates three scenarios (inference, phenotyping and synthesis), while
the Smart Agriculture use case focuses on data collection pipelines, all using Node-RED flows to model these
processes as a series of functions. These demonstrators are the final work of experimenting with the
different use cases in a “FaaSified” manner using the PHYSICS Platform.

This deliverable describes the adaptation of the application components in the PHYSICS environment, the
functional requirements per each use case and the usage of the PHYSICS tools. The prototypes are
documented using the design environment of PHYSICS and they all represent different utilization of the
developed PHYSICS components.

All three use cases have finalized their experimentation activities, meaning that the flows have been created
for all their scenarios, and they have been tested locally. Services have been deployed from these flows, and
the services have also been tested. The outcome of the experimentation (and thus of Task 6.3, Use Cases
Adaptation and Experimentation) is a total of 8 scenario services across the 3 use cases, all of them ready
for evaluation in the context of Task 6.4, Use Cases Evaluation).

D6.6 - PHYSICS Application Prototype V2 Page |48

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

6 BIBLIOGRAPHY

Franke, N., Hennecke, A., Gezer, V., Harms, C., op den Akker, H., Pnevmatikakis, A., ... Touloupou, M. (2022).
D6.4 - Application Scenarios Definition V2. PHYSICS Consortium.

Kousiouris, G. (2023). D3.2 - Functional and semantic continuum services design framework Scientific Report
and Prototype Description V2. PHYSICS Consortium.

Mamelli, A., Costantino, D., Salomon, ., Tomas Bolivar, L., Castillo Nieto, A., & Sanchez Fernandez, C. (2023).
D6.2 - Prototype of the Integrated PHYSICS solution framework and RAMP V2. PHYSICS Consortium.

op den Akker, H., Pnevmatikakis, A., Kanavos, S., Labropoulos, G., Bekiaris, D., Babalis, P.,... Harms, C. (2022).
D6.5: PHYSICS Application Prototype V1. PHYSICS Consortium.

Patino, M., Azqueta, A., Mengual, L., Li, T., Kousiouris, G., Tsarsitalidis, S., . . . Pelegr. (2022). D2.5 - PHYSICS
Reference Architecture Specification V2. PHYSICS Consortium.

D6.6 - PHYSICS Application Prototype V2 Page |49

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

DISCLAIMER

The sole responsibility for the content of this publication lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the EASME nor the European Commission is
responsible for any use that may be made of the information contained therein.

COPYRIGHT MESSAGE

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are
free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform,
and build upon the material for any purpose, even commercially) under the following terms: (i)
attribution (you must give appropriate credit, provide a link to the license, and indicate if changes were
made; you may do so in any reasonable manner, but not in any way that suggests the licensor endorses
you or your use); (ii) no additional restrictions (you may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits).

D6.6 - PHYSICS Application Prototype V2 Page |50

