B Ref. Ares(2022)4051239 - 31/05/2022

%2 PHYSICS

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

D6.5 - PHYSICS APPLICATION PROTOTYPE V1

Lead Beneficiary

ISPRINT

Work Package Ref. WP6 - UC Adaptation, Experimentation, Evaluation
Task Ref. T6.3 — Use Cases Adaptation & Experimentation
Deliverable Title D6.5 - PHYSICS Application Prototype V1

Due Date 2022-05-31

Delivered Date 2022-05-31

Revision Number 3.0

Dissemination Level Public (PU)

Type Demonstrator (DEM)

Document Status Release

Review Status

Internally Reviewed and Quality Assurance Reviewed

Document Acceptance

WP Leader Accepted and Coordinator Accepted

EC Project Officer

Mr. Stefano Foglietta

H2020 ICT 40 2020 Research and Innovation Action

* X %
¥
* *
* *

* o Kk

This project has received funding from the European Union’s horizon 2020 research and innovation programme

under grant agreement no 101017047

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

CONTRIBUTING PARTNERS
Partner Acronym Role!? Name Surname?
iSPRINT Lead Beneficiary Harm op den Akker, Aristodemos
Pnevmatikakis, Stathis Kanavos,
George Labropoulos, Dimitris
Bekiaris, Panos Babalis
FTDS André Hennecke, Niklas Franke
CYBE Théophile Lohier
DFKI Volkan Gezer, Carsten Harms
UPM
INNOV
GFT
REVISION HISTORY
Version Date Partner(s) Description
0.1 2021-09-07 | iSPRINT Initial setup of document and initial ToC suggestions
0.2 | 2022-04-12 iSPRINT Updated ToC
0.5 | 2022-05-02 | iSPRINT Version for internal progress update
1.0 | 2022-05-04 | Isprint DFKI | Integrated contribution for Smart Manufacturing Use
CYBE Case (DFKI), initial contribution for Smart Agriculture Use
Case (CYBE)
1.1 | 2022-05-13 | iSPRINT Alignment of design- and prototype sections between 3
use cases.
1.2 | 2022-05-16 | iSPRINT, DFKI, | Updated Smart Manufacturing sections, added overview
CYBE of PHYSICS architecture, executive summary and

conclusions, update Smart Agriculture sections.
2.0 2022-05-20 A UPM DFKICYBE | Internal review of document
3.0 2022-05-27 | INNOV GFT QA of the document.

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance
2 Can be left void

D6.5 - PHYSICS Application Prototype V1 Page |2

H2020-I1CT-40-2020 (RIA)

PHYSICS - 101017047

LIST OF ABBREVIATIONS
Term Explanation
BPMN Business Process Model and Notation
CLA Command Line Argument
CSP Cloud Service Provider
CYBE CybeleTech
D Deliverable
DEM Demonstrator
DFKI Deutsches Forschungszentrum fiir Kiinstliche Intelligenz [German Research Centre
for Artificial Intelligence]
ETL Extract, Transform, Load
FaaS Function as a Service
GPU Graphics Processing Unit
HTTP HyperText Transfer Protocol
iSPRINT Innovation Sprint
JSON JavaScript Object Notation
NRT Near-Real-Time
ow OpenWhisk
QC Quality Control
RAMP Reusable Artefacts Marketplace Platform
RIA Research and Innovation Action
SaaS Software as a Service
T Task
WP Work Package

D6.5 - PHYSICS Application Prototype V1

Page |3

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

EXECUTIVE SUMMARY

The goal of this deliverable, which is of type Demonstrator, is to accompany the three demonstrators built
for the three pilots: Smart Manufacturing, eHealth, and Smart Agriculture and document the internal
prototype milestone of the project.

These use-cases cover three very distinct application scenarios (i.e., manufacturing, health, and agriculture)
that cover three major areas of European everyday life and economic activity. We thus demonstrate the
benefits of the PHYSICS platform in a broad range of application scenarios and show how to improve agility
and adaption by applying more advanced computing models and cover a wide and diverse range of available
edge resources (e.g., small [oT sensors, mobile devices to powerful Edge nodes).

The current document D6.5: PHYSICS Application Prototype V1 is the first of a series of 2 deliverables that
mark the “Version 1” and “Version 2” releases of these prototypes, and are being produced in the context of
Task T6.3: Use Cases Adaptation and Experimentation.

In this document you will find, the following elements:

e A brief overview of the PHYSICS Project and the PHYSICS Platform - in order to provide the
necessary context for the remainder of the document we describe the high level aims of the PHYSICS
project, as well as the high level PHYSICS technical architecture, consisting of Infrastructure Layer,
Continuum Deployment Layer, and Application Developer Layer - the last of which allows the
development of the three prototypes as described in this document;

e An overview and short description of design decisions that were made in the process of producing
the demonstrators for the three use cases. For all three use cases we provide a short summary of
their aims and objectives, and highlight the major Functional Requirements to be fulfilled either in
this version, or the next prototype.

e Descriptions of the three demonstrators produced, covering the use cases of Smart Manufacturing,
eHealth, and Smart Agriculture. For each use case, it is described how Node-RED flows are designed
and use to design the application flow, and how the use cases are deployed in the PHYSICS Platform.
For each use case, the fulfillment of functional requirements is discussed, as well as a roadmap
looking forward to the next phase(s) of development.

The next version of this deliverable is D6.6: PHYSICS Application Prototype V2, which is due to be released
in M34 of the project (October 2023).

D6.5 - PHYSICS Application Prototype V1 Page |4

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

CONTENTS
B 0 U ¢ 0T L (i o) o U 8
1.1 Objectives Of the DeliVErable..... s sssssssssssssssssaness 8
1.2 Insights from other Tasks and DeliVErables ... sssesssss s sssssssssss s ssees 8
1.3 N DT 10 0 9
2 Overview Of PHYSICS ATCRITECTUTIEovvieeeeecereeseesseesseessesssessseessssssssssesssess s sssesssesssessssssssssssssssesssessssesssssssessasssasessnes 10
2.1 The PHYSICS PIrOJECT ...t sssssssssssssssssssssssessssssssss s ssssesssssss s sssssassssssessssssssssssssssssanes 10
2.2 BaSIC ATCRITECTUT ..ouvivescreirsisisss s 10
3 Use Cases: OVEIVIEW ANd DESIZIN....rieeriereireesseeseesseesesss st sessse e ssssssess s s s s sbsss s ssssssssssssas 13
31 Use Case: “SMart ManUFaCtUTING”oeeeereerneeeeeseessesssessssesssesssessssssssssssssssesssessssssssesssesssessssssssssssesssassssssssees 13
31.1 N2 0013 TP 13
3.1.2 DESIGN & SPECIICATIONS ..oveereerrenieeeeteet sttt esse s ss bbb b 13
3.2 USE CaSe: “EHEAITN ...t eer s s s 16
3.21 N2 01 01 £ PPN 16
3.2.2 DESIGN & SPECIICATIONS c.oveereerrenieeeeteet sttt sse e es b ss bbb b 16
3.3 Use Case: “SMArt AGLICUITUIE” ... veueueerreesreesseesseeseeessessesssesssesssesssessseesssesssssssesssessssssssesssessssssssssasssasesssesssessasees 18
3.3.1 N2 01 01 £ PP 18
3.3.2 DESIZN & SPECIICALIONS c.uverrerrermeeseeseersrersress s sess s s s s 19
L 8 W e 1w 17 I D TR0 015 () o PP 20
4.1 Use Case “Smart ManUfaCTUIING”oeeeeereeressesssesssesssesssesssessssssssssssssssesssessssssssesssessssssssssasssssesssesssessssees 20
411 Quality CONETrol PHYSICS FIOW ...ouiuieriereereeeeeseeseiseeeeesesssessesssessess s ssssssessss st ssssse s ssssssssssssesas 20
4.1.2 Concluding remarks for the first version quality control inference service........oomemeeneeennees 23
4.2 USE CaSE “EHEAITN ...ttt r s s s s 24
421 The eHealth PHYSICS flOW......risssseesssssssssssssssssssssessssssssssssssssssssssssessssssssssssssssssssssssssssssesssns 25
4272 Experimentation on the eHealth PHYSICS flOW ... ssssssessseesnees 27
4.2.3 eHealth use-case local design environment inStrUCtIONSc.cccureereereereeneesreeseeseeeesseeeessessesseesseenns 28
424 Concluding remarks fOr firSt VEISION ... ssessesssesssesssssssssssessssessesssssssesssssssssssssssssssssssssees 30
4.3 USE CaSe “SMArt AGTICUITUIE ..c.ouuieeeeeecereesseesseeeseeesseesse s s s sssess bbb s ss bbb 31
431 Pipeline definition using NOAE-Red ..o seessesssessseessesssssssesssesssssssnees 31
432 Adaptation Of [€GACY COUES ...t sees bbb 32
4.3.3 Pipeline testing using enviroNMent dESIZN ... eeereereereemreeeesseeses s seessesssessesssessesssssssssssens 34
434 Concluding remarks fOr firSt VEISION ...t sesssessss st sssssesssesssesssessssssssssssssssesssnees 35
(000 3 0] LTS3 0 3 1] PPN 36
1210 110 =3 ¢ 1 0] 2P PION 37

D6.5 - PHYSICS Application Prototype V1 Page |5

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

TABLE OF FIGURES
Figure 1: Timeline for T6.3 including dependencies between the various relevant deliverables.cuc.u.... 8
Figure 2: The PHYSICS “Minimum Viable Platform” Prototype Architecture. ... 11
Figure 3: BPMN Diagram of Scenario #2 of the Smart Manufacturing Pilot. ... 15
Figure 4: Screenshots of the Healthentia mobile appliCation. ... 16
Figure 5: Overview of the Cybeletech solution for greenhouSEsS. ... 18
Figure 6: Smart Manufacturing Scenario #2, Prototype Node-RED FIOW.......ccoenenrinneenneensesneseseeseessessesssesnnes 22
Figure 7: “Check Certainty” SUD flOW......cocoicenceeiseeseesesisesssess st st ss bbb 23
Figure 8: “Check RESUILS” SUD flOW ...ttt e 23
Figure 9: Admin Panel showing the flows exposed by Node-RED in the eHealth local workflow. 25
Figure 10: Jenkins build job initiated by the PHYSICS design environment (Admin panel) for the inference
(0PN 25
Figure 11: Node-RED interface depicting in inference flow in the eHealth local implementation. 26
Figure 12: Properties of the “Infer with Python” execution node (left), the “Prepare CLA” function node
(middle) and the “Prepare response” function node (Fight). ... ssessesssesssessse s ssesenes 27
Figure 13: The OpenWhisk experimentation flow for the deployed Inference flow of Figure 11......cc.cconeeen.. 27
Figure 14: Screenshot of the Gogs eHealth repOSItOr. ... 28
Figure 15: Implementation Flow for the Edge ETL Pattern.oneneneenneenmeeseessesssssssesssessssssssssssesssesssesssssssssssnes 32
Figure 16: Settings of Node-RED ETL flow for data collection pipeline.coeneneenneenneeneenneenseeseesseessessseennes 32
FigUIE 17: ETL flOW LESTINZ. c.vuverreeueemeeseereessresssessseesseesssesssesssessssesssesssesssessses s s sssess s sssesssessssssssssssesssessnesssesssesssessssssasessnes 33
Figure 18: Example of data returned by the greenhouse supervisor and outcome of the Node-RED ETL flow.
.. 34
Figure 19: Example of data stored in the local database in case of connection failure and outcome of the
NOAE-RED ETL flOW.....cuutituieeueeeseeesseesssessssessssesssssessssessssessssessssessssssssssessssessssessssessssessssssssssessssessssessssessssssssssessasessssessssesssssessssessanes 35

D6.5 - PHYSICS Application Prototype V1 Page |6

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

TABLE OF TABLES
Table 1: Functional Requirements of the DFKI USE CASE....cururereeneurienmeeneeseeseesssesesssessessesssssssssssssssssssssssssssssssssssssnns 14
Table 2: Functional requirements for the eHealth USe CASE. ... 18
Table 3: Functional requirements for the Smart AGriCulture USE CASE.couerrermeermeesreesreesssssnnssssesssessssssssessseeseeens 19
Table 4: Summary of Status Codes of Use Case #2 in Smart Manufacturing Pilot.ccneonennensenneeneeneenn. 21
Table 5: Fulfilment of the functional specifications for the DFKI USE CaSe.ccorerienrerneenmerreereeneeseeneesseisesseesseenns 24
Table 6: Development Roadmap for the Smart Manufacturing USE CASE.cuwmreeereesreeensssnmesssesssesssesessessseeseeens 24
Table 7: Fulfilment of the functional specifications for the eHealth USe Case......cvmrminerninnesneinensssnessseeenns 31
Table 8: Development Roadmap for the eHealth USE CASE. ...t 31
Table 9: Fulfillment of the Functional requirements for the Smart Agriculture use case........coomenreereeneenn. 35
Table 10: Development Roadmap for the Smart AgriCulture USE CASE.cuwrnmeenmeeeneesseesnsssnnesssesssesssesessesssesseeens 36

D6.5 - PHYSICS Application Prototype V1 Page |7

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

1 INTRODUCTION

This document D6.5: PHYSICS Application Prototype V1 is the accompaniment to the first version of three
separate demonstrators that are delivered under this Task 6.3 Use Cases Adaptation & Experimentation. As
the name of the task implies, the activities in this slice of the PHYSICS project deal with adapting the Use
Cases (Smart Manufacturing, eHealth, and Smart Agriculture) to the PHYSICS Platform-to-be in an
experimental fashion. The three use cases mentioned have in some detail been defined in T6.2: Use Case
Scenarios, as described in D6.3: PHYSICS Application Scenarios Definition V1 [1], which will later be refined
in a follow-up “V2” document. In order for the current document to be understandable in isolation, we
provide a short summary of each of the use cases in the relevant subsection of Section 3, but we refer to the
details regarding requirements for each of the Use Cases to the D6.3 document.

Although requirements have been captured in a very systematic way, this Use Case “Adaptation &
Experimentation” is indeed a more experimental process. In particular due to the dynamic nature of the
PHYSICS platform in the early stages of the project’s development in which new features and functionalities
are implemented continuously. Nevertheless, and again in order to maintain a document that is readable in
and of itself, we aim to provide a quick overview of the PHYSICS platform and architecture in Section 2 of
this document.

The core contents of this project deliverable describe the current version of the application demonstrators
as developed by the three use case partners. This is described in Section 4 of this document.

1.1 Objectives of the Deliverable

The objective of this deliverable is to demonstrate three use case prototypes, in the Smart Manufacturing,
eHealth, and Smart Agriculture domains respectively, and how they use the PHYSICS Platform and platform
components. This document accompanies those prototypes and aims to describe the prototypes, and how
they use the PHYSICS Platform components, as well as provide additional meaningful context information.

1.2 Insights from other Tasks and Deliverables

The image below shows the timeline of activities for Task 6.3 under which this document is delivered. As
shown, this document builds on the previously delivered documents D2.4: PHYSICS Reference Architecture
Specification V1 [2] - describing the initial PHYSICS reference architecture and D6.1: Prototype of the
Integrated PHYSICS solution framework and RAMP V1 [3] - describing a recent state of the integrated
PHYSICS platform, as well as D6.3: Application scenarios definition V1 [1] - describing the definitions and
requirements for the use cases.

D6.7: PHYSICS | DB.8: PHYSICS |

application application
prooype <6 prfotype
T6.3: Use Cases Adaptation & Experimentation - Timeline evaluation V1 evaluation V2
(CYBE) (CYBE)
MO M7 M9 M15 M7 M23 M32 M34 MIBG
D2.4: PHYSICS D25: PHYSICS f
A D6.5: PHYSICS s i D6.6: PHYSICS
| applcaton Relaice iyl spplcaton
Soediicaton Vi prototype V1 = 2 prototype V2
(UPM) (ISPRINT) (uPM) (ISPRINT)
4 ‘ i
A . - £ =] o
: EEN : : 06.2: Prototype of |
D6.3: PHYSICS B D6.4: PHYSICS
application .1: Integrated H the Integrated
‘scanarios definiion PHYSICS sosion i Wil EHYUIO8 Mk
V1 (FTDS) framework and H V2 (FTDS) framework and
RAMP V1 (HPE) RAMP V2 (HPE)
Preparation Seppemoer Development oo Noerye Pilot Running & Ogtover

Development Iterations

| Extemal Deliverables External Deliverables
D Task Deliverables (Input for T6.3) (Dependent on T6.3)

Figure 1: Timeline for T6.3 including dependencies between the various relevant deliverables.

D6.5 - PHYSICS Application Prototype V1 Page |8

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

1.3 Structure

The remainder of this document is structured as follows. Section 2 gives a brief overview of the PHYSICS
architecture. This overview is not meant to be exhaustive, but merely provides some context to better
understand the contents of the following sections. Section 3 provides a short overview as well as any
potentially relevant design specifications of the three different use cases: Smart Manufacturing, eHealth and
Smart Agriculture. In Section 4, the actual prototype demonstrators for the use cases are described, and
finally conclusions and an outlook for future work is provided in Section 5.

D6.5 - PHYSICS Application Prototype V1 Page |9

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

2 OVERVIEW OF PHYSICS ARCHITECTURE

The PHYSICS platform architecture was first described in D2.4: PHYSICS Reference Architecture
Specification V1 [2] and is still being developed and finetuned until the final architecture deliverable will be
released in M23 of the project (November 2022), and possibly beyond that. Below we provide a short
summary of the overall objectives for the PHYSICS project and platform (§2.1), as well as the current state
of the platform architecture (§2.2), in order to help better understand the prototypes as described below in
Section 4.

2.1 The PHYSICS Project

PHYSICS empowers European Cloud Service Providers (CSPs) to exploit the most modern, scalable and cost-
effective cloud model (FaaS), operated across multiple service and hardware types, provider locations,
edge, and multi-cloud resources. To this end, it applies a unified continuum approach, including functional
and operational management across sites and service stacks, performance through the relativity of space
(location of execution) and time (of execution), enhanced by semantics of application components and
services. PHYSICS applies this scope via a vertical solution consisting of:

= A Cloud Design Environment, enabling design of visual workflows for applications, exploiting
provided generalized Cloud design patterns functionalities with existing application components,
easily integrated and used with Faa$ platforms, including incorporation of application-level control
logic and adaptation to the FaaS model;

= An Optimized Platform Level FaaS Service, enabling CSPs to acquire a cross-site FaaS platform
middleware including multiconstraint deployment optimization, runtime orchestration and
reconfiguration capabilities, optimizing FaaS$ application placement and execution as well as state
handling within functions, while cooperating with provider-local policies;

= A Backend Optimization Toolkit, enabling CSPs to enhance their baseline resources performance,
tackling issues such as cold-start problems, multi-tenant interference and data locality through
automated and multi-purpose techniques.

Furthermore, PHYSICS will produce an Artefacts Marketplace (RAMP) (see [3]), in which internal and
external entities (developers, researchers, etc.) will be able to contribute fine-grained reusable artifacts
(such as functions, flows, or controllers). PHYSICS will validate the outcomes in 3 real-world applications
(eHealth, Agriculture and Manufacturing), making a business, societal and environmental impact on the
lives of EU citizens.

2.2 Basic Architecture
The following summary of the PHYSICS Architecture has been adopted from [3].

The current version (M17 - May 2022) of the prototype implementation of the integrated PHYSICS solution
framework can be referred to as the PHYSICS Minimum Viable Platform (MVP). The main components of
the PHYSICS architecture, implemented in the PHYSICS MVP, are shown in Figure 2 below.

D6.5 - PHYSICS Application Prototype V1 Page |10

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Application Developer Layer
T3.1 13.3
Application stantiate e Design Patterns
cmponem Instantiate——» Visual Workflow Reuse——» Reposi
' A |
Instantiate C
. Functional
v Semantics limiion Continuum Deployment Layer
Global Continuum
T32 I Semantic Models I Liacement Calculate Deployment
T41 fnference
r Engine/Reasoning
e framework
Deployment
T Services Capabilities Graph T4.2
T4.5 Benchmark periodidally
-Deploy Global Fass Layer Performance Evaluation
Elasticity Controllers
Describe
e Control Loop Distributed Memory Service T4.4
T Relnfomlllmsnt Faa$ Execution Layer Faa$ Execution Layer Faa$ Execution Layer
Controller C
+-Prdvide Templates—— Resource Management 153 Resource Management Resource Management
Scheduling T5.2 Scheduling Scheduling
Algorithms . Algorithms Algorithms
Y = 2
L] Cloud Service A Cloud Service B Edge System A Edge System B Exotic System B
T5 Infrastructure Layer
LL Elasticity Controller

Figure 2: The PHYSICS “Minimum Viable Platform” Prototype Architecture.

Figure 2 above presents three layers from top to bottom: (1) the Application Developer Layer, (2) the
Continuum Deployment Layer and (3) the Infrastructure Layer, which correspond to the developments in the
three technical work packages of the PHYSICS project:

= WP3: Functional and Semantic Continuum Services Design Framework (Application Layer)

= WP4: Cloud Platform Services for Global Space-Time Continuum Interplay (Continuum Deployment
Layer)

= WP5: Extended Infrastructure Services with Adaptable Algorithms (Infrastructure Layer)

The top layer, Application Developer Layer, is the entry point for users that design their applications using
a Visual Workflow tool. The design of applications is eased by reusing common design patterns such as split-
join for function parallelisation, batch processing, data collection, and more, provided by the Design
Patterns Repository. Application components (e.g., functions) can be semantically annotated providing
information to lower layers that may affect the placement, deployment, operation and configuration of the
application (Semantic Models). Application components may have elasticity controllers that regulate the
algorithms and resources needed for scaling a component.

The Continuum Deployment Layer oversees providing uniform access to the diverse cloud services
provided by one or more cloud providers. The Global Continuum Placement is in charge of deciding on the
most suitable deployment of applications taking into account the performance of the services, costs, affinity

D6.5 - PHYSICS Application Prototype V1 Page |11

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

constraints of components: for that purpose, it receives the list of candidate services that the Reasoning
Framework has filtered taking into account the application graph needs and the performance of the services
provided by the cloud services and edge devices Performance Evaluation component. The placement of the
components is done by the Global FaaS Layer component. The Global FaaS layer abstracts the usage of
different data centers from one or more cloud providers. The management of data shared by functions of
applications is provided at this level by the Distributed Memory Service.

The Infrastructure Layer provides a view and interface for enabling an optimized operation of the edge and
cloud services utilized for the realization of the application service graph. To this end, the Service
Capabilities component depicts and models the abilities of each service and resource type. The analysis of
different algorithmic approaches for adaptive and real-time provider level scheduling (Scheduling
algorithms) so that resources are adapted to current application needs while maintaining overall QoS levels
is done by the Resource Management component. The co-allocation strategies component provides, on
behalf of the provider strategies, optimizations to maximise performance.

D6.5 - PHYSICS Application Prototype V1 Page |12

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

3 USE CASES: OVERVIEW AND DESIGN

As explained in the introduction section of this deliverable document, the main contents of the document
are split into two parts. This section provides short overviews of the three different use cases and gives
room to document any design decisions or functional specifications that were used to create the actual
prototypes that are described in Section §4.

In the three sub-sections below, we provide for each of the three use cases, a short summary or synopsis to
refresh the reader on the context of the use case, as well as any design or specifications that may be of
interest or required to understand certain development choices that were made in the development of the
prototypes. Note that each of the use cases define their own design and functional specifications, based on
the use-case specific requirements that were defined earlier in D6.3 [1].

Due to the experimental nature of this task (T6.3), additional specifications, designs, and perhaps even
requirements - as well as updates to the ones presented here - can be expected in the next iteration(s) of
this task, to be reported in the follow-up document D6.6 to this deliverable D6.5.

The three different use cases are included in the following sections:
e 3.1: Use Case “Smart Manufacturing”
e 3.2:Use Case “eHealth”

e 3.3: Use Case “Smart Agriculture”

3.1 Use Case: “Smart Manufacturing”

3.1.1 Synopsis

SmartFactory-KL provides an Industry 4.0-compliant and manufacturer-independent demonstrator for the
PHYSICS-Project. The integration of SmartFactory-KL with the PHYSICS platform enables the decoupling of
the available services in the production line. The initial version of the pilot plant already follows a service-
oriented approach, which made it easier to convert it into a Function-as-a-Service (FaaS) system. Within
the Smart Manufacturing use case, two scenarios were defined. One of the scenarios implement a failover
case. In case of the local Quality Control (QC) service failure, the system is expected to forward the QC
request to the PHYSICS-Platform and continue the QC without downtime. The second use case develops a
more complex QC service following FaaS approach, which is expected to increase the certainty level3, in case
the local QC service fails to provide an adequate value. Initially, the local QC service utilizing PHYSICS at the
edge with low computing resources will be used for a faster analysis. If the certainty level is not satisfactory,
then, the system will forward the QC data to the complex QC service and perform computations with more
available resources.

An important factor in both use cases is the priority of the Local and Cloud version of the services. In both,
the local services have precedence. If the local QC service do not function properly or not at all, then the QC
service in the Cloud will be used. The PHYSICS-Platform (which will be used at the edge and Cloud) and
FaaS$ approach enable higher availability which was not available at the initial version of the pilot plant.

3.1.2 Design & Specifications

As stated above, for the Smart Manufacturing pilot, two scenarios were defined. As the first prototype, the
second scenario was chosen since it had minimum dependency with the development progress of the
PHYSICS components.

3 0r “score” of Al-based results.

D6.5 - PHYSICS Application Prototype V1 Page |13

H2020-I1CT-40-2020 (RIA)

PHYSICS - 101017047

The “to-be” BPMN diagrams for the scenario have been defined in Deliverable 6.3 [1]. For easier trackability,
the diagram of the second scenario is also given in Figure 3 below. To realize the use cases, the functional
requirements shown in the Table 1 are defined.

Table 1: Functional Requirements of the DFKI Use Case.

Code Functional Requirements

FRS-UC1-01 An inference service for quality control must be provided to be invoked by
DFKI.

FRS-UC1-02 The inference service is to be deployed according to the principles of the
PHYSICS project through the OpenWhisk platform.

FRS-UC1-03 The inference service is to be utilized via the endpoints exposed by Node-
RED flows.

FRS-UC1-04 The inference will take place in a custom docker-based OpenWhisk action.

FRS-UC1-05 The inference service is to be invoked by specifying the inputs (image and
other quality related data) to infer upon and the model to be used.

FRS-UC1-06 The inference service tolerates the server failures by utilizing the PHYSICS
platform (Edge & Cloud).

FRS-UC1-07 The inference service runs preferably on the local Edge.

D6.5 - PHYSICS Application Prototype V1 Page |14

PHYSICS - 101017047

H2020-I1CT-40-2020 (RIA)

synsas g

uogdadsu Jalu3 Ppaig padsuy u.

L

Y
pasIaud ApienD piousaiu r N\
anoge
sjnsay Aurepas x
. Jpaus AiEnD Hoday Awenp woaud
ploysaiuy m
mojeq 2
Aurepsd
g N

sanssi! w

sunsaJ uondadsul Aungosuucy Ayanosuuo) Ejeq loauo)]

[ENUEL 1o} VB i0i2iad0 AoN pnoiD ¥8ud Auleng 10810 3

3

\ J ®

X
ejeg Awenp feng|sud
£jeQ 104u0D
Aurepa) ¥8uD] B
BND PIBAUO,
plousaiul @ Aeno ¢ 4
aAoge [~
fuepso
|
i [
Pl ———— ’ I

| i 2
i ! 2
paxaayd Ayenp I} o %
ale
n
synsey puss Awenp o8y @ M m.
) *13
)
3

Figure 3: BPMN Diagram of Scenario #2 of the Smart Manufacturing Pilot.

Page |15

D6.5 - PHYSICS Application Prototype V1

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

3.2 Use Case: “eHealth”
3.2.1 Synopsis

The aim of the “eHealth” Pilot is to improve the performance and maintainability of the Healthentia
platform, developed by Innovation Sprint (iSPRINT), by using Function-as-a-Service (FaaS) technologies as
provided by the PHYSICS Platform for some of the smart services on offer. Healthentia is an eClinical
Software-as-a-Service (SaaS) platform, consisting of a mobile app for patients/citizens, a web portal for
healthcare professionals and researchers, and a server-platform for data storage and processing (see Figure
4 for an impression of the mobile app and its functionalities - as taken from [1]).

11367 Wi - 11387 Wi - 10:067 wl o - 10:03 7 W - 10:03 7 w'w

Q . 5 (¢ CHATBOT
4 skip < CONSENTS - -
What would you like to report? PR e
Healthentia allows you to report and menitor Today/ls 274 of My
your outcomes (e.g. symptoms), your activi | 4 800D PRESSURE Q
quest =
| § soovtemperatore Jth Questionnaire
WEEK 50 | & couen =
— | o1arRHEA Q Hi.how con | help you
-) =
Do you have an Invitation for a I have read and agreed with the ful = -
Clinical Study Program 2 text of the Privacy Policy * [@) |97 Fanioue
7
e v et e s G
of use* HEADACHE
1am 16 years old and above * [@)
! MEALS
Further to the privacy terms that are Dipeees 1®
bove link, please provide pid
your explicit consent, if interested, to the G tes) | moo0
following:
Salt-reporting of health-related data* () liquids (6] Messages [I pame
" ® Youhave 0
Contacted by sponsors for clinical] WEIGHT
gotas il B8 1=
0glasses
—— 250mieach
continue - Ty T Messoge
i @
If not, you ean <kip this stop 0o

Figure 4: Screenshots of the Healthentia mobile application.

Deliverable 6.3 [1] provides all details and requirements for this Use Case. In order to better understand
the provided functional specifications and prototype description (see §4) we include a summary of a typical
usage scenario here:

An individual interested in monitoring or improving their health or lifestyle will download the Healthentia
mobile application to their phone. The user provides an email address and password and finalizes their
account creation by consenting to their data being used for research purposes. Once in the application, the
user can link their Fitbit or Garmin account to Healthentia to start providing activity and sleep data.
Additionally, they can report various symptoms and events and will be able to regularly answer
questionnaires related to their overall health status. After sufficient data has been collected for a particular
user, the Healthentia platform will start to offer its inference services. Depending on the specific study
configuration, this inference can be e.g., a prediction of future health status. The predictions that are made
in an online fashion serve as input to a virtual coaching component - an conversational agent that can
discuss the prediction with the user in natural language dialogues.

3.2.2 Design & Specifications

The goal of the eHealth use case is thus to demonstrate the benefits of the PHYSICS FaaS approach on
inference carried out for eHealth applications for Healthentia, the eClinical platform of Innovation Sprint.
To achieve this, a number of use case specific functional requirements have been derived, as shown in

D6.5 - PHYSICS Application Prototype V1 Page |16

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Table 2 below. These functional requirements are used as practical goals for the development of the first
prototype described in Section 4.2 and as indications of its progress.

D6.5 - PHYSICS Application Prototype V1 Page |17

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Table 2: Functional requirements for the eHealth use case.

Code Functional Requirements

FRS-UC2-01 An inference service must be provided to be invoked by Healthentia.

FRS-UC2-02 The inference service is to be deployed according to the principles of the
PHYSICS project through the OpenWhisk platform.

FRS-UC2-03 The inference service is to be utilized via the endpoints exposed by Node-
RED flows

FRS-UC2-04 The inference flow will utilize an inference script written in Python

FRS-UC2-05 The inference script is to be invoked by specifying the vectors to infer upon
and the model to be used

The fulfilment of these requirements in the current implementation of the eHealth use case is discussed in
Section 4.2.

3.3 Use Case: “Smart Agriculture”

3.3.1 Synopsis

The smart agriculture pilot aims to provide growers enhancing greenhouse management scenarios. To
achieve this goal, it is necessary to have: 1) A reliable tool to gather data collected in the greenhouse; 2)
high performing simulation and optimization; 3) Up-to-date agronomic model parametrization obtained
through calibration on empiric measurements. Figure 5 shows a global overview of the CybeleTech
solution for greenhouses.

Greenhouse
management scenarios

Optimisation)

| Simulation TJ : Simulation CJ
. —— Outdoor climate = gm. Indoor c\lfnale = Agronomic medel
Data preprocessing] Upon request scenarios

. ®
.g‘

Every 10 mn// e D Every day

|——— Indoor climate £

Agronomic
— X
observations

Simulation) Calibration

Agronomic

Agronomic model
parameters

Upon request

Figure 5: Overview of the Cybeletech solution for greenhouses.

Deliverable 6.3 [1] provides all details and requirements for this Use Case. In order to better understand
the provided functional specifications and prototype description (see §4.3) we include a summary of a
typical usage scenario here:

Growers interested in monitoring plant development in their greenhouses and in improving the
management of the environmental conditions will contact Cybeletech. Cybeltech will audit the computer
infrastructure, adapt the solution to the greenhouse constraints and deploy it. Once Cybeletech’s solution is
deployed in the greenhouse, the data collected by greenhouse sensors are automatically retrieved,
preprocessed and stored in Cybeletech databases. The grower can visualize these data through the
Cybeletech platform in near real time (NRT) to follow the environmental conditions in the greenhouse.
Moreover, the system uses agronomic models developed by Cybeletech to give an overview of the plant
status (e.g., healthy, heating of the leaves, water stress) in NRT. On the other hand, the grower can provide
greenhouse management scenarios. Dedicated statistical models are then used to convert these scenarios
in environmental conditions, which are in turn used to simulate plant development. Finally, the growers

D6.5 - PHYSICS Application Prototype V1 Page |18

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

can ask for optimal greenhouse management scenarios. In this case, several scenarios are automatically
generated and the bests scenarios according to the tradeoff between plant development and environmental
cost are returned.

3.3.2 Design & Specifications

The goal of the smart agriculture use case is thus to demonstrate: 1) how PHYSICS components can be
deployed and used in the context of fog computing; and 2) the benefits of the PHYSICS FaaS approach on
NRT simulation of plant development and optimization of greenhouse management. To achieve this, several
use case specific functional requirements have been derived, as shown in Table 3 below.

As the first prototype, the emphasis was on adapting the pipeline for data collection.

Table 3: Functional requirements for the Smart Agriculture use case.

Code Functional Requirements
FRS-UC3-01 A data collection pipeline that takes as input the Python script for data pre-
processing must be provided.

FRS-UC3-02 The data collection pipeline is triggered automatically at regular time step
and store data locally when connection is lost.
FRS-UC3-03 A minimal version of the docker image allowing to run the data collection

pipeline is built during the deployment phase and can be pull from the edge.
FRS-UC3-04 A simulation / optimization flow must be provided to be invoked by
Cybeletech greenhouse management suite.
FRS-UC3-05 The simulation / optimization service is to be deployed according to the
principles of the PHYSICS project through the OpenWhisk platform.
FRS-UC3-07 The optimization service must take advantage of parallelization

The fulfilment of these requirements in the current implementation of the Smart Agriculture use case is
discussed in Section 4.3.

D6.5 - PHYSICS Application Prototype V1 Page |19

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

4 PROTOTYPE DESCRIPTIONS

4.1 Use Case “Smart Manufacturing”

Based on the BPMN diagram presented in Section §3.1.2, a flow was designed with the PHYSICS design
environment in Node-RED as shown in Figure 6. This flow contains two OpenWhisk (OW) Actions: 1)
Quality Control, 2) Complex Quality Control. OW Action (1) the same quality control as in “as-is” scenario -
packaged as a custom OW Action-compatible docker-container. The OW Action (2) performs, as the name
suggests, a more complex quality control requiring GPU acceleration. Both OW Actions contain proprietary
code and Al models developed prior to PHYSICS project and thus will not be disclosed. The actions just
encapsulate those to be usable within PHYSICS platform following its requirements.

4.1.1 Quality Control PHYSICS Flow

The flow starts after it receives a base64-encoded image data in JSON-format through a POST request to
“/qc”. An example of the request can be seen in Code Snippet 1 below:

{

"mime": "image/jpeg",

"encoding": "base64",

"image": "baseb64-encoded input image",

"expected": ["UsbPenDrive 2x4 Blue", "FlatStone 2x4 Black"]

Code Snippet 1: Example JSON input for the quality control inference service.

After each QC operation, the certainty of the results is checked. An example output is given in Code Snippet
2 below:

{
"encoding": "base64",
"image": "baseb64-encoded output image"
"mime": "image/jpeg",
"results": [
{
"class": "UsbPenDrive 2x4 Blue",
"score": 0.9822760820388794,
"x0": 4,
"x1": 750,
"yO": 686,
"yl": 888
by
{
"class": "FlatStone 2x4 Black",
"score": 0.6782341003417969,
" Q" O,
"x1": 776,
"yO": 418,
"yl": 696
}
1,
"version": "1.0.0"
}

Code Snippet 2: Example JSON output for the quality control inference service.

The resulting array scores are inspected, and the minimum score is used for “certainty”. Based on the
threshold, in the following manner:

D6.5 - PHYSICS Application Prototype V1 Page |20

H2020-ICT-40-2020 (RIA)

1. After QC (1)

PHYSICS - 101017047

a) If certainty is above the threshold, the quality result is checked,

b) If certainty is below the threshold, the image data is forwarded to (2).

2. After QC (2)

a) If certainty is above the threshold, the quality result is checked,

b) If certainty is below the threshold, a manual inspection will be required.

Based on the conditions written above, three different status codes are generated. The computation results

are summarized in Table 4 below.

Table 4: Summary of Status Codes of Use Case #2 in Smart Manufacturing Pilot.

Quality OK Quality Not OK
Certainty OK AlIOK Certainty OK, Quality Not OK
Certainty Not OK CertaintyNotOK

If certainty is not OK, the operator will be notified by the caller of the Node-RED flow.

Figure 6 below shows a prototype of the second scenario of manufacturing use case depicted in BPMN
diagram (See Figure 3). The sub flows were used for reusability and status reported for debugging. Note

that the notification of the operator is handled outside of this flow.

D6.5 - PHYSICS Application Prototype V1

Page |21

PHYSICS - 101017047

H2020-I1CT-40-2020 (RIA)

Jojesado ApoN

MOIONAIEUSD wu’

[

MOONAIEND YOAureped ()

MOl

X0 Aeno @

o

982811£660%1£899"0=Aurepa

0

iy

1
e

7

189999¢6112.9266 0=AUIeLaD @

s E9e

e o

(1=

4 L.gbuei0 2xz BU0ISANNL PBY bXZ BALQUAdASH

Figure 6: Smart Manufacturing Scenario #2, Prototype Node-RED Flow.

Page |22

D6.5 - PHYSICS Application Prototype V1

In Figure 7 below, the “Check Quality” sub flow is shown. It needs both the original message and the quality
check result message, but Node-RED does not support nodes with multiple inputs, hence the join node is
used for working around that limitation. Status is red if an error occurred, yellow if certainty is below the
threshold and green otherwise.

output

) 1 above J

output

() 2 below J

-

The “Check status” sub flow is illustrated in Figure 8 below. The status is red if an error occurred, yellow if
quality is not OK and green if it is OK.

Join 2 msg H check certainty

Figure 7: “Check Certainty” sub flow.

input ()] Check Results

() status

Figure 8: “Check Results” sub flow.

4.1.2 Concluding remarks for the first version quality control inference service

The source material for the prototype described here can be found on the internal PHYSICS repository:

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/dfki

Access to this repository is limited to members of the PHYSICS Consortium, but may be granted upon
request.

D6.5 - PHYSICS Application Prototype V1 Page |23

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/dfki

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Based on the prototype and the functional requirements defined in §3.1, in this section, we summarize what
is fulfilled and what is planned in the upcoming periods. The fulfilment statuses of the requirements are
shown in the Table 5 below.

Table 5: Fulfilment of the functional specifications for the DFKI use case.

Code Functional Specification Fulfilment

FRS-UC1-01 Completed. Endpoint is available at Kubernetes cluster with POST to “/qc”.

FRS-UC1-02 Completed. Prototypes of Node-RED flows and quality control inference as
OW-Action deployed.

FRS-UC1-03 Partially fulfilled. A small prototype was implemented to test the
functionality and send image data to the endpoint.

FRS-UC1-04 Completed. The inference takes place in a custom docker-based
OpenWhisk action.

FRS-UC1-05 On hold until the local Edge is connected to the Cloud to form the whole
PHYSICS platform. Depends on PHYSICS functionality and components.

FRS-UC1-06 Not yet started. Prerequisite is to have FRS-UC1-05 completed.

In the upcoming prototype versions, it is planned to fully utilize the related components of the PHYSICS
platform to exploit the FaaS benefits. The planning for these upcoming activities is provided in Table 6
below.

Table 6: Development Roadmap for the Smart Manufacturing use case.

2022 2023

June

July
August
September
October
November
December
January
February
March
April

Tasks
Integration of first version of the PHYSICS patterns

Collection of training data for complex Al quality control (QC)
Implementation of the complex Al QC Service

Conversion of complex Al QC Service into FaaS
Connection of local PHYSICS Deployment to Cloud-based PHYSICS Platform
Software adjustments regarding local-to-Cloud connection

Integration of pattern(s) enabling secure communication between local and Cloud

Test and validation

4.2 Use Case “eHealth”

The eHealth use case is utilizing a local deployment of the PHYSICS design environment to prepare the
necessary flows, and then invokes their version deployed on OpenWhisk to run inference on healthcare
data, given pre-trained ML models. The use of the PHYSICS design environment to implement and build the
inference flow and the use of Python for the actual inference script as discussed in Section 4.2.1. The
experimentation that can currently be carried out is demonstrated in Section 4.2.2. This demonstration is
followed in Section 4.2.3 by instructions on running and using the system, as well as by a description of how
the necessary docker image is built. Finally, the fulfilment of the use case functional specifications and the
next steps towards it are considered in the concluding Section 4.2.4.

D6.5 - PHYSICS Application Prototype V1 Page |24

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

4.2.1 The eHealth PHYSICS flow

Once the local implementation of the PHYSICS Design Environment is up and running, one can access the
Admin Panel to see the flows exposed by Node-RED, as shown in Figure 9.

Menu Admin Panel Builds Test Graphs
Hello Available Flows:
Admin Panel Python 8815c4d055371824 v
Node Red

Inference e772e94116f11e4 -~
[Logs |

f you click on deploy button. The flow will be deployed as a Cleud Functions

Build

OW inference fa6143763d9c3086 v

Figure 9: Admin Panel showing the flows exposed by Node-RED in the eHealth local workflow.

Selecting any of the flows allows the user to build the flow using Jenkins (see Figure 10) and then have the
resulting image deployed at OpenWhisk, whereupon the flow is available for inference both from the Node-
RED environment, but also via external invocation.

g Jel]kins (e} avodritnon @ ‘ . o 1 2 Aristodemos Pnevmatikakis EA‘ll:um'mﬁsur]

Dashboard * test-BUILD » #358

& Back to Project

- ofs
(©) Build #358 (23 Mai 2022, 9:09:45 T.p.)
%, Status
Sta 2days 0
. #* MpooBiixn mepiypagric Started Ida}s 0 hr age
= Changes Took 5 min 18 sec
Consele Output _\\ To &zkivnas o xprioTng Aristodemos Pnevmatikakis
= Edit Build Information }. This run spent:
@ Delete build ‘#358" * 6.7 sec waiting:
* 5 min 18 sec build duration;
Parameters * 5 min 25 sec total frem scheduled to completion,
- . Revision: 10e71eedadabade39454e23afcddfE009179f92b
@ Timings ‘)glt 3 -)
Repository: https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test.git
0 Git Build Data * refs/remotes/origin/master
Replay The following steps that have been detected may have insecure interpolation of sensitive variables (click here for an explanation):

JENKINS_PASSWORD]

o Pipeline Steps N :
JENKINS_PASSUWORD]

MINIO_KEY, MINIO_SECRET, JEMKINS_PASSWORD]

JENKINS_PASSWORD]

sh: [
sh: [
sh: [
B Workspaces sh: [

44 Previous Build

-

Figure 10: Jenkins build job initiated by the PHYSICS design environment (Admin panel) for the inference flow.

Selecting Node-RED from the menu, one accesses the Node-RED flow editor, where all the flows in the local
implementation (in this case the flows of the eHelath use case) are loaded, together with the PHYSICS Node-
RED components. This is shown in Figure 11.

D6.5 - PHYSICS Application Prototype V1 Page |25

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

Gioile oo o oo R(EQ |1 . ®|T BB eDd@A[eB (A cx Qi|~vi|v9 e A& =g e |meE: (B 0| + coo= 5

&« C Y @ localhost:4200/node-red - 4 DO O »0O :
Inno T

Projects

Menu

ythor Inference OW Inference + = | i debug i 2 % o -
Hello

Annotations section
Admin Panel | Lo

‘ = ‘SizingAnnotator Executor Mode Locality(flow level)
Node Red

complete

l. catch

Logs
ENdpoints’ gennition section

i) [post] Ang (—————————— htp

ik call

BranchJoin
= va } jpin 0= Prepareresponse () hmp
commant [post) frun (- Prepare CLA [~ :-I infer with Python BranchJoin

~ function

function Manual INVOCAHon Section

switch

WL | repweiou | senarsaest —] ®
change

-0+

Figure 11: Node-RED interface depicting in inference flow in the eHealth local implementation.

The Python flow in the first tab contains experimental flows. The OW inference flow in the third tab is
discussed in the experimentation section. Here the focus is on the Inference flow in the middle tab, shown
in Figure 11.

The flow is divided in three sections. The annotations section on the top utilizes PHYSICS annotations to
allow the user to add information on the behavior of the flow as deployed in OpenWhisk. The endpoints
definition section defines the two endpoints exposed by the flow, adapted to the Openwhisk Action
specification:

= POST init handles initialization and is currently a stub (empty top row sub-flow), and
= POST run performs the inference (middle row sub-flow).

At the heart of the run endpoint lies the “Infer with Python” execution node, invoking the Python inference
script, passing it the command-line arguments prepared by the “Prepare CLA” (Command Line Argument)
Javascript function node that manipulates the “message” object into the “cla” one. The “Prepare response”
Javascript function node considers the standard and error output streams of the execution node, as they are
concatenated together using the PHYSICS Branch-Join pattern. The configuration of all three nodes is shown
in Figure 12.

Edit exec node Edit function node Edit function node
Properties. e 2" 4 Properties. & BH= 4 Properties e B =
BiCommand | python3 scripts/inference.py % Name Prepare CLA @~ % Name Prepare response &-
+Append msg. cia EED ToeEd On Message TLEE @ Setup On Start On Message on stop

1 msg.cla - msg.payload.value.input + * * + msg.payload.value.model; =T (wsgpayIoad(8] =) {

2 2 errors = ms oad[1];

3 return msg

’ g 3 nsg.payload.errors = JSON. stringify(errors);
& Output when the command is complete - exec mode v 4 msg.statusCode - 560;
6 nsg.payload = msg.payload[2];

@ Timeout seconds 7« }

8 return msg;
2 Hide console)

% Name Infer witn Python

D6.5 - PHYSICS Application Prototype V1 Page |26

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Figure 12: Properties of the “Infer with Python” execution node (left), the “Prepare CLA” function node (middle)
and the “Prepare response” function node (right).

The manual invocation section of the inference flow, as well as the OW inference flow in the third tab are
considered in the experimentation section.

4.2.2 Experimentation on the eHealth PHYSICS flow

The inference flow can be executed within the Node-RED environment by manually activating the
timestamp node in the manual invocation section of the inference flow. This is quite useful for debugging
the flow at the creation stage, without having to undergo the OpenWhisk deployment phase.

The current implementation of the inference expects two input parameters: the name of the joblib file
containing the input vectors to be processed, and the name of the model to be used for inference in the
inference.py Python script. This outputs the inferences, one per provided vector. A second Python script,
inference_test.py,is provided that also tests the inference using the known inference results, providing
the classification accuracy.

Manually invoking the POST run of the flow results to successful inference as indicated by the inference
results at the logs shown in the right column of Figure 11.

In a future version of this flow, the input vectors might be directly provided in the POST message instead of
a filename, depending on the needs of the experimentation on the flow.

Any flow deployed in OpenWhisk can be executed by POSTing at its init and run endpoints from outside the
PHYSICS design environment, or within an OpenWhisk experimentation flow. This is the OW inference flow
in the third tab, shown in Figure 13.

Menu | S0 ENE =]

Python Inference OW inference + - # debug i @ & o -~
Hello

Admun Panel
Node Red

[Logs

,/)
link in e —
B e —
fink c: s s L)
all — /
e 77 owamatonronremy | porusnconerer - ——— JTRRIE] ®
-] »

-0+ S

Figure 13: The OpenWhisk experimentation flow for the deployed Inference flow of Figure 11.

The flow is designed for manual-only invocation via the inject node “OW action name”, where the deployed
action name is given. The user can find this action name in the Jenkins build. The POST URL is reconstructed
from this action name, and the expected parameters of the endpoint are given in the “Action invocation url”
Javascript function. The log of executing the deployed flow is shown on the right column of Figure 13, where
the final success is indicated.

D6.5 - PHYSICS Application Prototype V1 Page |27

H2020-I1CT-40-2020 (RIA)

4.2.3 eHealth use-case local design environment instructions

PHYSICS - 101017047

This section provides the installation and usage instructions for the local PHYSICS design environment for
the eHealth use case. The system can be found in the ehealth branch of the PHYSICS Design Environment
project in Gogs:

https://repo.apps.ocphub.physics-faas.eu/PHYSICS /test/src/ehealth

Access to this repository is limited to members of the PHYSICS Consortium, but may be granted upon

request.

A screenshot of the repository is shown in Figure 14.

@ Dashboard Issues

B) PHYSICS / test

El Files @ Issues @

Mo Description

© 134 Commits

¥ Eranch: ehealth ~

data

m

-gitignore

[

Dockerfile

[

Dockerfile_debian

[

Dockerfilecustom

m

Dockerfiledome

[

Jenkinsfile

[

Jenkinsfile-base

[

Jenkinsfile-dome

m

Jenkinsfile-ow

m

README md

16}

python-requirements. txt

[

test-deploy.yam

EE README.md

Running

o
;‘; apnevmatikakis = @dazfedbzs

Pull Requests Explons

¥ Watch 2

1 Pull Requests @ B8 wiki

¥ 9 Branches

[JEIE

README.md improvements
fagefecssf Handle input arguments
73fezragaz Dockerfile update
542738e54d Setup instructions in README.md
fii@4s3654 Add proper debian base image url
ekciessada commit to deploy
ekcleisada commit to deploy
5f3e57571f Merge branch 'master' into ehealth
@rbabsscce add proper bibeline for building debian image
ekciessada commit to deploy
5F3287571F Merge branch ‘'master’ into shealth
@dalfedhls README.md improvements
T1Ecadsdfr commit to deploy

Tecegsardc commit to deploy

On Windows, first run Docker Desctop.

Yr Star -]

% 0 Releases

¥ Fork 1]

https//repo.apps.ccphuby B2 &

1 week ago

1 month ago
1 month ago
1 week ago

1 month ago
2 months ago
2 months ago
1 month ago
1 month ago
2 months ago
1 month ago

1 week ago

2 months ago

2 months ago

Local workflow for PHYSICS Healthcare use case

This is the system for Node-RED inferencing used in the PHYSICS Healthcare use case. Information on running and using the
=ystem are given first, followed by a description of how he necessary docker image is build.

Figure 14: Screenshot of the Gogs eHealth repository.

In order to run the adapted PHYSICS Design Environment for the eHealth use case locally, first pull the
repository in an ehealth directory. Add to the parent of the ehealth directory two files. The
credentials.env environment file should have a number of tokens defined, as given by the PHYSICS
project (see Code Snippet 3).

D6.5 - PHYSICS Application Prototype V1

JENKINS_USERNAME=XXX
JENKINS_TOKEN= XXX
GIT_NODE_RED_TOKEN= XXX

Page |28

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/ehealth

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

GIT_NODE_RED_PATH=/repository
MINIO_ACCESS_KEY= XXX
MINIO_SECRET_KEY= XXX
MONGODB_PASSWORD= XXX
MONGODB_USER= XXX
JENKINS_PIPELINE_TOKEN= XXX
API_KEY= XXX

Code Snippet 3: Example credentials.env file with the required tokens to run the eHealth inference system.

The docker-compose.yml configuration file gives the information on how to build the three images of the
system (see Code Snippet 4), namely the admin panel U], the Node-RED and the SFG backend.

version: "3.9"
services:
ui:
container_name: ui
image: registry.apps.ocphub.physics-faas.eu/design-environment/control-ui/design-environment-
ui:latest
ports:
- "4200:4200"
node-red:
container_name: node-red
build: ./<ehealth directory>
volumes:
- ./<ehealth directory>/data:/data
ports:
- "1880:1880"
sfg:
container_name: sfg
image: registry.apps.ocphub.physics-faas.eu/design-environment/sfg/design-environment:latest
volumes:
- ./<ehealth directory>:/repository
ports:
- "3001:3001"
links:
- node-red
env_file:
- credentials.env

Code Snippet 4: Docker-compose.yml configuration file.

Where <ehealth directory> isreplaced with the actual ehealth directory name.
Then run Docker Desktop. Open a terminal and:

e (o to the parent directory of the <ehealth directory>
e docker-compose up --build

The Node-RED image that is built also includes Python, the necessary libraries, the scripts for inference and
the models. Details on using and building the system follow.

To wuse the system, go to http://localhost:4200/ for the Admin Panel, or to
http://localhost:4200/node-red for the Node-RED instance the created flows already loaded. After
any useful modification of the flows, click on "Deploy" to actually store the changes in data/flows. json.

Deployed flows can then be built via the Admin panel (via Jenkins behind the scene) and be registered in
OpenWhisk.

The Python scripts and the model data to be used in the flows are in data/scripts. In detail, the contents
are:

e requirements.txt: It is used to setup the Python environment by installing the necessary libraries
e *py: The different scripts to be used in the Node-RED flows

D6.5 - PHYSICS Application Prototype V1 Page |29

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

e *joblib: Data to be used for inference and model metadata (complete model in the case of a Random
Forest one)
e Neural Network models in directories

The Dockerfile found at the root of the project is used to setup the Node-RED and Python image needed for
the use case. The starting point is the Debian image from the PHYSICS consortium:

FROM registry.apps.ocphub.physics-faas.eu/wp3/debian-base:latest

In there, as ROOT user, first the scripts directory is created and populated:

USER root
RUN mkdir -p /usr/src/node-red/scripts
COPY data/scripts /usr/src/node-red/scripts

Then Python is installed:

RUN apt install -y python3-dev python3-pip
RUN pip3 install --upgrade pip

To be followed by the 3rd party library requirements:

RUN pip3 install -r scripts/requirements.txt

Finally, the properties of the data folder are set and the working user is set to node-red:

RUN chown -R node-red /data
RUN chmod -R 775 /data
USER node-red

4.2.4 Concluding remarks for first version

After having described the first version of the “eHealth Prototype”, we now look back at the initial
functional specifications that were defined in §3.2 above. For each of the Functional Specifications, we
discuss if and how the specifications are fulfilled, and - in case of a partial fulfillment - the work that
remains to be done in the next iteration(s) of the prototype. The fulfillment of the functional
specifications introduced in

D6.5 - PHYSICS Application Prototype V1 Page |30

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Table 2 is discussed in Table 7.

Table 7: Fulfilment of the functional specifications for the eHealth use case.

Code Functional Specification Fulfilment

FRS-UC2-01 Partially fulfilled. The focus of the first prototype has been on local
implementation and deployment of the design environment. A complete
fulfilment of the specification is expected early in the second prototype
development phase as online versions of the relevant platform components
become available.

FRS-UC2-02 Fulfilled. Deployed flows can then be built via the admin panel, whereupon
they are registered in OpenWhisk.

FRS-UC2-03 Fulfilled via the run endpoint exposed by the Node-RED inference flow.

FRS-UC2-04 Fulfilled, since two Python scripts are provided, one for inference and
another for both inference and testing, if the correct inference results are
known.

FRS-UC2-05 Fulfilled. Maybe to be revisited if the input vectors should be provided
directly and not in a file.

Future versions of the flow will be provided to facilitate the PHYSICS experiments and to utilize more
PHYSICS patterns, as needed to showcase the benefits of the PHYSICS FaaS approach. The roadmap for
future developments is given in Table 8 below.

Table 8: Development Roadmap for the eHealth use case.

2022 2023

June

July
August
September
October
November
December
January
February
March
April

Tasks
Evaluation of inference node (for D6.6)

Optimization of OpenWhisk deployment via PHYSICS annotations

Optimization of service (PHYSICS flows for live input, input aggregation)

Optimization of Machine Learning model

Using the FaaS Service: Integration with Healthentia

4.3 Use Case “Smart Agriculture”
4.3.1 Pipeline definition using Node-Red

The pipeline is implemented as a Node-RED flow and packaged as a subflow (Edge ETL Service). The
implementation appears in Figure 15. Initially an input is provided so that the developer can plug in any
kind of means to obtain the primary data value, encapsulated in the payload field of the message. Then any
custom ETL logic can be applied through one or more functions and apply any needed transformation,
filtering, or other operation on the data. Once this is finalized, the generic part of the pattern begins. Given
that any output nodes, such as the HTTP out node used in this example, may substitute the contents of the
msg.payload field with the results of the call that pushes the data to the central system, it is necessary to
maintain the original data for future use (in case the transmission fails). For this reason, these are moved
in the "Keep contents" function in the msg.originalpayload field. This function is also responsible for
inserting a retry counter in the message, as well as differentiating the origin of the message (new data that
have arrived or past data that have failed and have been stored locally).

D6.5 - PHYSICS Application Prototype V1 Page |31

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

Fiow 1 Edge ETL Service to HTT | Flow 2 Flow3 Flow4 » 4+~ | st debug ill@ = o|s| -

SIS rode: 8 26etaLSSRS &

o Edge ETL flow"

202022, 113558 AN oo pushout
I‘no response from server” |

s — L,
e /

 SEND TO TYPICAL FLOW =

INPUT PHASE. Value in msg.payload

EXAMPLE HTTP OUTPUT PHASE

 appETLOGIC pushoust (. Status coter=ao0 -~ Dosrotromos —— [R |
R =]
I insortto Data Loss 0B -
TN
POINTS OF ATTENTION |

“no response from server” |

Figure 15: Implementation Flow for the Edge ETL Pattern.

Beside the adaptation of the Python script managing the parsing of the file containing the data collected by
the sensors passed as an argument of the Edge ETL flow, some parameters must be defined including the
frequency of pipeline triggering, the number of retries before storage of data in the local database, and the
authentication information for API connection to Cybeletech database (Figure 16).

a) Frequency of pipeline triggering b) Number of retry in case of failure c) API authentification

Edit inject node Edit subflow instance: Edge ETL Service to HTTP out Edit hitp request node

Delete Gancel Edit subfiow template | | Delete Cance! Delete Cance
2 Properties LAER=] 1 Properties & =3 |=H & Properties o B =
W Name CRON JOB % Name Nam == Method POST ~

retrylimit -0 2 QURL hitps:ffiest-science. cybeletech firaw-climates.
=| msg.payload | = = limestamp x
targeturl ~ %, hips:/itestscience.cybelstech.friraw-climate| 0 Enable secure (SSL/TLS) connsction
= | msg. topic =~ x
o : Use authentication
& Type bearer authentication v
& Token
0 Enable connestion keep-alive
. | 0 Use proxy
A | 0 Only send non-2xx responses to Catch node
O Inject once after seconds, then
Refum a UTF-8 string v
€ Repeat interval v
% Name pushout
svery 2 2| mindtes

Figure 16: Settings of Node-RED ETL flow for data collection pipeline.

4.3.2 Adaptation of legacy codes

According to the greenhouse supervisor specifications, the data collection logic must be adapted. As today
Cybeletech application enables to deal with two types of supervisors.

One automatically generates a plain .txt file at regular time intervals. In this case a Python script is run at
regular time intervals with a cron. This script:

1. Read the plain.txt file.

2. Perform preprocessing operations to ensure compliance between sensor data collected by the
supervisor and Cybeletech data model.

D6.5 - PHYSICS Application Prototype V1 Page |32

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

3. Check the existence of the preprocessed data in Cybeletech database

4. Insert the data via a dedicated SQLite driver developed by Cybeletech if they are not already in the
database.

In case of connection failure between the supervisor and Cybeletech server, the plain .txt file is archived and
will be parsed the next time the script runs.

The other provides an access to the data collected by the sensor via an API. In this case a Python script is
run at regular time intervals with a cron. This script:

1. Send arequest to the supervisor APL

2. Check if sensor data have been archived during the previous runs and read the archive files if they
exist.

3. Perform preprocessing operations to ensure compliance between sensor data obtained with the
API, and eventually from the archived files, and Cybeletech data model.

4. Insert the data via a dedicated SQLite driver developed by Cybeletech.

In case of connection failure between the supervisor and Cybeletech server the data obtained with the API
are archived in a .json file, which will be parsed the next time the script runs.

During the adaptation phase the supervisor dependent part of the data collection logic has been extracted
of the legacy codes and adapted so that it can be run using the Edge ETL Pattern.

Moreover, an API for data transfer from the supervisor to Cybeletech server has been developed so that the
http node can be used.

Once this adaptation implemented the Python script can be passed as argument to the generic Edge ETL
Pattern (see Figure 17 below).

4

Y2B2022, 6:57:42 PM nods: pushout v
mag - sting(23]

“no response from server®

42PM node: 402BeiadSaltGar

‘msg.url : siring{34]
"http://10.190.59.183:18681/pushdata"
22022, 65742 P node: 4520eladSaliSalt
msg paylond - sting{121632]
L A I A B = "[{'greenhouse’: 'chateauneuf-sur-loire', 'station': 'Chapelle
- i 2°, 'date’: '2021-85-31T00:02:00+82:80', ‘data’:
timestar Rl i] Edge ETL Service to HTTP out 1 . N c

[] : _ oSBTl : {'Température, Serre utilisée’: 1.0, 'Température, N° de plage
horaire en cours': 4, 'Température, T°C air mesurée par la
sonde N°1': 19.1, 'Temperature, T°C air mesurée par la sonde
N°2': 18.8, ‘Température, T°C air ambiante mesuree’: 18.5,
*Température, T°C air moyenne sur 1/2h': 18.7, 'Température,

. T°C air moyenne sur 24h': 22.6, 'Température, Alarme T°C

ambiante': 8.8, 'Température, ALARME écart entre les 2 sondes

de T°C ambiante': 8.0, 'Humidité, Humidité régulé en fonction
du géficit hydrique': 1.0, ‘Humidité, Hygrometrie ambiante
mesurée par la sonde N°L *: 75, 'Humidite, Hygrométrie
ambiante mesurée par la sonde N°2': 77, 'Humidite, Hygrométrie
ambiante mesurée’: 76, "Humidité, Quantité d'eau dans 1'air
ambiant®: 10.1, ‘Humidité, Déficit hydrique ambiant': 3.3,
"Humidité, Alarme taux d'hygrométrie ambiant®: 0.0, 'Humidité,
Alarme géficit hydrigue ambiant': 0.9, "Humid..."

Y2R2022, 6:5742 PM node: 4626eiadSaliSard
g thisratry : numbsr
5

NPBZ022, B:5T:42 PM nods: 4626eiadSalbSard

msg : ermor

“"Error: SQLITE ERROR: near "Humidité": syntax error*

Figure 17: ETL flow testing.

As the data collection pipeline logic is defined in a generic pattern, it allows to decorrelate the part of the
code dedicated to data gathering from the sensors and data preprocessing, from the part dedicated to the
job running and connection failure management. This has considerably simplified the Python code base
used for data collection and will ease their maintenance and adaptation to new contexts.

D6.5 - PHYSICS Application Prototype V1 Page |33

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

4.3.3 Pipeline testing using environment design

The pipeline of data collection has been created and tested using the PHYSICS Design Environment. For this
test the Python script performing data parsing and a .txt file such as those produce by the supervisor of type
1 have been uploaded in the /data repository of the test project.

Three scenarios have been tested:

1. In the first scenario it was assumed that no connection failure occurs during the data collection

procedure. It allows to validate the integration of the Python script in the Edge ETL Pattern and the
configuration of the nodes.

2. In the second scenario it was assumed that temporary connection failure occurs during the data
collection procedure. It allows to validate that the retry procedure allows to overcome transient
connection troubleshooting.

3. Inthe third scenario it was assumed that extended connection loss occurs during the data collection
procedure. It allows to validate that while the API cannot be reached the data are stored locally with
no duplicate and that these data are sent to the distant database as soon as the connection is
restored.

The outcome of the first scenario is presented in Figure 18. In this case the pipeline succeeded, and all

the data collected by the sensors have been preprocessed and sent to Cybeletech database using the API
at the first try.

a) Brut data returned by the sensor supervisor of the greenhouse b) Data sent using the API
Crapetle 2
Date Heure Temp@rature, Serre utilisbe Templrature, N de plage horaire en cours TempGrature, THC air mesurfe par la sonde NG1 Temprature, TGC air mesurfe par e e
1a sonde NG2 Tempbrature, TEC air ambiante mesurfie Température, TGC air moyenne sur 1/2h Tenpbrature, THC air moyenne sur 24h Température, Alarme TOC ambiante {"Tewpi hrature, Serre utilisi, erpi hrsture,
Templrature, ALARME Bicart entre les 2 sondes de T&C ambiante Humidit®, Humidité réigulé en fonction du déficit hydrique Humidit®, Hygrombitrie ambiante mesurtie Migh de plage horaire en cours”:d,Tesplhrature,
par la sonde NGl Humidité, Hygrométrie ambiante mesurfie par la sonde Né2 Humidité, Hygrométrie ambiante mesure Humidit®, Quantit®é d eau dans 1 air ambiant e e LD TR

Hunidite, DeTicit hydrique ambiant. Humidith, Alarme taux d hygromgirie ambiant Hunidi1§, Alarme d6Ticit hydrique amblant Humidith, ALARME Geart entre les 2 o e e e

pliiraturs, TIAC air ashiante
sondes d hygrométrie ambiante Humidit#, Seuil d hygrométrie pour d@clenchement d un assainissement Humidit®, Seuil de déficit hydrique pour déclenchement d un - IL;5C alr moyenne sur

assainissement Humidité, Assainissement en cours Humidith, Seuil d hygrombtrie pour déiclenchement du FOG Humidith, Seuil de déficit hydrique pour déiclenchement That 32 e ritore, Rlares iy e sur

du FOG Humidit®, Demande de marche du FOG Humidit®, Pourcentage du temps de fonctionnement du FOG CTA, TBC chauffe ambiance CTA, Mode intBgration CTA, TeC anmisnte” @, “Teaplhrature. m.wé Igheart entre Les
ambiante moyenne objectif TGC refroidissement, T&C air ambiant pour début refroidissement Ecran, Mode de déploiement des toiles d Gcran Ecran, Puurcenlage de 2 sondes de TIghC ambiante”:6, mmmtus Hundditlyh
déploiement d cran dbsiré CO&, Mode d enrichissement CO06, Taux de CO& ambiant désiré CO&, Taux CO& mesuré CO, Pourcentage du temps d injection de CO& ;‘;EE”&“’]”";[‘;::T,*’“N"“ \m- i
nécessaire COW, ALARME taux de C0& Eclairage 1, Autorisation g@n@rale Eclairage 1, Dans la plage horaire d autorisation Eclairage 1, Retour marche Modbus ..stlye par 1a sonae u;ei? -r§ “HUBLOITIGY,

Eclairage 1, Niveau d @clairage en PAR dBsir Eclairage 1, Miveau d Gclairage PAR mesurd Modbus Eclairage 1, Niveau d Gclairage moyen en PAR Eclairage 1,

Hygronibtrie anbiante mesurizbe par la sonde
Eclairage PAR_cumulé Eclairage 1, Interdit / TéC anbiante Eclairage 1, Cumul du temps de fonctionnement de L ficlairage Eclairage 1, Puissance actuelle canal 1 : ’Z5 T A RuactitTys d amu dans L
Eclairage 1, Puissance actuelle canal 2 Eclairage 1, Puissance actuelle canal 3 Eclairage 1, Puissance actuelle canal 4 Eclairage 2, Autorisation gln@rali 7 e ,;;,;[‘:?"9,4:5,(“‘;55,,2‘._.
Eclairage 2, Dans la plage horaire d autorisation Eclairage 2, Retour marche Modbus Eclairage 2, Niveau d ®clairage en PAR d6sir® Eclairage 2, Niveau d sclairage 3.3 s, Moree tour e
PAR mesur® Modbus Eclairage 2, Niveau d @clairage moyen en PAR Eclairage 2, Eclairage PAR cunulé Eclairage 2, Interdit / TEC amblante Eclairage 2, Cumul du a0 i s Marae o1 bc

temps de fonctionnement de 1 @iclairage Eclairage 2, Puissance actuelle canal 1 Eclairage 2, Puissance actuelle canal 2 Eclairage 2, Puissance actuelle canal 3
Eclairage 2, Puissance actuelle canal 4 Eclairage 3, Autorisation génbrale Eclairage 3, Dans la plage horaire d autorisation Eclairage 3, Retour marche Modbus
Eclairage 3, Niveau d ficlairage en PAR dbsiré E:lalrage 3, Niveau d 6clairage PAR mesuré Modbus Eclairage 3, Niveau d Bclairage moyen en PAR Eclairage 3,
Eclairage PAR cumulé Eclairage 3, Interdit / T&C ambiante Eclairage 3, Cumul du temps de fonctionnement de 1 ficlairage Eclairage 3, Puissance actuelle canal 1
Eclairage 3, Puissance actuelle canal 2 Eclairage 3, Puissance actuelle canal 3 Eclairage 3, Puissance actuelle canal 4 Eclairage 4, Autorisation générale
Eclairage 4, Dans la plage horaire d autorisation Eclairage 4, Retour marche Modbus Eclairage 4, Niveau d Bclairage en PAR désire Eclairage 4, Niveau d Gclairage
PAR mesurél Hadbus Eclairage 4, Niveau d Giclairage moyen en PAR Eclairage 4, Eclairage PAR Cumulﬂ Eclairage 4, Interdit / T&C ambiante E(lairage 4, Cumul du
temps de fonctionnement de L $clairage Eclairage 4, Puissance actuelle canal 1 Eclairage 4, Puissance actuelie canal 2 Eclairage 4, Puissance actuélle canal 3
Eclairage 4, Puissance actuelle canal 4 Pression, Pression désire Pression, Pression mesurfle Pression, ALARME pression ambiante T&C CTA, T&C de soufflage
caleulge THC CTA, TGC de soufflage mesul TGC (TA, Taux d hygrembtrie dans circuit de soufflage mesuré TEC CTA, ALARME TEC soufflage TGC CTA, Position vanne
chaud_souhaitée T6C CTA, Position vanne froid souhaitbe CTA en ventilation, Arrét CTA sur défaut CTA en ventilation, Dépression reprise désirée CTA en
ventilation, Dépression reprise mesurfe CTA en ventilation, Vitesse reprise (TA en ventilation, Alarme variateur reprise CTA en ventilation, ALARME delta P
reprise CTA en ventilation, Contact pressostat d@pression reprise CTA en ventilation, DBpression en soufflage désirGe CTA en ventilation, Dépression en soufflage
mesur§e CTA en ventilation, Vitesse soufflage CTA en ventilation, Alarme variateur soufflage CTA en ventilation, ALARME delta P soufflage CTA en vantila(iun
Contact pressostat d.preSsln soufflage CTA en ventilation, Denande arrét de la CTA (TA en ventilation, Fin de course de fermeture volet air neuf CTA e
ventilation, Fin de course de fermeture volet rejet CTA en ventilation, Fin de course de fermeture wolet m&lange CTA en ventilation, Gache de suufflage CTA en
ventilation, Gache de reprise CTA en ventilation, Synth@ise ALARME CTA CTA en ventilation, Demande arr§t CTA CTA en ventilation, RGarmement CTA CTA

climatisation, TGC réiseau froid mesurfe CTA en cllmatlsatinn‘ TGC extraction CTA en climﬁtisatjnn. TGC air de mGlange mesurfe CTA en (llmatlsdtlnn T-!ux d
hygrom§trie de 1 air de mélange mesurf CTA en climatisation, Quantit® d eau air mélange CTA en climatisation, TEC air froid mesurée CTA en climatisation, Taux d
hygromGtrie de 1 air froid CTA en climatisation, Position volet air neuf CTA en climatisation, Position volet extraction CTA en climatisation, Position wolet de

31/05/2021 00:02 Oui 4 +19,1 +18,0 +18,5 +18,7 +22,0 Non Non Oui 75 77 6,1 63,3 Non Non Non 99 93,0 Non 89 ©6,0 Non 066 16,0 Non 00,8 19,8 Arrbt
000 Arrét 0000 0400 008 Non Oui Non Non 0100 0008 6008 ©267 Non 03: 34 GBG 600 600 660 Dul Nurl Non 0160 8600 0680 6206 Nurl 02:42 BUB DGB BGD BGB Oul Nun
Non 0160 8686 0600 06328 Non 62:27 060 080 680 €86 Oui Non Non 0168 6861 6862 6271 Non 63:36 006 606 008 ©0 +663 -601 Non 18,

Non €176 8155 056 Non Non Non 8232 0247 53 Non Mon Non Non Absent Préisent Absent Fermbe Ferm&e Non Non Non +@17 18,5 18,5 78 18, 4 18 3 BG 010 000
oza

Figure 18: Example of data returned by the greenhouse supervisor and outcome of the Node-RED ETL flow.
The outcome of the second scenario is presented in Figure 19. In this scenario the pipeline failed three times,

and at the fourth attempt, when the connection has been restored, data collected by the sensors have been
preprocessed and sent to Cybeletech database using the API.

D6.5 - PHYSICS Application Prototype V1 Page |34

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

a) Content of the local database after cannection failure occurs b) Node-RED debug message

Figure 19: Example of data stored in the local database in case of connection failure and outcome of the Node-
RED ETL flow.

In scenario 3 the pipeline failed five times, which is the maximum number of retries. The data are then
stored in a local SQlite instance. After a while the pipeline is re-run and the data stored in the local database
as well as the new data were sent to Cybeletech database.

4.3.4 Concluding remarks for first version

The source material for the prototype as desribed here can be found on the PHYSICS project internal Git
repository, here:

https://repo.apps.ocphub.physics-faas.eu/PHYSICS /test/src/smart agriculture

Access to this repository is limited to members of the PHYSICS Consortium, but may be granted upon
request.

After having described the first version of the “smart agriculture Prototype”, we now look back at the initial
functional specifications that were defined in §3.3 above. For each of the Functional Specifications, we
discuss if and how the specifications are fulfilled, and - in case of a partial fulfillment - the work that remains
to be done in the next iteration(s) of the prototype. The fulfillment of the functional specifications
introduced in 2 is discussed in Table 4 below.

Table 9: Fulfillment of the Functional requirements for the Smart Agriculture use case.

Code Functional Requirements
FRS-UC3-01 Fulfilled. A first script for data collection has been integrated in the Node-
RED ETL flow.

FRS-UC3-02 Fulfilled. The pipeline runs as long as the docker is up with a user-defined
time step and is resilient to connection failure.

FRS-UC3-03 Fulfilled. A first deployment has been performed on Cybeletech by using the
PHYSICS Design Environment. Moreover, the image built during the
deployment phase has been pull and used to deploy the data collection
pipeline.

FRS-UC3-04 Work in progress. The focus of the first prototype has been on the data
collection part of the pipeline. Beside the adaption of legacy codes used to
perform simulation and optimization. Cybeletech is currently working on
the definition of a deployment procedure for Python codes using C++
internal libraries in the context of PHYSICS.

D6.5 - PHYSICS Application Prototype V1 Page |35

https://repo.apps.ocphub.physics-faas.eu/PHYSICS/test/src/smart_agriculture/

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

FRS-UC3-05 Work in progress. Similar to FRS-UC3-04, the implementation for Prototype
V1 has focused on data collection pipeline. Deployment of the simulation
/optimization flow using OpenWhisk is a next step that can be taken early
in the second prototype development phaseusing a simplified version of
crop growth model. These models will be complexified during the
intensification phase.

FRS-UC3-06 Work in progress. Similar to FRS-UC3-04, the implementation for Prototype
V1 has focused on data collection pipeline. Adaptation of the optimization
procedure for compliance with the Node-RED Splitjoin pattern is in
progress.

And finally, looking forward to the next development phase(s), we foresee the following development

roadmap (see Table 10).

Table 10: Development Roadmap for the Smart Agriculture use case.

2022 2023

June

July
August
September
October
November
December
January
February
March
April

Tasks
Run of pure python light model as function

Run of pure python light model as a service

Optimization procedure using splitjoin pattern with light model

Integration of C++ complex models in PHYSICS docker image

Run of C++ complex models as a service

Run of C++ complex models as a function

Optimization procedure using splitJoin pattern with complete model

Adaptation of calibration pipeline

5 CONCLUSIONS

This document accompanies the delivery of the very first three demonstrators that have been developed to
run on top of the PHYSICS Platform. The Smart Manufacturing use case demonstrates a quality control
scenario, the eHealth use case an online prediction scenario, while the Smart Agriculture use case focuses
on data collection pipelines, all using Node-RED flows to model these processes as a series of functions.

These first demonstrators are snapshots of ongoing iterative and “experimental” work to implement the
different use cases in a “FaaSified” manner using the PHYSICS Platform. As such, they are not to be
considered “final” in any way. The Task 6.3, focusing on Use Cases Adaptation & Experimentation continues
to run until M34 (October 2023), nearly the end of the project, at which point in time the follow-up
deliverable to this document (D6.6: PHYSICS Application Prototype V2) will describe the final
demonstrators including further additions and functionalities provided by the PHYSICS platform.

This deliverable describes the adaptation of the application components in the PHYSICS environment, the
functional requirements per each use case and the current or foreseen usage of the PHYSICS tools. The first
prototypes are documented using the visual workflow design of PHYSICS and they all represent different
utilization of the developed components. In addition, a detailed roadmap of implementation and integration
of further functionalities is presented by each use case to show what will be done in the timespan from June
2022 to April 2023. The next version of this deliverable, as well as the others part of WP6, will show the
development of the use cases in respect to expected results.

D6.5 - PHYSICS Application Prototype V1 Page |36

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

6 BIBLIOGRAPHY

[1] N. Franke, A. Hennecke, V. Gezer, C. Harms, H. op den Akker, A. Pnevmatikakis, G. Labropoulos, T. Lohier,

M. Patifo, Y. Poulakis and M. Touloupou, "D6.3 - Application Scenarios Definition V1," PHYSICS
Consortium, 2021.

[2] M. Patifio, A. Azqueta, L. Mengual, T. Li, G. Kousiouris, S. Tsarsitalidis, E. Boutas, T. Stamati, C. Giannakos,

J. Salomon, L. Tomas, A. Mamelli, D. Costantino, Y. Georgiou and Pelegr, "D2.4 - PHYSICS Reference
Architecture Specification V1," PHYSICS Consortium, 2021.

[3] A. Mamelli, D. Costantino, J. Salomon, L. Tomas Bolivar, A. Castillo Nieto and C. Sanchez Fernandez,

"D6.1 - Prototype of the Integrated PHYSICS solution framework and RAMP V1," PHYSICS Consortium,
2022.

D6.5 - PHYSICS Application Prototype V1 Page |37

H2020-I1CT-40-2020 (RIA) PHYSICS - 101017047

DISCLAIMER

The sole responsibility for the content of this publication lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the EASME nor the European Commission is
responsible for any use that may be made of the information contained therein.

COPYRIGHT MESSAGE

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are
free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform,
and build upon the material for any purpose, even commercially) under the following terms: (i)
attribution (you must give appropriate credit, provide a link to the license, and indicate if changes were
made; you may do so in any reasonable manner, but not in any way that suggests the licensor endorses
you or your use); (ii) no additional restrictions (you may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits).

D6.5 - PHYSICS Application Prototype V1 Page |38

