

H2020 ICT 40 2020 Research and Innovation Action

This project has received funding from the European Union’s horizon 2020 research and innovation
programme under grant agreement no 101017047

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

D6.2 – PROTOTYPE OF THE INTEGRATED PHYSICS

SOLUTION FRAMEWORK AND RAMP V2

Lead Beneficiary HPE
Work Package Ref. WP6 – Use Cases Adaptation, Experimentation, Evaluation
Task Ref. T6.1 – Solution Services Integration and Reusable Artefacts

Marketplace Platform (RAMP) Creation
Deliverable Title D6.2 – Prototype of the Integrated PHYSICS solution

framework and RAMP V2
Due Date 2023-10-31
Delivered Date 2023-10-31
Revision Number 3.0
Dissemination Level Public (PU)
Type Demonstrator (DEM)
Document Status Release
Review Status Internally Reviewed and Quality Assurance Reviewed
Document Acceptance WP Leader Accepted and Coordinator Accepted
EC Project Officer Mr. Stefano Foglietta

Ref. Ares(2023)7406448 - 31/10/2023

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 2

CONTRIBUTING PARTNERS
Partner Acronym Role1 Name Surname2
HPE Lead Beneficiary Alessandro Mamelli, Domenico

Costantino, Roberto Musso
UPM Contributor
HUA Contributor
GFT Contributor
RHT Contributor, Internal

Reviewer
Luis Tomas Bolivar

INNOV Contributor
INQBIT Contributor
DFKI Quality Assurance Carsten Harms, Maciej Kolek
BYTE Contributor
RYAX Contributor
ATOS Contributor, Internal

Reviewer
Carlos Sánchez Fernández

REVISION HISTORY

Version Date Partner(s) Description
0.1 2023-06-21 HPE ToC Version and preliminary contents
0.2 2023-07-10 HPE Refined ToC Version and additional preliminary

contents
1.0 2023-09-08 HPE, all

Contributors
1st integrated version

1.1 2023-10-04 HPE, all
Contributors

2nd integrated version

1.2 2023-10-11 HPE Version for Peer Reviews
1.3 2023-10-18 ATOS-RHT Peer Reviews completed
2.0 2023-10-25 HPE Version for Quality Assurance
2.1 2023-10-27 DFKI Quality Assurance completed
3.0 2023-10-30 HPE Version for Submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance
2 Can be left void

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 3

LIST OF ABBREVIATIONS

2FA Two-Factor Authentication
ACM RedHat Advanced Cluster Management
API Application Programming Interface
AWS Amazon Web Services
CI/CD Continuous Integration / Continuous Delivery
CPU Central Processing Unit
CRD Custom Resource Definition
CRI Container Runtime Interface
CVE Common Vulnerabilities and Exposures
DevOps Development Operations
DL Deep Learning
DMS Distributed Memory Service
DNN Deep Neural Net
DoS Denial of Service
DRAM Dynamic Random Access Memory
DSL Domain Specific Languages
EKS Amazon Elastic Container Service for Kubernetes
FaaS Function as a Service
HPA Horizontal Pod Autoscaler
HSM Hardware Security Module
HTTP/S HyperText Transfer Protocol / Secure
I/O Input/Output
IaC Infrastructure as Code
IAM Identity and Access Management
IoT Internet of Things
JSON JavaScript Object Notation
JSON-LD JSON for Linking Data
JWT JSON Web Token
KMS Key Management Service
LDAP Lightweight Directory Access Protocol
MARLA MApReduce on Lambda
MCSC Multi-Cloud Service Composition
MILP Mixed-Integer Linear Programming
ML Machine Learning
MVP Minimum Viable Platform
NVMe Non-Volatile Memory Express
OCI Open Container Initiative
OCM Open Cluster Management
OIDC Open ID Connect
OWASP Open Web Application Security Project
QoS Quality of Service
RA Reference Architecture
RAMP Reusable Artefacts MarketPlace
RDF Resource Description Framework
REST REpresentational State Transfer
RWX Read Write Many
SAML Security Assertion Markup Language
SDK Software Development Kit

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 4

SFG Serverless Function Generator
SGX Software Guard Extensions
SLA Service-Level Agreement
SOA Service Oriented Architecture
SPT Shortest Processing Time
SSH Secure Shell protocol
SSL Secure Sockets Layer
SSO Single Sign-On
TLS Transport Layer Security
UI User Interface
UML Universal Modelling Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
XML Extensible Markup Language
XSS Cross Site Scripting
XXE XML External Entity
YAML YAML Ain't Markup Language

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 5

EXECUTIVE SUMMARY

Within the scope of PHYSICS Work Package 6 (Use Cases Adaptation, Experimentation, Evaluation),
this document describes the final results of Task T6.1 (Solution Services Integration and Reusable
Artefacts Marketplace Platform (RAMP) Creation) achieved during the second and last phase of the
project, and provides the second version (D6.2) of this deliverable (out of the two iterations foreseen
in the whole work plan for WP6, i.e. D6.1 and D6.2).
With respect to the general WP6 objectives, the deliverable mainly focuses on two of them, i.e.:

 To integrate the various technical artefacts of the technical Work Packages (WP3-4-5) to the
3 logical bundles, enabling their use as one vertical solution or separate per case bundle ;

 To provide the finally available demonstrator executions demonstrating the effectiveness of
the approach as well as the operational version of the RAMP marketplace, to be used in WP7
activities.

The achieved results provide key contributions for the fulfilment of the 7th major WP6 milestone
(MS12 – PHYSICS 2nd integrated platform release – foreseen for M34 of the project) and provide the
second and final release of the proposed solution.
The document is the accompanying textual specification of the major result of the deliverable and the
task: the second version of the prototype of the integrated PHYSICS solution framework and RAMP,
which have been deployed into the PHYSICS blueprint reference target infrastructure. The document
and the integrated PHYSICS solution framework and RAMP setup constitute the overall deliverable
and task output.
As consistently done since the beginning of WP6 T6.1 activities, the work has been carried out in
close cooperation and coordination with the other PHYSICS WP6 tasks and Work Packages 2 -3-4-5
tasks and partners, taking into account and integrating the delivered results and concepts (e.g. the
final PHYSICS Reference Architecture proposed by WP2 and the solution framework major
components and services artefacts proposed by WP3, WP4 and WP5) in a coherent and uniform
manner.
Moreover, the outcomes of T6.1 will continue to feed the work of the remaining WP6 tasks (mainly
the tasks dedicated to Use Cases adaptation, experimentation and evaluation) for the upcoming 2nd
iteration of the PHYSICS Pilots and Use Cases Operations and Stakeholders’ Evaluation of the
proposed solution framework.
Finally, the delivered integrated PHYSICS solution framework and RAMP marketplace are
fundamental inputs and drivers for the Work Package dedicated to Exploitation, Dissemination and
Impact Creation, with special emphasis on the task related to Business Innovation Development &
Exploitation.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 6

SUMMARY OF CHANGES FROM D6.1

CHAPTER UPDATE SECTION(s)

1 Updated text All

2 Alignment to the final version
of the architecture, new
sample application of the
integrated PHYSICS solution
framework and final RAMP
overview

2.1 – 2.2 – 2.3

3 Update of all the components
of the Integrated PHYSICS
solution framework (with
addition of new components:
Gaming Platform, Runtime
Adaptation, Cluster
Availability Monitor)

3.x

4 Update of the design and
implementation of the final
version of the Reusable
Artefacts MarketPlace
(RAMP) application

All

5 Update of the final integrated
development and testing
environment upon which the
PHYSICS solution framework
is built (with addition of
“Cross infrastructure
components” and “Visual
Workflow on cloud” sections)

5.x

6 Updated text 6

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 7

CONTENTS

1. Introduction ... 15

1.1 Objectives of the Deliverable ... 15

1.2 Insights from other Tasks and Deliverables .. 16

1.3 Structure ... 17

2. Integrated PHYSICS solution framework and RAMP Overview .. 18

2.1 PHYSICS solution framework architecture overview.. 18

2.1.1 Design, Deployment and Execution of Functions .. 19

2.1.2 Sample sequence flow ... 22

2.2 Sample application of the integrated PHYSICS solution framework ... 24

2.2.1 Sample sequence flow ... 24

2.2.2 Orchestrator Flow .. 25

2.3 Reusable Artefacts MarketPlace (RAMP) overview ... 26

3. Integrated PHYSICS solution framework Implementation .. 28

3.1 Visual Workflow.. 28

3.1.1 Overview .. 28

3.1.2 Technology architecture .. 28

3.1.3 Interfaces/API ... 29

3.1.4 Distribution, deployment and configuration .. 46

3.1.5 Control UI ... 46

3.1.6 Cloud version .. 51

3.2 Semantic Extractor ... 55

3.2.1 Overview .. 55

3.2.2 Technology architecture .. 56

3.2.3 Interfaces/API ... 56

3.2.4 Distribution, deployment and configuration .. 57

3.2.5 Sample Application Transformation ... 58

3.3 Design Patterns ... 60

3.3.1 Overview .. 60

3.3.2 Technology architecture .. 60

3.3.3 Interfaces/API ... 61

3.3.4 Distribution, deployment and configuration .. 61

3.3.5 Flow update process ... 66

3.3.6 Individual integration points of Patterns with the Data Management Service of T4.4 68

3.4 Elasticity Controllers ... 69

3.4.1 Overview .. 69

3.4.2 Technology architecture .. 69

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 8

3.4.3 Interfaces/API ... 70

3.4.4 Distribution, deployment and configuration .. 70

3.5 Gaming Platform ... 70

3.5.1 Overview .. 70

3.5.2 Technology architecture .. 71

3.5.3 Interfaces/API ... 72

3.5.4 Distribution, deployment and configuration .. 73

3.5.5 Game Portal Tutorials ... 73

3.6 Reasoning Framework .. 76

3.6.1 Overview .. 76

3.6.2 Technology architecture .. 77

3.6.3 Interfaces/API ... 78

3.6.4 Distribution, deployment and configuration .. 78

3.7 Runtime Adaptation ... 79

3.7.1 Overview .. 79

3.7.2 Technology architecture .. 79

3.7.3 Interfaces/API ... 81

3.7.4 Distribution, deployment and configuration .. 82

3.8 Cluster Availability Monitor .. 82

3.8.1 Overview .. 82

3.8.2 Technology architecture .. 83

3.8.3 Interfaces/API ... 83

3.8.4 Distribution, deployment and configuration .. 83

3.9 Resource Semantics ... 84

3.9.1 Overview .. 84

3.9.2 Technology architecture .. 85

3.9.3 Interfaces/API ... 85

3.9.4 Distribution, deployment and configuration .. 86

3.10 Performance Evaluation Framework .. 86

3.10.1 Overview .. 86

3.10.2 Technology architecture .. 87

3.10.3 Interfaces/API ... 87

3.10.4 Distribution, deployment and configuration .. 91

3.10.5 Individual integration points of PEF with other components .. 91

3.11 Global Continuum Placement .. 92

3.11.1 Overview .. 92

3.11.2 Technology architecture .. 93

3.11.3 Interfaces/API ... 93

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 9

3.11.4 Distribution, deployment and configuration .. 94

3.12 Distributed In-Memory Service .. 95

3.12.1 Overview .. 95

3.12.2 Technology architecture .. 95

3.12.3 Interfaces/API ... 96

3.12.4 Distribution, deployment and configuration .. 96

3.13 Adaptive Platform Deployment, Operation & Orchestration .. 96

3.13.1 Overview .. 96

3.13.2 Technology architecture .. 97

3.13.3 Interfaces/API ... 98

3.13.4 Distribution, deployment and configuration .. 98

3.14 Scheduling Algorithms (Local Adaptive Scheduler) .. 99

3.14.1 Overview .. 99

3.14.2 Technology architecture .. 99

3.14.3 Interfaces/API .. 100

3.14.4 Distribution, deployment and configuration ... 100

3.15 Resource Management Controllers ... 102

3.15.1 Overview ... 102

3.15.2 Technology architecture ... 102

3.15.3 Interfaces/API .. 104

3.15.4 Distribution, deployment and configuration ... 106

3.16 Co-Allocation Strategies... 106

3.16.1 Overview ... 106

3.16.2 Technology architecture ... 107

3.16.3 Interfaces/API .. 109

3.16.4 Distribution, deployment and configuration ... 109

4. Reusable Artefacts MarketPlace Implementation ... 110

4.1 Overview .. 110

4.2 Technology architecture .. 110

4.3 Artefacts ... 111

4.4 Distribution, deployment and configuration .. 112

4.5 User Story .. 112

5. PHYSICS solution framework Integration environment ... 116

5.1 Integration Infrastructure ... 116

5.1.1 Development strategy .. 117

5.1.2 Deployment strategy .. 120

5.2 Cross infrastructure components .. 121

5.3 Visual Workflow component .. 122

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 10

5.4 Visual Workflow on cloud ... 122

6. Conclusions ... 127

7. References ... 128

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 11

FIGURES

Figure 1 - High level relations between WP6 and T6.1 and the other technical WPs 16
Figure 2 - prototype architecture from RA .. 18
Figure 3 - Design, deployment and execution of a function .. 20
Figure 4 - WP3/4 Integration Diagram for Application Deployment .. 23
Figure 5 - Sample Node-RED function flow .. 25
Figure 6 - Sample Node-RED Orchestrator flow as Function .. 26
Figure 7 - RAMP High Level Overview .. 27
Figure 8 - Visual Workflow components integration schema ... 29
Figure 9 - Node-RED environment ... 47
Figure 10 - Build flow .. 47
Figure 11 - Test flow .. 48
Figure 12 - See created and draft graphs ... 48
Figure 13 - Create a new graph ... 49
Figure 14 - Import image .. 49
Figure 15 - Export subflow ... 50
Figure 16 - Dashboard ... 50
Figure 17 - Control UI cloud ... 51
Figure 18 - Build and Execution Process for the Semantic Extractor ... 58
Figure 19 - Example DE output towards SE for the sample App .. 59
Figure 20 - SE Annotated Output Graph towards RF ... 60
Figure 21 - PHYSICS Patterns Palette in Node-RED ... 62
Figure 22 - Example UI configuration and README file in Pattern Node .. 62
Figure 23 - Subflow Description Information for npm node conversion of a subflow 63
Figure 24 - Example Subflow Node published on npm ... 64
Figure 25 - a) Node Addition Process in Node-RED b) Available Example Node on Node-RED repo . 65
Figure 26 - Direct Installation of Node through the built-in Palette Management of Node-RED 65
Figure 27 - Retrieval of Pattern Subflow from PHYSICS Node-RED repo collection 66
Figure 28 - Import of Updated Pattern Subflow in the DE Node-RED Editor ... 67
Figure 29 - Warning Message for Duplicate Nodes .. 67
Figure 30 - Selection of Node and Subflow Replacement Option ... 68
Figure 31 - Different Appearance of Versions a) without name differentiation b) with name
differentiation .. 68
Figure 32 - Elasticity Controllers Flow ... 69
Figure 33 - Gaming Platform Architecture ... 71
Figure 34 - Settings Screen... 73
Figure 35 - Game Starting Screen ... 74
Figure 36 - Local Menu Screen .. 74
Figure 37 - Node-RED Cookbook Screen .. 75
Figure 38 - Messages Tutorial Screen ... 75
Figure 39 - Messages #1 Tutorial Screen ... 76
Figure 40 - Node-RED Portal Screen .. 76
Figure 41 - Reasoning Framework interactions with other components .. 77
Figure 42 - Reasoning’s Framework internal components .. 78
Figure 43 - Screenshot of Reasoning framework logs ... 79
Figure 44 - Runtime Adaptation Architecture ... 80
Figure 45 - Screenshot of Cluster Availability Monitor logs .. 84
Figure 46 - Request Aggregator Instantiation in PEF for the eHealth Use Case 92
Figure 47 - Global Continuum placement component ... 93
Figure 48 - DMS component ... 95
Figure 49 - Orchestrator flow .. 97

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 12

Figure 50 - PHYSICS cluster onboarding ... 103
Figure 51 - Resource Management Components and interactions overview ... 104
Figure 52 - Co-allocation invocation Technology architecture .. 107
Figure 53 - Co-allocation strategies component internal architecture ... 108
Figure 54 - RAMP Architecture .. 111
Figure 55 - Homepage... 113
Figure 56 - Assets page .. 114
Figure 57 - An asset in RAMP ... 115
Figure 58 - Form to add/request Asset in/from RAMP ... 115
Figure 59 - eHealth Use Case Post ... 116
Figure 60 - DevOps Tools ... 117
Figure 61 - CI/CD flow .. 118
Figure 62 - Integration namespaces ... 119
Figure 63 - OKD GUI .. 119
Figure 64 - OC client.. 119
Figure 65 - Organizations inside Gogs.. 120
Figure 66 - Repositories inside one organization ... 120
Figure 67 - Deployment flow .. 121
Figure 68 - Visual Workflow CLOUD ... 123
Figure 69 - Jenkins Pipeline for Visual Workflow ... 125

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 13

TABLES

Table 1 - VW/API- get flow .. 29
Table 2 - VW/API get subflow .. 30
Table 3 - VW/API- build flow ... 30
Table 4 - VW/API- build status ... 30
Table 5 - VW/API- delete build ... 31
Table 6 - VW/API- deploy app graph ... 31
Table 7 - VW/API- deploy status .. 31
Table 8 - VW/API- last state of deploy status ... 32
Table 9 - VW/API-create graph ... 32
Table 10 - VW/API- get all created graphs ... 32
Table 11 - VW/API- get all graph drafts ... 33
Table 12 - VW/API get functions .. 33
Table 13 - VW/API- invoke functions .. 33
Table 14 - VW/API- get function activation ... 34
Table 15 - VW/API- get clusters ... 34
Table 16 - VW/API- get flow file ... 34
Table 17 - VW/API- start performance pipeline ... 35
Table 18 - VW/API- get performance result .. 35
Table 19 - VW/API- performance pipeline status .. 35
Table 20 - VW/API- get all performance pipeline status .. 36
Table 21 - VW/API- get imported image .. 36
Table 22 - VW/API- Import image .. 37
Table 23 - VW/API- Check if import image already exists ... 37
Table 24 - VW/API - Get all imported images ... 38
Table 25 - VW/API - Get credentials id ... 38
Table 26 - VW/API - Create credentials id ... 39
Table 27 - VW/API- import image status ... 39
Table 28 - VW/API- export subflow ... 39
Table 29 - VW/API- create artifact ... 40
Table 30 - VW/API- get artifact ... 40
Table 31 - VW/API- delete artifact ... 41
Table 32 - VW/API- get draft service... 41
Table 33 - VW/API- create graph draft ... 41
Table 34 - VW/API- get function service .. 42
Table 35 - VW/API- invoke function .. 42
Table 36 - VW/API- get activationID ... 42
Table 37 - VW/API- get all clusters service ... 42
Table 38 - VW/API- get imported image .. 43
Table 39 - VW/API- Insert import image.. 43
Table 40 - VW/API- Update import image ... 44
Table 41 - VW/API- Check if import image already exists ... 44
Table 42 - VW/API - Get all imported images ... 45
Table 43 - VW/API - Get credentials id ... 45
Table 44 - SE-API-semantic retrieval .. 56
Table 45 - Local Mode APIs .. 72
Table 46 - Online Mode APIs .. 72
Table 47 - Marketplace APIs .. 73
Table 48 - Interfaces and Endpoints for Runtime Adaptation .. 81
Table 49 - Cluster Availability Monitor Interfaces ... 83
Table 50: PEF Raw Profiling Data API ... 87

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 14

Table 51: PEF Benchmarking Data API .. 87
Table 52: PEF Clustering Push Data API ... 88
Table 53: PEF Clustering Retrieval API ... 89
Table 54: PEF Function Profile API .. 90
Table 55 - Global Continuum API for the scheduler .. 93
Table 56 - Global Continuum API for monitoring ... 94
Table 57 - DMS-API .. 96
Table 58 - Orchestrator component runtime RPC API .. 98
Table 59 - Co-Allocation/API-get affinities ... 109

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 15

1. INTRODUCTION

The PHYSICS project aims to enable European Cloud Service Providers (CSPs) to exploit the most
modern, scalable and cost-effective cloud model (FaaS), operated across multiple service and
hardware types, provider locations, edge, and multi-cloud resources. To this end, it applies a unified
continuum approach, including functional and operational management across sites and service
stacks, performance through the relativity of space (location of execution) and time (of execution),
enhanced by semantics of application components and services. PHYSICS applies this scope via a
vertical solution consisting of a:

 Cloud Design Environment, enabling design of visual workflows of applications, exploiting
provided generalized cloud design patterns functionalities with existing application
components, easily integrated and used with FaaS platforms, including incorporation of
application-level control logic and adaptation to the FaaS model;

 Optimized Platform Level FaaS Service, enabling CSPs to acquire a cross-site FaaS platform
middleware including multi-constraint deployment optimization, runtime orchestration and
reconfiguration capabilities, optimizing FaaS application placement and execution as well as
state handling within functions, while cooperating with provider-local policies;

 Backend Optimization Toolkit, enabling CSPs to enhance their baseline resources
performance, tackling issues such as cold-start problems, multitenant interference and data
locality through automated and multi-purpose techniques.

PHYSICS also delivers a Reusable Artefacts MarketPlace (RAMP), in which internal and external
entities (developers, researchers etc.) can contribute fine-grained, reusable and tested artefacts
(functions, flows, controllers, etc.).
Furthermore, the project designs and implements a range of pilots and use cases that aim at validating
these technologies in real-life scenarios of three vertical sectors (eHealth, Agriculture and
Manufacturing).
Within PHYSICS, WP6 (Use Cases Adaptation, Experimentation, Evaluation) aims to achieve the
following objectives:

1. Integrate the various technical artefacts of the technical Work Packages (WP3-4-5) to the 3
logical bundles, enabling their use as one vertical solution or separate per case bundle ;

2. Define and implement the necessary application scenarios, application adaptation and
experimentation through which the relevant KPIs (use case driven and component driven) are
assessed, evaluated and reported back to the component or application owners and the
external communities;

3. Provide the overall demonstrator executions, aiming to show the effectiveness of the
approach as well as the operational version of the RAMP marketplace, to be used in WP7
activities;

4. Gather the experiences report from the tests and documenting their outcomes, providing the
input for the road mapping activities of the project.

1.1 Objectives of the Deliverable
This document describes the final results of PHYSICS WP6 Task T6.1 “Solution Services Integration
and Reusable Artefacts Marketplace Platform (RAMP) Creation” and provides the second version
(D6.2) of the deliverable (out of the two foreseen in the WP6 work plan for this task , i.e. D6.1 and
D6.2). With respect to the general WP6 objectives mentioned before, this deliverable mainly focuses
on objectives 1. and 3. (in the latter only for the RAMP related activities).
The results that have been achieved during the work provide key contributions for the fulfilment of
the 7th major WP6 milestone (MS12 – PHYSICS 2nd integrated platform release – foreseen for M34
of the project) and provide the second and final release of the proposed solution.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 16

The document is (on purpose) self-contained, i.e., there’s no need to read the previous version (D6.1)
to get a full understanding of the updated contents and achieved results. This release includes many
additional and enhanced features with respect to the previous one, which are summarized in the table
“SUMMARY OF CHANGES FROM D6.1” that can be found earlier, after the “EXECUTIVE SUMMARY” of
the document.
The document is the accompanying textual specification of the major result of the deliverable and the
task: the second version of the prototype of the integrated PHYSICS solution framework and RAMP,
which have been deployed into the PHYSICS blueprint reference target infrastructure.
The document and the integrated PHYSICS solution framework and RAMP setup constitute the overall
deliverable and task output.

1.2 Insights from other Tasks and Deliverables
The following picture shows the high-level interconnections between Work Package 6 (and T6.1) and
the other technical Work Packages that provide the more relevant inputs to the task:

Figure 1 - High level relations between WP6 and T6.1 and the other technical WPs

Important and relevant inputs for WP6 Task 6.1 are the outcomes of:

 WP3 tasks and their final available deliverable “D3.2 – Functional and Semantic Continuum
Services Design Framework, Scientific Report and Prototype Description V2”;

 WP4 tasks and their final available deliverable “D4.2 – Cloud Platform Services for a Global
Continuum Space-Time Continuum Interplay, Scientific Report and Prototype Description v2”;

 WP5 tasks and their final available deliverable “D5.2 – Extended Infrastructure Services with
Adaptable Algorithms Scientific Report and Prototype Description V2”.

Moreover, the outcomes of T6.1 will continue to feed into the remaining WP6 tasks, mainly T6.3 (Use
Cases Adaptation & Experimentation) and T6.4 (Use Case Evaluation). These will be used for the
upcoming 2nd iteration of the PHYSICS Pilots and Use Cases Operations and Stakeholders’ Evaluation
of the proposed solution framework.
Furthermore, as consistently done since the beginning of WP6 T6.1 activities, the work delivered in
the task embodies a strict and continuous collaboration and alignment with WP2 tasks and partners,
towards the integration of the delivered outcomes (with special focus on the full compliance with the
final PHYSICS Reference Architecture).
Finally, the delivered integrated PHYSICS solution framework and RAMP marketplace are
fundamental inputs and drivers for WP7 (Exploitation, Dissemination and Impact Creation), with
special emphasis on T7.2 (Business Innovation Development & Exploitation).

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 17

1.3 Structure
The deliverable consists of the following chapters:

 Chapter 2 “Integrated PHYSICS solution framework and RAMP Overview” provides an
overview of the features of the final version of the prototype, its architecture and relationship
to the final version of the general PHYSICS Reference Architecture, with a concrete example
of the Functions Design, Deployment and Execution and a sample sequence flow, via a sample
application that uses the capabilities of the integrated PHYSICS solution framework that was
created ad hoc;

 Chapter 3 “Integrated PHYSICS solution framework Implementation” describes the design and
implementation of the components and tools that together form the final version of the
prototype of the integrated PHYSICS solution framework;

 Chapter 4 “Reusable Artefacts MarketPlace Implementation” describes the design and
implementation of the final version of the prototype of the RAMP application;

 Chapter 5 ”PHYSICS solution framework Integration environment” describes the integrated
development and testing environment upon which the PHYSICS solution framework is built,
including the Continuous Integration/Continuous Delivery and agile processes put in place to
support all the development, testing and integration activities;

 Chapter 6 “Conclusions” summarizes the results of the work done in the deliverable and the
next steps foreseen for the related tasks;

 Chapter 7 “References” provides details of all the cited work.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 18

2. INTEGRATED PHYSICS SOLUTION FRAMEWORK AND RAMP
OVERVIEW

This chapter provides an overview of the features of the final version of the prototype of the
integrated PHYSICS solution framework and RAMP, through its architecture and relationship to the
final version of the general PHYSICS Reference Architecture, with a concrete example of the Functions
Design, Deployment and Execution and a sample sequence flow, and finally with a sample application
that uses the capabilities of the integrated PHYSICS solution framework that was created ad hoc.

2.1 PHYSICS solution framework architecture overview
This section summarizes the final architecture of the integrated PHYSICS solution framework. The
PHYSICS architecture was described in deliverable D2.5 Reference Architecture SpecificationV2
(PHYSICS Consortium, 2022).
The final version of the prototype implementation of the integrated PHYSICS solution is fully aligned
to the final PHYSICS architecture. The main components of the PHYSICS architecture, implemented
in the PHYSICS prototype, are shown in Figure 2

Figure 2 - prototype architecture from RA

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 19

The figure presents three layers from top to bottom: Application Developer Layer, Continuum
Deployment Layer and Infrastructure Layer, which correspond to the developments in the three
technical work packages (WP3 Functional and Semantic Continuum Services Design Framework,
WP4 Cloud Platform Services for Global Space-Time Continuum Interplay and WP5 Extended
Infrastructure Services and with Adaptable Algorithms).

The top layer, Application Developer Layer, is the entry point for users that design their applications
using a Visual Workflow tool. The design of applications is eased by reusing common design patterns
such as split-join for function parallelization, batch processing, data collection, and more, provided
by the Design Patterns Repository. Application components (e.g. , functions) can be semantically
annotated providing information to lower layers that may affect the placement, deployment,
operation and configuration of the application (Semantic Extractor/ Application Models). Application
components may have elasticity controllers that regulate the algorithms and resources needed for
scaling a component. Once the application is ready an application graph is built by the Semantic
Extractor (SE) which processes the flows, extracts their structure, as well as any other semantic
annotation. This information is mapped to ontological triples and is stored in the Reasoning
Framework/Inference Engine.

The Continuum Deployment Layer oversees the deployment of applications and providing uniform
access to the diverse cloud services provided by one or more cloud providers. Once an application is
built in the previous step, it can be deployed. This step is initiated from the Design environment
contacting the Reasoning Framework. It retrieves all triples for the application, filters the list of
candidate services based on the application graph needs, and forwards the application graph to the
Global Continuum Placement (Placement Optimizer). The Global Continuum Placement decides the
most suitable deployment of applications considering the performance of the services, costs, and
affinity constraints of components. For that purpose, it uses the performance of the services provided
by the Performance Evaluation component. The placement creates a deployment graph which is
forwarded to the Global FaaS Layer (Orchestrator), which may query the Reaso ning Framework for
details of the available clusters (e.g. , endpoint, credentials etc.). The Orchestrator will use the
function information and do the actions needed to register the function in a cluster using a
Kubernetes operator. In this step, the application functions and flows are deployed and ready to be
used. The Orchestrator (Global FaaS Layer) abstracts the usage of different data centers from one or
more cloud providers. The management of data shared by functions of applications is provided at
this level by the Distributed Memory Service.

The Infrastructure Layer provides a view and interface for enabling an optimized operation of the
edge and cloud services utilized for the realization of the application service graph. It deals with a
single cluster. To this end the Service Capabilities component depicts and models the abilities of each
service and resource type (used by the Reasoning Framework in the previous step) in a cluster (cloud
provider). The analysis of different algorithmic approaches for adaptive and real-time provider level
scheduling (Scheduling algorithms) so that resources are adapted to current application needs while
maintaining overall QoS levels is done by the Resource Management component. The scheduling
algorithms take into the information provided Co-location strategies component to create instances
of functions in the cluster nodes in order to maximize performance. The co-location component based
on the interferences of functions running in the cluster nodes generates affinity and anti-affinity rules
to be used by the scheduler to decide in which node a function will be finally executed in a given
cluster.

2.1.1 Design, Deployment and Execution of Functions
Figure 3 presents the steps and components of the PHYSICS framework platform involved in the design,
deployment and execution of a function. The infrastructure includes two clusters (Cluster A and Cluster B)

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 20

each of them with four nodes. We assume that the platform has been previously deployed. The figure
presents the minimal number of components involved in each step and focuses on two main processes:

 Process A: Building and testing a flow function (Steps 1 to 3)
 Process B: Creating an app graph that consists of a set of flows and deploying them in the production

environment (Steps 4 to 9)

Figure 3 - Design, deployment and execution of a function

Process A assumes that the developer has used the Design and Control UI in order to create a set of flows,
by using the PHYSICS provided flow templates, patterns and annotation nodes, as well as including their
own application code. Local testing of these inside Node-RED can filter out common minor errors that could
take up much time if on each occasion the function needs to be built and deployed in the formal testing or
production environment. Furthermore, the developer has added annotations at the function or flow level
for desired aspects (e.g., resource selection aspects, deployment options, QoS features etc.). The design
process can be summarized as:

1. The developer uses the Design and Control User Interface (UI) to build one or more flows.

2. Function generation:

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 21

a. The selected flow ids are sent to the Serverless Function Generator (SFG) component which

orchestrates the process of building the related code or image artefacts with the help of a

Jenkins job.

b. Upon finalization of the process, the artefacts are stored in the image registry.

c. After the deployable artefacts are ready, the related functions (i.e., OpenWhisk (OW)

actions) are also registered in a test OpenWhisk environment.

d. Upon finalization the deployable artefact locations are returned to the Control UI in order

to be used later on.

3. Registered function testing can be performed in the DEV testing environment. This aids in

eliminating errors and bugs that occur in the OW function execution, without the time needed for

going over the entire formal deployment process (including optimization and cluster selection,

deployment etc. processes).

Process B: Deployment of an application on the production cluster

4. The developer can now initiate the formal deployment process.

a. The set of the flows, along with the deployable artefact location per flow, are forwarded from

the Design and Control UI to the Semantic Extractor (SE).

b. The latter processes the flows and extracts their structure from the Node-RED JSON

specification, as well as any other annotation used by the developer while creating the flow.

c. The relevant information is mapped to the ontological triples based on the PHYSICS

ontology and is forwarded to the WP4 Reasoning Framework (RF) for storage.

d. The reasoning framework also assigns a unique application ID to the flow set, which is

returned to the SE and from there to the Design and Control UI. This is the main identifier

through which follow-up queries can be performed towards the Reasoning Framework. If

an update of the application is needed at a future point in time, the call to the SE should

include that application ID to be used in the calls.

5. Once this process is finalized, the developer can initialize the actual deployment for that application

ID.

a. The Design and Control UI receives the request.

b. The request is forwarded to the RF for initializing the process in WP4. A relevant URL is also

given, in order for the various components in WP4 to inform the developer on the progress

of the deployment.

6. The Reasoning Framework receives the request and retrieves the descriptions of the related

application graph.

a. It enriches the application graph with candidate resources, after applying the related

inference based on user and resource annotations, and forwards the relevant description to

the Placement Optimizer for placement. These descriptions include also performance

metrics from the Performance Evaluator (PEF), acquired for a given cluster in an offline

manner.

b. The Placement Optimizer selects the most suitable resources for the deployment. This

information is sent to the Orchestrator.

7. Application deployment

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 22

a. The orchestrator generates the OCM ManifestWork CRD YAML with K8S resources CRDs and

workflow CRD. The Orchestrator sends this information to the Resource Manager (Open

Cluster Management Hub).

Each cluster receives this information through the K8s API. In this case Cluster A will process

the request

b. The workflow operator is in charge of orchestrating the deployment and registration of the

application workflow (set of functions and flows).

c. It processes the workflow CRD (one of the native Kubernetes mechanisms for extending its

functionality. It keeps all information about the flows, both data (instance data) and

metadata (requirements of the functions…)

d. Registers the function though the OpenWhisk API (OW function registration)

8. Function invocation

a. When a function is invoked, if there are no Pods warm or pre-warm to execute that function,

OpenWhisk triggers the creation of a Pod to execute the function invoking K8s API on the

cluster where OpenWhisk is running (Cluster A).

b. The creation of a Pod in the cluster is intercepted by the MutationWebhook which adds:

i. The scheduler information to the pod (e.g., energy efficient scheduler)

ii. Co-allocation strategies to the pod (e.g., co-allocate the pod with pods that do not

consume network bandwidth)

c. The Scheduler pod creates the pod in one node in the cluster and OpenWhisk can execute

the function

2.1.2 Sample sequence flow
The following diagram includes more detailed steps, as well as interfaces and sequences of operations
in one diagram. This will aid in the creation of an integrated flow to complete the needed transfer of
functionalities from WP3 to WP4, starting from the description of the application to be deployed as
well as including the other necessary options and annotations of the developer, while alerting the
latter about the status in each step. The diagram is presented in Figure 4.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 23

Figure 4 - WP3/4 Integration Diagram for Application Deployment

The developer uses the Design Environment Control UI to select a set of flows to build. The selected flow
ids are sent to the Serverless Function Generator (SFG) component, which orchestrates the process of
building the related code or image artefacts with the help of a Jenkins job. Upon finalization of the process,
the artefacts are stored in the image registry (if they are images) or the code repository as a needed code
package. As part of the process, the related functions (or OpenWhisk actions) are also registered in a test
OpenWhisk environment. This is necessary for testing the actual implementation as a function execution
before submitting to the production cluster. Upon finalization the deployable artefact locations are returned
to the Control UI to be used later on. Through the Control UI, the developer may trigger the execution of the
respective deployed version of the function in the test OW platform.

Once all tests have finished, the developer can initiate the formal deployment process. This starts with the
triggering of an operation to create the respective application graph from the selected flows. The set of the
flows, along with the deployable artefact location per flow, are forwarded from the Control UI to the
Semantic Extractor (SE). The latter processes the flows and extracts their structure from the Node-RED
JSON specification, as well as any other annotation used by the developer while creating the flow (as
detailed in D3.1). The relevant information is mapped to the ontological triples based on the PHYSICS
ontology and is forwarded to the WP4 Reasoning Framework for storage. The reasoning framework also
assigns a unique app ID to the flow set, which is returned to the SE and from there to the Control UI. This is
the main identifier through which follow-up queries can be performed towards the Reasoning Framework
(RF). Once this process is completed, the developer can initialize the actual deployment for that app ID. If
an update of the application is needed, the call to the SE should include that app ID to be used in the calls.

During the deployment process, the respective operation is initiated by the Control UI, giving at the same
time a return URL in which it should be asynchronously notified for the status of the deployment. Each
involved component in that process should use that URL to indicate success or failure of the intermediate
steps. The first receiving component from WP4 is the Reasoning Engine, which retrieves all triples for the
specified app ID, applies the related inference and forwards the relevant description to the Placement
Optimizer for placement. The placement is finalized and forwarded to the Orchestrator, which may query
the RF for details of the defined cluster (e.g., endpoint, credentials etc.). In the final description sent to the
Orchestrator, the location of the deployable artefacts for each function or flow needs to be maintained, since
it is needed for the registration process. Once the creation of the relevant FaaS platform is finalized, the

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 24

Orchestrator can extract the function information from the provided JSON description of the app and
perform the relevant registration calls, including the artefact location, towards the OpenWhisk interface. In
this step, the application functions and flows are deployed on the target platform and are ready to be used.

2.2 Sample application of the integrated PHYSICS solution framework
In order to proceed with the integration, a sample application that uses the capabilities o f the
integrated PHYSICS solution framework was created. The purpose of this application is primarily to
test new features of the PHYSICS platform, such as the inclusion of benchmarking results and
resource profiling, the ability to dynamically place functions and invoke them in the scope of one
application etc., as well as annotations passing from the developer in the Design Environment to WP4
and 5. These annotations may help decide on various aspects such as placement, scheduling, sizing
etc., so the main purpose of integration in this case relates to how these annotations are propagated
from the beginning to the respective component that needs to act upon them. The sample application
consists of 2 main flows, aiming to test basic functionalities such as image building etc., as well as the
creation of the app graph (including annotations), the registration to the Reasoning Framework,
registration and execution to OpenWhisk of a custom image.

2.2.1 Sample sequence flow
The sample Node-RED flow (Figure 5) aims to test the way a Node-RED flow is converted to a function.
Things to test in this case primarily refer to how:

 The build process for the Node-RED runtime image creation
 The OW interface and argument passing
 The included annotations are:

o Importance=high flow level value to be taken under consideration by the scheduling
layers

o OptimizationGoal (performance), to be taken under consideration by the
optimization placement layers of WP4

o Sizing annotator node for setting Memory=512 MB and Timeout=220000, to be
applied in the Node-RED function registration process

o Executor mode for indicating Node-RED flow as function execution
o Locality=aws, to be taken under consideration by the placement layers of WP4

 The specific function has also undergone the process of the Performance Pipeline, described
in D3.2, to extract benchmarking results on both available clusters (AWS and Azure) as well
as to extract the resource profile of the specific function. This is needed for the function to
participate in the placement optimization and coallocation strategies .

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 25

Figure 5 - Sample Node-RED function flow

2.2.2 Orchestrator Flow
The second flow (Figure 6) refers to a sample Node-RED flow function that needs to orchestrate and
invoke actions in the same application graph, wrapped around an OW skeleton pattern. The main goal
of this flow is to test the dynamic placement of the functions in the graph in a multi-cluster setting.
Given that the developer may not know beforehand where each function will be placed on a multi -
cluster setting (due to the PHYSICS global placement optimization process), they cannot dictate the
location of the invoked function at design time. They could do that through the locality annotation
however this would negate the benefits of the multi-cluster ability. Things to test in this case include:

 The Dynamic Orchestrator pattern, defined in D3.2, and how the information can be
propagated through the respective layers, indicatively

o Semantic annotations inside the flow
o Application graph creation through the Semantic Extractor
o Storage and manipulation by the Reasoning Framework to reach the Orchestrator of

WP4
 Dynamic configuration of the created orchestrator function with information on the location

of the invoked function by the Orchestrator and successful execution of the application in the
two available clusters, with one function being able to invoke the other remotely placed
function without using static configuration. This is needed for the Adaptive Platform
Deployment process

 The flow includes also a QoSRequirements semantic node, which indicates the need for an
average wait time less than 200 milliseconds, a setting that can be used in the Runtime
Adaptation process.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 26

Figure 6 - Sample Node-RED Orchestrator flow as Function

Through the availability of the resource profile of at least one function, we can also test the optimized
cluster operation and the co-allocation scenarios, provided that the function for which the
performance profile exists is scheduled on the respective cluster that includes this mechanism and is
executed alongside other functions for which their profile is known.

Thus, the setup of this test application and the careful selection of the parameters included in its
functions enables the testing of all the main parts of the PHYSICS platform and newly added Y3
features.

2.3 Reusable Artefacts MarketPlace (RAMP) overview

The Reusable Artefacts MarketPlace (RAMP) serves as a dynamic platform that bridges the gap
between the project's solutions, results, and use cases, and the external stakeholders and initiatives
that can leverage these outcomes. It is an ecosystem that fosters the growth and development of
reusable low-code artefacts. These artefacts facilitate the creation of serverless applications or aid
their transition to the serverless cloud paradigm.
RAMP's design encourages collaboration and innovation. It enables external project entities to host
their solutions, thereby expanding the range of available artefacts. Moreover, it provides an interface
for these entities to request extensions or technical assistance for an existing artefact, fostering a
collaborative environment that promotes continuous improvement and adaptation. RAMP's progress
and advancements made during the second period of the project are detailed in Section 4. For a
concise understanding of its structure, refer to Figure 7 which provides a high-level overview of the
platform's architecture.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 27

Figure 7 - RAMP High Level Overview

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 28

3. INTEGRATED PHYSICS SOLUTION FRAMEWORK
IMPLEMENTATION

This chapter covers the design and implementation of the components and tools that together form
the second and final version of the prototype of the integrated PHYSICS solution framework.
Typically, most of the components/tools expose their own interfaces (e.g., REST API) to other (client)
components/tools directly for a proper invocation and integration.
The following sections describe each component/tool through an overview, information about its
technology architecture (design and implementation), a summary of the exposed interfaces (e.g.,
REST API endpoints), and information about its distribution and configuration for deployment.
The components/tools will be described in a sequential and logical order (from top to bottom)
aligned to the logical layers of the PHYSICS RA.

3.1 Visual Workflow

3.1.1 Overview
Visual Workflow (also known as Design Environment) is a web application, which embeds Node-RED

environment, communicates with the API of Node-RED and provides features to build and deploy

flows to the other PHYSICS Components.

3.1.2 Technology architecture
Visual workflow consists of the following major components:

1. Control UI (Frontend application)

2. Serverless Function Generator (SFG) (Backend for Control UI)

3. Artifact Query Service (Microservice)

4. Graph Draft Service (Microservice)

5. Function Service (Microservice)

6. Build Result Processor (Microservice)

7. Artifact Processor (Microservice)

8. Graph Processor (Microservice)

9. Import Image (Microservice)

10. Cluster Service (Microservice)

The entry point is the Control UI, which communicate through the REST API with SFG. SFG uses REST

API to communicate with Artifact Query Service, Graph Draft Service, Function Service, Semantic

Extractor, Inference Engine, Import Image, Cluster service and Jenkins. Build Result Processor reacts

on queue messages, which are emitted after successful Jenkins builds and pushes it to the queues,

which are listened to by the Artifact Processor and Graph Processor. Deployment state reacts on a

queue message to update the state on the WebSocket of the deployment state of the graph . The

following Figure 1Figure 8 shows a graphical representation of the components integration.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 29

Figure 8 - Visual Workflow components integration schema

3.1.3 Interfaces/API

 Control UI API
Control UI is a frontend application, which provides a user interface to interact with Node -RED and

all activities regarding triggering building, testing and deploying flows

 SFG API
 Get Flows

Retrieves flows from Node-RED environment and returns it with build information from database.

Table 1 - VW/API- get flow

Path /flow

Method GET
Request body -
Success response HTTP 200 with response body:

{
 “success”: boolean,
 “value”: Flow[]
}

Error response HTTP 404 when Node-RED or database is unavailable

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 30

 Get Subflow
Retrieves flows from Node-RED environment and returns it with build information from database.

Table 2 - VW/API get subflow

Path /subflow

Method GET
Request body -
Success response HTTP 200 with response body:

{
 “success”: boolean,
 “value”: [
 {
 “id”: string,
 “name”: string,
 “info”: string,
 “category”: string,
]
}

Error response HTTP 404 when Node-RED or database is unavailable

 Build Flows
Receives flow id as input, triggers Jenkins build for given flow and returns URL to Jenkins job.

Table 3 - VW/API- build flow

Path /build

Method POST
Request body {

 "flowId": string
 “branchName”: string
}

Success response HTTP 200 with response body:
{
 "results": "url_to_jenkins_job",
}

Error response HTTP 500 if triggering job failed, because it’s the only
status we get from Jenkins as a response, so we can’t
figure out the reason.

 Get Build Status

Emits status of current Jenkins jobs

Table 4 - VW/API- build status

Path /build-status

Method POST
Request body -
Success response Message Event with data:

{
 status: BuildStatus,
 “flowId”: string

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 31

}
Error response Message Event with error message.

 Delete build

Emits status of current Jenkins jobs

Table 5 - VW/API- delete build

Path /build/:id

Method DELETE
Request body -
Success response HTTP 200 with response body:

“id_artifact_removed”
Error response HTTP 404 if no artifact present

 Deploy App Graph

Receives graph id and triggers deployment process of WP4 for given graph.

Table 6 - VW/API- deploy app graph

Path /deployment

Method POST
Request body {

 "graphId": string
}

Success response HTTP 200 with text response: “Success message”
Error response Forwarded from WP4

 Get Deploy app graph state
Emits status of current status of the deploy

Table 7 - VW/API- deploy status

Path /deployment-status

Method Server Side Event
Request body -
Success response Message Event with data:

{
 id: string,
 data: {
 stepName: string,
 success: boolean,
 message: string,
 isLastStep: boolean,
 applicationId: string,
 branch: string
 }
}

Error response Message Event with error message.

 Get last status of Deploy app graph state
Get last status of status of the deploy graph

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 32

Table 8 - VW/API- last state of deploy status

Path /deployment-status/last-status/:branchName

Method GET
Request body -
Success response HTTP 200 with text response:

[
 {
 id: string,
 data: {
 stepName: string,
 success: boolean,
 message: string,
 isLastStep: boolean,
 applicationId: string,
 branch: string
 }
 }
]

Error response Message Event with error message.

 Create Graph
Receives flows as input and if they already built create graphs in Semantic Extractor, otherwise

triggers build for all unbuilt flows and create graph draft in database.

Table 9 - VW/API-create graph

Path /graph

Method POST
Request body {

 "flows": Flow[],
}

Success response HTTP 200 with text response: “Graph draft created and
builds triggered for unbuilt flows” or “Graph created with
id: …”

Error response HTTP 404 in case of any connection problems

 Get All Created Graphs
Returns all created graphs.

Table 10 - VW/API- get all created graphs

Path /graph

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 "id": string,
 "flows": {

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 33

 “flow”: Flow,
 “url”: string
 }
 }
]

Error response HTTP 404 in case of any connection problems

 Get All Graph Drafts
Returns all graphs, which are still waiting for some of its flows to be built.

Table 11 - VW/API- get all graph drafts

Path /graph/draft

Method GET
Request body -
Success response HTTP 200 with response body:

{
 "builtFlows": {
 “flow”: Flow,
 “url”: string
 }[],
 "unbuiltFlows": Flow[]
 }

Error response HTTP 404 in case of any connection problems

 Get Functions
Returns all available functions’ names.

Table 12 - VW/API get functions

Path /function

Method GET
Request body -
Success response HTTP 200 with response body:

string[] as function names
Error response HTTP 404 in case of any connection problems

 Invoke Functions
Receives function name and parameters, invoke the function and returns activation id of this call

Table 13 - VW/API- invoke functions

Path /function/invoke

Method POST
Request body {

 functionName: string,
 params: JSON object
}

Success response HTTP 200 with response body:
String as activation id

Error response HTTP 404 in case of any connection problems

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 34

 Get function activation result
Receives activation id as query parameter and return result of given function activation

Table 14 - VW/API- get function activation

Path /function/:activationId

Method GET
Request body -
Success response HTTP 200 with response body containing function result
Error response HTTP 404 in case of any connection problems

 Get cluster list
Retrieve all defined external cluster.

Table 15 - VW/API- get clusters

Path /function/clusters

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 cluster: string,
 owurl: string,
 credid: string,
 remote: boolean
 }
]

Error response HTTP 404 in case of any connection problems

 Get flow file
Retrieve the requested flowfile

Table 16 - VW/API- get flow file

Path /function/flowfile/:flowFile

Method GET
Request body -
Success response HTTP 200 with response body:

{
 flowfile: string
}

Error response HTTP 404 in case of any connection problems

 Start performance pipeline
Request the start of the performance pipeline.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 35

Table 17 - VW/API- start performance pipeline

Path /function/start-performance

Method POST
Request body {

 functionName: string,
 params: Record<string, string>,
 remote: boolean,
 owurl: string,
 credid: string,,
 dockerimagename: string,
 cluster: string,
 openwiskTest: boolean,
 functionMemory: number,
 testDuration: number,
 testFunctionPayload: string
}

Success response HTTP 200 with response body:
{
 "results": "url_to_jenkins_job"
}

Error response HTTP 404 in case of any connection problems

 Get performance result
Request the result of the performance pipeline.

Table 18 - VW/API- get performance result

Path /function/performance-result

Method POST
Request body {

 jobUrl: string
}

Success response HTTP 200 with response body:
{
 activation: string,
 result: string
}

Error response HTTP 404 in case of any connection problems

 Get performance pipeline status
Emits status of current Jenkins jobs

Table 19 - VW/API- performance pipeline status

Path /performance-pipeline-status

Method Server Side Event
Request body -
Success response Message Event with data:

{
 id: string,
 status: {

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 36

 state: string,
 url: string,
 progress: number
 }
}

Error response Message Event with error message.

 Get all performance pipeline status
Retrieve all running performance pipeline status for the local user.

Table 20 - VW/API- get all performance pipeline status

Path /performance-pipeline-status/getAll

Method GET
Request body -
Success response Message Event with data:

[
 {
 id: string,
 status: {
 state: string,
 url: string,
 progress: number
 }
 }
]

Error response Message Event with error message.

 Get list of imported image by user
Get the list of the user imported image with the Keycloak Bearer token, in the “Authorization” header.

Table 21 - VW/API- get imported image

Path /import-image

Method GET
Request body
Success response HTTP 200 with response body:

{
 “success”: boolean,
 “value”: [
 {
 _id: string,
 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
 {
]
}

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 37

Error response HTTP 404 in case of any connection problems

 Start request for import image
Start the imported image pipeline with the Keycloak Bearer token, in the “Authorization” header.

Table 22 - VW/API- Import image

Path /import-image/:branchName

Method POST
Request body {

 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
}

Success response HTTP 200 with response body:
{
 “success”: boolean,
 “value”: [
 {
 _id: string,
 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
 }
]
}

Error response HTTP 404 in case of any connection problems

 Get docker image
Check if the image requested by the user is already present with the Keycloak Bearer token, in the

“Authorization” header.

Table 23 - VW/API- Check if import image already exists

Path /import-image/docker-
image?dockerImage=string&version=string

Method GET
Request body -
Success response HTTP 200 with response body:

{
 registry: string,
 public: string,
 repo: string,
 credid: string,
 credDescription: string,

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 38

 dockerimage: string,
 version: string,
 actionname: string,
 externalregistry: string
}

Error response HTTP 404 in case of any connection problems

 Get all imported image
Get all imported image.

Table 24 - VW/API - Get all imported images

Path /import-image/all

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 _id: string,
 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
 {
]

Error response HTTP 404 in case of any connection problems

 Get jenkins credentials id created by the user
Get all created Jenkins credentials id by the user with the Keycloak Bearer token, in the “Authorization”

header.

Table 25 - VW/API - Get credentials id

Path /import-image/cred-id

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 id: string,
 description: string
 {
]

Error response HTTP 404 in case of any connection problems

 Create jenkins credentials id
Create Jenkins credentials id with the Keycloak Bearer token, in the “Authorization” header.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 39

Table 26 - VW/API - Create credentials id

Path /import-image/cred-id/:userName

Method POST
Request body {

 description: string,
 username: string,
 password: string
}

Success response HTTP 200 with response body:
{
 id: string
{

Error response HTTP 404 in case of any connection problems

 Get import image status
Emits status of current Jenkins jobs.

Table 27 - VW/API- import image status

Path /import-image-status

Method Server Side Event
Request body -
Success response Message Event with data:

{
 imgId: string,
 status: {
 state: string,
 url: string,
 progress: number
 }
}

Error response Message Event with error message.

 Export Node-RED subflow
Generate a downloadable package of the subflow.

Table 28 - VW/API- export subflow

Path /npm-packages/:flowId

Method Server Side Event
Request body {

 name: string,
 version: string,
 color: string,
 category: string
}

Success response HTTP 200 with response body:
{
 success: boolean,
 value: {
 msg: string

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 40

 },
 file: {
 name: string,
 data: Buffer
 }
}

Error response HTTP 404 in case of any connection problems

Artifact Query Service API
 Create Artifact

Create new artifact based on incoming flow.

Table 29 - VW/API- create artifact

Path /artifact

Method POST
Request body {

 flows: Flow[],
 logClientId: string
}

Success response HTTP 200 with response body:
[
 {
 flow: Flow,
 label?: string,
 url?: string
 }
]

Error response HTTP 404 in case of any connection problems

 Get Artifact
Return artifact from database for given flowfile.

Table 30 - VW/API- get artifact

Path /artifact/:flowFile

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 flow: Flow,
 label?: string,
 url?: string
 }
]

Error response HTTP 404 in case of any connection problems

 Delete Artifact
Delete artifact from database for given data.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 41

Table 31 - VW/API- delete artifact

Path /artifact

Method DELETE
Request body {

 documentId: string,
 logClientId: string
}

Success response HTTP 200 with response body: Number of elements
removed

Error response HTTP 404 in case of any connection problems

 Graph Draft Service API
 Get Draft

Returns all graph drafts from database.

Table 32 - VW/API- get draft service

Path /draft

Method GET
Request body -
Success response HTTP 200 with response body:

{
 "builtFlows": {
 “flow”: Flow,
 “url”: string
 }[],
 "unbuiltFlows": Flow[]
 }

Error response HTTP 404 in case of any connection problems

 Create Drafts
Create a graph draft from database.

Table 33 - VW/API- create graph draft

Path /draft

Method POST
Request body {

 builtFlows: Artifact[],
 unbuiltFlows: Flow[]
 }

Success response HTTP 200 without response body
Error response HTTP 404 in case of any connection problems

 Function Service API
 Get Functions

Returns all available functions’ names.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 42

Table 34 - VW/API- get function service

Path /function

Method GET
Request body -
Success response HTTP 200 with response body:

string[] as function names
Error response HTTP 404 in case of any connection problems

 Invoke Functions
Receives function name and parameters, invokes the function and returns activation id of this call .

Table 35 - VW/API- invoke function

Path /function/invoke

Method POST
Request body {

 functionName: string,
 params: JSON object
}

Success response HTTP 200 with response body:
String as activation id

Error response HTTP 404 in case of any connection problems

 Get function activation result
Receives activation id as query parameter and return result of given function activation .

Table 36 - VW/API- get activationID

Path /function/:activationId

Method GET
Request body -
Success response HTTP 200 with response body containing function result
Error response HTTP 404 in case of any connection problems

 Cluster Service API
 Get Clusters

Returns all available clusters.

Table 37 - VW/API- get all clusters service

Path /cluster

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 cluster: string,
 owurl: string,
 credid: string,
 remote: boolean

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 43

 }
]

Error response HTTP 404 in case of any connection problems

 Import Image API
 Get list of imported images by user

Retrieve the imported image on db. The request is protected with the Keycloak Bearer token, in the

“Authorization” header.

Table 38 - VW/API- get imported image

Path /import-image

Method GET
Request body
Success response HTTP 200 with response body:

[
 {
 _id: string,
 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
 {
]

Error response HTTP 404 in case of any connection problems

 Insert import image
Insert the imported image on db. The request is protected with the Keycloak Bearer token, in the

“Authorization” header.

Table 39 - VW/API- Insert import image

Path /import-image

Method POST
Request body {

 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
}

Success response HTTP 200 with response body:
{
 _id: string,
 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 44

 jobUrl?: string,
 oldaction?: string
}

Error response HTTP 404 in case of any connection problems

 Update import image
Update the imported image on db. The request is protected with the Keycloak Bearer token, in the

“Authorization” header.

Table 40 - VW/API- Update import image

Path /import-image/:id

Method PUT
Request body {

 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
}

Success response HTTP 200if successfully updated
Error response HTTP 404 in case of any connection problems

 Get docker image

Check if the image requested by the user is already present with the Keycloak Bearer token, in the

“Authorization” header.

Table 41 - VW/API- Check if import image already exists

Path /import-image/docker-
image?dockerImage=string&version=string

Method GET
Request body -
Success response HTTP 200 with response body:

{
 registry: string,
 public: string,
 repo: string,
 credid: string,
 credDescription: string,
 dockerimage: string,
 version: string,
 actionname: string,
 externalregistry: string
}

Error response HTTP 404 in case of any connection problems

 Get all imported image
Get all imported images.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 45

Table 42 - VW/API - Get all imported images

Path /import-image/all

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 _id: string,
 user: string,
 buildInfo: BuildInfoDto,
 buildDate: Date,
 imageStatus?: ImageStatus,
 jobUrl?: string,
 oldaction?: string
 {
]

Error response HTTP 404 in case of any connection problems

 Get jenkins credentials id created by the user
Get all created jenkins credentials id by the user with the Keycloak Bearer token, in the “Authorization”

header.

Table 43 - VW/API - Get credentials id

Path /import-image/cred-id

Method GET
Request body -
Success response HTTP 200 with response body:

[
 {
 id: string,
 description: string
 {
]

Error response HTTP 404 in case of any connection problems

 Build Result Processor API

The Build Result Processor reacts to the messages on queue emitted after successful Jenkins Build.

Format of the message is described here:

https://plugins.jenkins.io/mq-notifier/

We are interested only in the message with state: ‘COMPLETED” and push mapped message to queues

for artifact processor and graph processor

 Deployment status API

Deployment status exposes a WebSocket with a query branch; for each WS connection the application

creates a queue on RabbitMQ bound to the exchange deployment-status and sends back the queue object

by the the tag branch in rabbitMQ object. The created queue will be closed when the WS connection is ended.

https://plugins.jenkins.io/mq-notifier/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 46

{

 stepName: string,

 success: boolean,

 message: string,

 isLastStep: boolean,

 applicationId: string,

 branch: string

}

 Artifact Processor API

Artifact Processor reacts on the message on queue emitted from Build Result Processor in format:

{

 “flow”: Flow,

 “url”: string

 }

 Graph Processor API

Graph Processor reacts on the message on queue emitted from Build Result Processor in format:

{

 “flow”: Flow,

 “url”: string

 }

3.1.4 Distribution, deployment and configuration
All subcomponents are prepared as separated docker images. Artifact Query Service, Graph Draft
Service, Function Service, Build Result Processor, Artifact Processor, Graph Processor, Import Image
and Cluster Service are hosted on the PHYSICS Kubernetes Cluster. SFG and Control UI are meant to
be hosted locally on the user machine together with the Node-RED environment. The whole local
environment can be started utilizing docker-compose files.

3.1.5 Control UI
Control UI consists of two main tabs: one with Node-RED environment and second with Admin Panel,
which contains all logic for communication within the PHYSICS platform.
In the following the two main tabs are described in detail:

 Node-RED
Embedded Node-RED environment, which allows developers to use it as a standalone application.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 47

Figure 9 - Node-RED environment

 Build tab in Admin Panel

Dialog where developers can choose flow to build artifacts.

Figure 10 - Build flow

 Test tab in Admin Panel

Dialog where developers can test flows deployed to the test OpenWhisk environment or request a
performance test on local FaaS platforms or on a remote cluster

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 48

Figure 11 - Test flow

 Graph tab in Admin Panel
Dialog where developers can see all the draft and created graphs.

Figure 12 - See created and draft graphs

Developers can also create new graphs here.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 49

Figure 13 - Create a new graph

 Import image in Admin Panel

Where the user can view all requested import image and request a new one

Figure 14 - Import image

 Export subflow in Admin Panel

Where the user can export the local subflow created on Node-RED

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 50

Figure 15 - Export subflow

 Dashboard

Where the user can see the performance of local running flow on Node-RED

Figure 16 - Dashboard

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 51

3.1.6 Cloud version

Figure 17 - Control UI cloud

With the aim of better usability, portability, accessibility and exploitation, the Control UI was
redesigned in a full cloud version architecture. The main features are still the same but the UI is one
for all the users as the backend, which is redesigned to be a Nestjs GraphQL compliance application
deployed on Apollo server. The resources, described in the following SDL schema, are now available
on “/graphql” in POST and it was secured with a JWT Token released by the securing application of
the FaaS Physics environment.

type JenkinsJobState {

 state: String!

 url: String

 result: String

 progress: Int

 lastUpdate: DateTime

}

A date-time string at UTC, such as 2019-12-03T09:54:33Z, compliant with the date-time format.

scalar DateTime

type UserCreation {

 username: String!

 isUserRegistered: Boolean!

 isUserInBranch: Boolean

}

type FlowNode {

 id: String!

 name: String

 type: String!

 label: String

 info: String

 category: String!

 wires: [[String!]!]!

 func: String

 libs: [Lib!]

 z: String

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 52

 subflow: Boolean

 nodeRed: String

}

type ArtifactInformation {

 _id: String!

 url: String!

 flowFile: String

 timestamp: DateTime!

}

Node-red flow with artifact informations

type FlowWithBuiltInformation {

 id: String!

 flow: FlowNode!

 artifact: [ArtifactInformation!]

 state: JenkinsJobState

 nodeRed: Boolean

}

type Lib {

 var: String!

 module: String!

}

type SubflowInfo {

 id: String!

 name: String

 info: String

 category: String

}

type Cluster {

 _id: String

 cluster: String!

 owurl: String!

 credid: String!

 remote: Boolean!

}

type DePod {

 id: String!

 username: String!

 jenkinsStatus: JenkinsJobState

}

type DePodStatus {

 AGE: String

 NAME: String

 READY: String

 UP_TO_DATE: String

 AVAILABLE: String

}

type PerformanceTest {

 cluster: Cluster!

 functionMemory: String

 testDuration: String

 activation: String

 jenkinsStatus: JenkinsJobState

}

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 53

type FunctionTested {

 id: String

 username: String!

 functionName: String!

 testType: String!

 activationId: String

 timeStart: DateTime!

 params: String!

 result: String

 success: Boolean

 performance: PerformanceTest

}

type ImportImageFormData {

 actionname: String!

 externalregistry: Boolean!

 registry: String!

 public: Boolean!

 repo: String!

 dockerimage: String!

 useCredential: Boolean!

 version: String!

 jenkinsCredentialId: String!

}

type ImportImage {

 id: String

 username: String!

 formData: ImportImageFormData!

 buildDate: DateTime!

 oldaction: String

 jenkinsStatus: JenkinsJobState

}

type JenkinsCredentials {

 _id: String!

 username: String!

 jenkinsCredentialId: String!

 label: String!

}

type Query {

 # Retrieves user POD based on the JWT token

 dePodByUser: DePod

 # Retrieve the status of the user POD on the cluster based on the JWT token

 dePodStatus: DePodStatus!

 # Retrieve if the user based on keycloak JWT had already make a login on gogs

 isRegistered: UserCreation!

 # Retrieves user flows based on keycloak JWT from Node-RED environment and returns it with

build information from database

 flows: [FlowWithBuiltInformation!]!

 # Retrieves user subflows based on keycloak JWT from Node-RED environment

 subFlows: [SubflowInfo!]!

 # Check if the username in input is available on keycloak

 isUsernameAvailable(username: String!): Boolean!

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 54

 # Check if the email in input is available on keycloak

 isEmailAvailable(email: String!): Boolean!

 # Check if the password in input, based on user in keycloak JWT is correct

 isValidPassword(password: String!): Boolean!

 # Retrieves users test based on keycloak JWT

 functionsTested: [FunctionTested!]!

 # Returns all available functions' names

 functions: [String!]!

 # Retrieve all defined external cluster

 clusters: [Cluster!]!

 # Get the list of the user's imported images based on keycloak JWT imported image

 importImages: [ImportImage!]!

 # Get the all the configured user's jenkins credetntials

 getCredentials: [JenkinsCredentials!]!

 # Get a specific configured user's jenkins credetntials by the id

 getCredential(id: ID!): JenkinsCredentials!

 # Get the URL for the download of the USER GUIDE

 getUserGuide: String!

}

type Mutation {

 # Start the user POD based on the JWT token

 startDePod: Boolean!

 # Stop the user POD based on the JWT token

 stopDePod: Boolean!

 # Request the creation of the user POD by starting the pipeline for the creation

 createDePod(

 # The user password needed for start the pipeline for the POD creation

 password: String!

): DePod!

 # Receives flowId as input, triggers Jenkins build for given flow and returns URL to Jenkins

job

 buildFlow(flowId: String!): String!

 # Delete a specific artifact

 removeArtifact(artifactId: String!): String!

 # Create a user on keycloak

 createUser(keycloakUserInput: KeycloakUserInput!): Boolean!

 # Receives function test input, invoke the function and returns the function input test data of

the stared test

 invoke(invokeInput: InvokeInput!): FunctionTested!

 # Delete function tested by the id in input

 deleteFunctionTest(id: String!): FunctionTested!

 # Start the pipeline for importing image

 invokeImportImage(importImageDataInput: ImportImageDataInput!): ImportImage!

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 55

}

input KeycloakUserInput {

 firstName: String!

 lastName: String!

 email: String!

 enabled: Boolean

 username: String!

 groups: [String!]

 emailVerified: Boolean

 credentials: [Credentials!]

 attributes: Attributes

}

input Credentials {

 type: String!

 value: String!

 temporary: Boolean!

}

input Attributes {

 uidNumber: String!

 homeDirectory: String!

 gidNumber: String!

}

input InvokeInput {

 functionName: String!

 params: String!

 testType: String!

 clusters: String!

 testDuration: String!

 functionMemory: String!

}

input ImportImageDataInput {

 actionname: String!

 externalregistry: Boolean!

 public: Boolean!

 registry: String!

 repo: String!

 dockerimage: String!

 version: String!

 useCredential: Boolean!

 oldaction: String

 jenkinsCredentialId: String

 jenkinsLabel: String

 jenkinsUser: String

 jenkinsPwd: String

}

3.2 Semantic Extractor

3.2.1 Overview
The Semantic Extractor (SE) is an intermediate component that aims at transforming the Node -RED
defined sequences and annotations into the semantic structure needed by the Reasoning Framework
(RF) of T4.1. As such it implements the first stage of the specification transformation described in
Section 2.1. The SE receives the flows that need transformation from the Design Environment,
processes the respective JSON structure and maps the declared annotations to the necessary JSON-

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 56

LD format that describes the semantic triples. The SE also processes the structure of the graph, based
on the Node-RED specification for function wiring, and stores this structure in the RF .
In the final version of the component, it was updated in order to reflect and include new additions in
terms of semantic nodes, following the generalized process described in D3.2, as well as incorporate
inside the application graph details on a function performance. This relates to performance statistics
relevant to the benchmarking of the function to one or more available clusters, as well as the profiling
of the function usage on the underlying resources. These two advancements were dictated by the
need to integrate the Performance Pipeline described in D3.2, through which the developer can
investigate performance issues of a given function. This information is then included in the app graph
in order to enable better selection of the candidate clusters for deployment as well as better co-
allocation of function execution on the available nodes.

3.2.2 Technology architecture
The SE is implemented as a Node-RED flow, since Node-RED is by default very good for processing
structures and annotations. This way, the implemented flow can be included inside the Design

Environment, if needed for minimizing the number of services running, or it can be deployed as a

separate microservice for better modularity and independence of deployment, update etc. The

extractor is based mainly on the jsonata3 and jsonld.js4 libraries for transformation, semantics

extraction, and validation of the resulting json-ld application model, along with a custom parsing logic

for annotation extraction from code included in function nodes. Other helper libraries included are

stdlib-js5, validate.io6, clean-deep7 and json-schema-library8, which help implement several filtering,

validation and transformation functions. Several pieces of custom logic for semantic extraction are

implemented, based on the input structures from Node-RED, to produce an output that abides by the

PHYSICS ontology. The Semantic Extractor is a stateless service, i.e. it does not need a database or

any state to be associated with it. Any relevant information is retrieved from external databases (e.g.

the Performance database of PEF). Hence it can be easily scaled according to the needs for translation

between incoming Node-RED function flows and the according PHYSICS application graph.

3.2.3 Interfaces/API
The SE includes one method that appears in the following table.

Table 44 - SE-API-semantic retrieval

Path /extract

Method POST
Request body -{

{“flows”:[
 “flowID”: id of the flow from Node-RED
 “flowName”: name of the flow from Node-RED
 “flow”: JSON output of Node-RED flow,
 “artefact”: URL of the image corresponding to this
function,
 “type”: either code or image,

3 http://docs.jsonata.org/overview.html
4 https://github.com/digitalbazaar/jsonld.js
5 https://github.com/stdlib-js
6 https://www.npmjs.com/package/validate.io
7 https://www.npmjs.com/package/clean-deep
8 https://www.npmjs.com/package/json-schema-library

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 57

].
 “userID/branchID”: id of a user or branch,
 “appID”: optional in case we need to update an app id
 }

Success response HTTP 200 with response body the app ID as generated from
the Reasoning Framework if not an update:
{
 “appID”: “dsdsuJJJjaj….”
 }

Error response HTTP 40X

An identical second method (/transform) was added in Y3, so that testing can be performed in an
easier manner, without having to forward the test app graphs to the RF.

3.2.4 Distribution, deployment and configuration
The SE is currently packaged as a Node-RED flow. Initialization is partially done inside the flow,

where any needed internal aspects, such as supported nodes list, JSON-LD context, and reusable

utilities, are injected in the flow context at deployment. Each function node imports node modules

through its setup pane, and reused logic through destructuring of the flow context.

The only required configuration for the semantic extractor is the endpoints of the Reasoning Engine.

For cases where the flow to be submitted is not provided, but only a reference/ID to it is, the target

Node-RED environment from where the flow is to be retrieved should also be provided in the

configuration. The configuration can either be done within the flow, or through an environment file.

The SE includes a source code project in which all the required files are provided (e.g. flows file,

settings file, Dockerfile, package.json with package dependencies in node.js etc.). The SE can be

executed as a Node-RED flow, but also as a container that includes the Node-RED environment, the

npm package dependencies and the SE flow itself. The npm packages mentioned in section 3.2.2 are

installed in the Node-RED environment the SE is based on. The resulting container image can be

deployed along with the main graphical composer and reasoning engine and is included in the

relevant compose file of the overall Design Environment. Relevant instructions are provided in the

project code repository and appear in the following figure.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 58

Figure 18 - Build and Execution Process for the Semantic Extractor

Updating of the relevant flows in the context of PHYSICS is applied through a dedicated Jenkins

pipeline.

3.2.5 Sample Application Transformation
In this section we provide an example application transformation for the sample application defined

in Section 2. The sample application consists of one Hello World function as well as an Orchestrator

function that calls dynamically the Hello World one. The corresponding input from the Design

Environment app creation appears in Figure 19. The flow tab has all the information as this is

extracted from the Node-RED specification of the flow and is hidden for visibility purposes.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 59

Figure 19 - Example DE output towards SE for the sample App

Given each flow input, the extractor provides the corresponding JSON-LD output, which is JSON-LD

that follows the current ontology. This JSON-LD is a serialization format of semantic triples that are

inputs for the reasoning engine. In all cases, the different respective annotations used in each flow

are mapped to the respective triples, as indicated in Figure 20Figure 20 - SE Annotated Output Graph

towards RF. The SE parses the structure of the original flow description, and makes a transformation

based on the type of Node. Some nodes are interpreted as interfaces, while others are parsed for a

specific purpose, such as the semantic annotator nodes, and others may be ignored completely, such

as the comments. The wires connecting the nodes are also parsed as interfaces, depending on the

types of nodes they connect. Each function node has its code parsed for extractable function-level

annotations. These annotations are then interpreted and added as the appropriate attribute to the

function. Similarly, the annotator nodes are parsed for their contained environment information, and

the contained properties are interpreted and added to the Flow. The app graph also includes

information dynamically retrieved by the SE from the PEF, exploiting the according APIs described

in Section 3.10, in order to extract benchmark and profiling information available for the functions

included in the app, if these are available.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 60

Figure 20 - SE Annotated Output Graph towards RF

3.3 Design Patterns

3.3.1 Overview
The Design Patterns aim at offering reusable and parametric operational capabilities to the

developers to enable an easier and more abstracted flow creation process. Patterns have been

created for workflow enhancement, load distribution, message manipulation etc. In the final version,

new patterns have been included to automate aspects such as routing between available endpoints,

dynamic orchestration of functions etc.

3.3.2 Technology architecture
The patterns are primarily Node-RED flows and subflows so that they can be integrated directly into

the PHYSICS Design Environment. They can be executed as services or as functions, where applicable.

The patterns are available in the PHYSICS Gogs repository, so that they are included directly in the

Node-RED base image available to the developer using the Design Environment.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 61

3.3.3 Interfaces/API
Each pattern or subflow/node comes with its own specification in relation to its usage. The interfaces

are through the fields of the incoming message to the subflow. The information is included in each

pattern documentation to be directly accessible in the Node-RED environment by the developer.

Specific information and examples of usage for each pattern are included in D3.2.

3.3.4 Distribution, deployment and configuration
The Patterns are packaged and distributed as subflows that are available in the PHYSICS repository

(Node-RED JSON descriptions including the code) and are embedded in the spawned Node-RED image

coming with the Design Environment described in the previous sections, along with any dependencies

they may have in terms of extra needed Node-RED nodes. Once the developer spawns the PHYSICS

provided Node-RED image, they will have the Patterns available in a relevant node menu of the

palette (Figure 21).

They have also been made available in online repositories (e.g. , Node-RED flows repository9 and the

PHYSICS RAMP). They can be copied directly in any Node-RED environment, given that they are

represented by a JSON string including the specification and extra code of the nodes used and their

interconnections. Especially from the online Node-RED repo mode, the dependencies of each subflow

are identified (in terms of other Node-RED nodes needed by the flow), so that the developer can pre-

install them.

After inclusion in their design environment, the developers can drag and drop the respective subflow

nodes. By double clicking on them, a relevant UI is available with the input and configuration

parameters of each flow. The inputs can also be passed as message fields in most cases. Where

configuration is needed (e.g., credentials for accessing an external service), this is highlighted in the

README file as well as by comment nodes inside the flows. Each pattern also comes with a rel evant

readme file (Figure 22), available in the Node-RED environment, in which details of the operation are

given as well as the needed specification of the input message if not configured by the UI.

9 PHYSICS Patterns Collection, available at: https://flows.nodered.org/collection/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 62

Figure 21 - PHYSICS Patterns Palette in Node-RED

Figure 22 - Example UI configuration and README file in Pattern Node

This type of distribution has the benefit that the developer can also edit the subflow template,

meaning that they can change some part of the pattern implementation to better suit their needs. On

the other hand, it means that the developer needs to have pre-installed any external dependency (e.g.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 63

a Node-RED node that is not in the default Node-RED environment). For this reason, a second mean

of distribution has been investigated and is described in the next paragraphs.

 Distribution based on npm nodes packaging
A second way for distributing the created subflows is through packaging them into Node -RED

modules10 that are then published in the main NPM repository. This enables a more automated way

of installation as well as update of a pattern node, however it removes the freedom from the

developer to change any internal details of the node operation. Given that this ability to adapt was a

feature that was significantly appreciated by the project Use cases, only indicative subflows were

converted to this process (e.g., the security and privacy ones11, the monitor12 and semaphore service).

However, one of the Y3 features of the Design Environment includes the ability to export subflows as

npm packages, as detailed in D3.2. Thus any interested PHYSICS developer can follow that way of

publication, supported also by the DE for its creation. The process is based on the nodegen tool13.

Before exporting the subflow we need to include information on the description of the node as shown

in Figure 23, since a number of these fields are mandatory for the package creation. Finally, a set of

files is created that is downloaded from the DE and contains all the main files of our node (README,

etc.) as exported from the subflow definition, as well as the code files, that can be installed through a

typical npm install command.

Figure 23 - Subflow Description Information for npm node conversion of a subflow

10 Subflow modules packaging: https://nodered.org/docs/creating-nodes/subflow-modules
11 Security and privacy modules npm packages: https://www.npmjs.com/~doth-j
12 Monitor npm package: https://www.npmjs.com/package/node-red-contrib-owmonitor
13 Node-RED node generator tool. Available at: https://github.com/node-red/node-red-nodegen

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 64

In order to publish in the npm repository, from the previous folder generated by the DE we can push

the node on npm, following the inclusion of the desired npm account:

npm adduser

Then we can publish the node folder contents on npm through the:

npm publish

The result appears in Figure 24.

Figure 24 - Example Subflow Node published on npm

For adding in the Node-RED node repository, in order for it to be also available for installation

directly (including all its dependencies) from the Node-RED main palette environment, we also need

to register it through the Node-RED site14 and add the npm module name. This declares the node in

the Node-RED community repository (Figure 25).

14 Node addition in Node-RED repository: https://flows.nodered.org/add/node

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 65

Figure 25 - a) Node Addition Process in Node-RED b) Available Example Node on Node-RED repo

Following that step, the contribution is now packaged as a Node-RED node and can be found

directly from the built-in palette management functionality of Node-RED (Figure 26).

Figure 26 - Direct Installation of Node through the built-in Palette Management of Node-RED

In our case it was also added in a specific collection that is organized by PHYSICS specifically for

nodes15 and is different than the one for the subflows16.

15 PHYSICS node collection on Node-RED repository, available at:
https://flows.nodered.org/collection/9C3h7Hnru943
16 PHYSICS Flows collection: https://flows.nodered.org/collection/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 66

This way of publishing (NPM and Node-RED node) also allows to keep track of usages, comments etc.

for our node. Thus, it is a very good way for reusability of the results as well as statistics of usage of

a node artefact. It can also be linked to a GitHub repository, in which the testers or users can interact

in the form of issues etc.

3.3.5 Flow update process
Provided pattern flows by the PHYSICS project may be periodically updated or extended. These
updates may be a result of newly needed features, specific requests (e.g. , by the use cases) or
debugging and improved parameterization. To import the updated versions in the environment, if
the pattern is packaged as a node, this process is done through the palette management of the
environment. However, if the pattern is packaged as a subflow or typical flow, then different
variations of import may be performed.
Initially the JSON description of the pattern needs to be retrieved from the PHYSICS collection on
Node-RED repo and copied (Figure 27).

Figure 27 - Retrieval of Pattern Subflow from PHYSICS Node-RED repo collection

Then one can navigate in the Node-RED menu Import option (Figure 28), select it and paste the
contents of the updated flow.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 67

Figure 28 - Import of Updated Pattern Subflow in the DE Node-RED Editor

If a previous version of the flows exists in the environment (it should), the user will get a warning
message for importing existing nodes (Figure 29).

Figure 29 - Warning Message for Duplicate Nodes

By selecting the “View nodes” option, the user will get a relevant screen about conflicting nodes
(Figure 30). If they do not select the grey subflow in the Subflows section of import, only the node
reference will get imported, so the imported flow will use the locally existing (previous) version of
the subflow.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 68

Figure 30 - Selection of Node and Subflow Replacement Option

If we select the SUBFLOW and REPLACE check box, the subflow is replaced across all flows and the
palette has only one instance of the subflow. This is a complete update of the subflow across the
entire environment (this and all other existing flows that may use the subflow). If we don’t check
“replace”, a new version is included in the palette (but without differentiation in the name) and the
subflows are not replaced in the previously existing flows. For any new flow we can select whatever
of the two versions from the palette, although there is no differentiation in the name appearing in the
palette. This is in essence versioning of the subflow.

Figure 31 - Different Appearance of Versions a) without name differentiation b) with name
differentiation

Given that this creates confusion afterwards, if we want the versioning option, we should use the
direct Import Copy option from Figure 29. This would result in maintaining the current version of the
subflow in existing flows and the new version in the imported flow, while the new version will be
clearly marked in the palette. This is needed in cases where a PHYSICS developer may have performed
additions or alterations in the initially provided subflow.

3.3.6 Individual integration points of Patterns with the Data Management Service of T4.4
The Data Management Service (DMS) service in PHYSICS offers an interface through 2 main

OpenWhisk (OW) actions that are foreseen for read/write operations, as indicated in the respective

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 69

section. In order to make that more abstract, a relevant DMS interface node has been created in the

Node-RED environment. Its description and usage has been included in D3.2.

3.4 Elasticity Controllers

3.4.1 Overview
The Elasticity controllers target is to scale resources associated to the functions running on pods on
the Kubernetes clusters. We increase/decrease the associated resources for functions by either
changing the memory/CPU associated to the pod hosting the function (VPA), or by creating more pods
for running the functions (HPA), or even by creating more Kubernetes workers to host more
functions/pods.
In the first part of the project, we designed the elasticity controllers to be integrated into the
infrastructure layer through the already supported Kubernetes Horizontal Pod Autoscaler (HPA) and
Vertical Pod Autoscaler (VPA) and then enhancing them with the usage of Custom Metrics as CPU and
memory was not going to be sufficient. In the second phase of the project, and after evaluating the
evolution of upstream projects, we decided to shift the focus and adopt KEDA17 (Kubernetes Event-
driven Autoscaling). KEDA is better suited for PHYSICS use cases that are based on Function as a
Services, which is also (usually) event driven – e.g., output of a function will trigger the execution of
the next one.

3.4.2 Technology architecture
Our idea for the elasticity controller flow, as depicted in Figure 32, is that:

1. some events are noticed/predicted
2. the selected elasticity controller (associated to the application) gets executed and calculates

the new configuration
3. the new configuration is applied

Figure 32 - Elasticity Controllers Flow

KEDA matches this very well. It follows the same pattern we followed in PHYSICS and it is
implemented by extending the Kubernetes API with a set of Custom Resource Definitions (CRDs). It
works alongside the Kubernetes HPA but allows for scaling to 0, as well as using custom metr ics. In
addition it provides a catalog of autoscalers that can be tuned or adjusted for different use cases. This
is what we have done in PHYSICS, for more information see Deliverable D3.2.
By using and tuning the different scalers at the catalog we are able to extend the existing Kubernetes
scalability controllers (HPA) to support different metrics that cover extra requirements such as
supporting green computing (using less energy) or saving deployment cost (using cheaper instances).
It provides a broader view of the cluster as well as from the applications.

In our case we have focused on:

 Scaling the Kubernetes (OKD) cluster nodes depending on the number of functions. For this
we have adjusted the KEDA kubernetes-workload scaler, which allows us to set a target
number of functions per Kubernetes nodes.

17 https://keda.sh/

https://keda.sh/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 70

 Scaling the number of OpenWhisk invokers depending on the OpenWhisk Kafka queues
status. For this we have adjusted the KEDA kafka scaler, feeding in the information from the
OpenWhisk Kafka groups so that more invokers can be create so that events from the queue
can be processed faster.

3.4.3 Interfaces/API
As KEDA is extending the Kubernetes API with CRDs, the interface/API is the Kubernetes API. The
mechanisms are the same as for any other kubernetes object. Thus it supports the standard
get/list/create/update/delete methods.

KEDA provides a standard API (KEDA ScaledObject) to deploy and associate the scalers to the relevant
workload(s), with different configurations depending on the scaler. As regards to the C RD itself, the
ScaledObject has 3 main blocks:

 scaleTargetRef: specifies the object that needs to be scaled as a result of the scaler decision.
Basically, it needs to state the name of the resource to scale and its kind. In addition, it
supports scaling custom objects (as long as they implement the Kubernetes scale
subresource). We took advantage of this to scale the cluster nodes when managed through the
Kubernetes Cluster API, i.e., when the nodes are represented with machinesets (as in the OKD
case).

 replicaCount: allows setting limits for the scale actions, i.e., a min and a max number of replicas
that can be created by the scaler.

 triggers: selects the type of trigger to be used, i.e., the scaler to use (e.g., Kubernetes-workload
or Kafka). It also has associated metadata per scaler where each scaler defines its own, for
instance:

◦ Kubernetes-workload:https://keda.sh/docs/2.11/scalers/kubernetes-
workload/#trigger-specification

◦ Kafka: https://keda.sh/docs/2.11/scalers/apache-kafka/#trigger-specification

3.4.4 Distribution, deployment and configuration
KEDA is an open source upstream project distributed under Apache License. It supports different
deployment options: Helm, operator and yamls.
As for the configuration options:

 It allows associating scalers to workloads through ScaleObject CR objects.
 It has a common section to configure the object to scale as well as the scaling limits.
 And each scaler defines its own configurable option (triggers section). For example the

kubernetes-workload option allows you to define a podSelector and a value. This is used t o
decide how much should be scaled the targeted object, depending on its relation (value) with
the workload pointed by the podSelector.

3.5 Gaming Platform
3.5.1 Overview
Gamification is the process of applying game mechanics and artifacts into non-game contexts to
improve the learning experience and practical knowledge gained. These game mechanics can
transform a potentially tiresome learning experience into one that is fun and engaging for the user,
who benefits from instant feedback since it enables them to promptly correct errors and comprehend
topics. In addition, gamification can develop a healthy feeling of competition and give users the
flexibility to learn at their own pace. Gamification can be a useful method of encouraging and
motivating learners, particularly when traditional software training methods are seen as difficult to
follow or tedious. In the context of PHYSICS, the development of game mechanics can potentially
streamline the onboarding and adaptation of the project's platform and artifacts. During the project's

https://keda.sh/docs/2.11/scalers/kubernetes-workload/#trigger-specification
https://keda.sh/docs/2.11/scalers/kubernetes-workload/#trigger-specification
https://keda.sh/docs/2.11/scalers/apache-kafka/#trigger-specification

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 71

2nd hackathon, a gamification approach was proposed, and implemented as a gaming server, with the
goal of allowing users to interact with the Node-RED flow programming environment, where they
could easily onboard and interact with the PHYSICS developed patterns in a gamified environment.
This game environment can also assist in the dissemination of the PHYSICS platform while providing
a way to train and educate the users on how to use its findings. To realize this approach, a gaming
server employing the appropriate mechanisms to foster a gamified learning environment for training
was constructed. The gaming server features a game, offered as a web page application with choices
for local mode use, targeting flow-programming training tutorials and development of storylines, the
online mode, focused on online competitions and storyline sharing, and the flow marketplace,
allowing for flow/subflow sharing and trading as NFTs using a Smart Contract.

3.5.2 Technology architecture
The gamification platform incorporates multiple components for the available modes, these include
a local server that hosts the game and interconnects a Node-RED visual environment, an online
server, that allows progress tracking, storyline sharing and interacting with other playe rs within the
game, and the flow marketplace, which enables sharing and trading developed patterns, subflows and
flows. The initial gaming server architecture can be found on D3.2 in section 5.2., while the gaming
platform architecture including the marketplace is shown in (Figure 33).

Figure 33 - Gaming Platform Architecture

 Local Mode: The required components necessary to play the game locally.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 72

o Portal Server: The Portal Server, implemented in Typescript, consists of a NodeJS
Express server with an embedded Node-RED instance and hosts the Game Portal. The
server provides the necessary assets and resources needed by the Game Portal to load
the Game.

o Game Portal: The Game is served as an HTML web application developed using Tweego,
a command line compiler for creating Twine/Twee story formats, and Sugarcube, a
JavaScript library built for Twine that handles story logic, assets & media, playback
functions, passage linking and UI elements.

o External Node-RED: The Game can be customized to utilize an external instance of
Node-RED provided with the necessary credentials or authentication token.

 Online Mode: The required components necessary to play the game online.

o Game Server: The Game Server implemented in Typescript, consists of another NodeJS
Express server that utilizes the Socket.io module to create and handle real-time
communication channels with every Game Portal connected to it. This component
allows the Game Portals to connect to the Game Database, utilizing a MongoDB driver,
to store each player’s progress using CRUD operations and serves additional online
storylines and resources.

o Game Database: The Game Database, utilizing a Mongo Database, stores the document
records regarding registered Players, their progress, any deployed storylines, ongoing
competitions, and leaderboards.

 Flow Marketplace: The necessary components to access and interact with the game’s

marketplace.

3.5.3 Interfaces/API
The gamification platform implements the following API interfaces:

Local Mode APIs:

Table 45 - Local Mode APIs

Method Path/URI Description Request/
Parameters

Response

GET / Main API for accessing the Game - HTML
Page

GET /play API for accessing the embedded Node-RED
Editor. (Can also be configured from the
environmental variables

 HTML
Page

GET /red API for accessing the embedded Node-RED
HTTP APIs. (Can also be configured from the
environmental variables)

 JSON/Text

Online Mode APIs:

Table 46 - Online Mode APIs

Method Path/URI Description Request/
Parameters

Response

GET / Main API for connecting to the Game
Server.

- HTML
Page

GET /storylines API for getting available online storylines JSON
GET /player/:id API for getting a player’s profile JSON/Text
POST /player/:id API for creating a player’s profile JSON/Text

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 73

PUT /player/:id API for updating a player’s profile JSON/Text
DELETE /player/:id API for deleting a player’s profile JSON/Text

Flow Marketplace APIs:

Table 47 - Marketplace APIs

Method Path/URI Description Request/
Parameters

Response

GET / Main API for connecting to the Game
Marketplace.

- HTML
Page

3.5.4 Distribution, deployment and configuration
Each part of the gamification platform is dockerized and can be accessed in the docker-hub. There is
also a docker-compose file allowing for automated builds and deployment of the infrastructure. Each
component can be configured in the adjacent. env file they have. The Game Portal can also be
configured from within the game allowing for the connection of external Node -RED instances to be
used in the Game, this is shown in (Figure 34)

Figure 34 - Settings Screen

3.5.5 Game Portal Tutorials

The Game Portal features “Flowchain Champions”, a Game built using Twine and Sugarcube. Once the

Game starts, a loading screen appears, which preloads all assets from the Portal Server. The starting

screen once the assets load, is shown below in (Figure 35).

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 74

Figure 35 - Game Starting Screen

 Local Mode

The local mode of the platform allows users to learn using through recipe tutorials and create

their own Storylines. The definition for the Game Storylines can be found on D3.2 in section 5.3.

Once choosing this mode the user is navigated to the Local Menu shown in (Figure 36)

Figure 36 - Local Menu Screen

 Node-RED Tutorials

Users can access Node-RED tutorials through the “Node-RED Cookbook” option that allows them

to pick from several training topics regarding Node-RED flow programming. These can be seen

below in (Figure 37), (Figure 38) and (Figure 39) below.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 75

Figure 37 - Node-RED Cookbook Screen

Each tutorial topic has several tutorials depending on the kind of action the user wants to do. Each

tutorial provides the corresponding flow that the user can import and interact by clicking on its

picture.

Figure 38 - Messages Tutorial Screen

The tutorial provides a problem situation and its respective solution in Node-RED. The button

on the right (joystick) can be clicked to open the embedded Node-RED Editor, shown in (Figure

39)

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 76

Figure 39 - Messages #1 Tutorial Screen

Figure 40 - Node-RED Portal Screen

The user can access the Node-RED editor directly from the Game and interact with the nodes of

the tutorial (Figure 40). The Game Portal takes care of installing any modules or importing any

subflows the flow might have, so the user can be onboarded faster.

3.6 Reasoning Framework

3.6.1 Overview
The Reasoning Framework component manages application and resource metadata within the
context of graphs for the PHYSICS platform. It oversees the storage, retrieval, and semantic reasoning
over this metadata to create global graphs, facilitating optimal application deployment strategies by
harmoniously interlinking suitable compute nodes from the available resource graphs with
respective nodes from the application graphs.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 77

Key features and improvements in its final iteration include enhanced application-placement
strategies thanks to the integration of performance data divided into three vital categories:
benchmark data acquired during cluster onboarding, function-specific benchmarks from
Performance Evaluation component and dynamically forecasted runtime metrics to allow real -time
updates to the global graph. For detailed information refer to Section 2 of D4.2. The overall
interactions with other platform components are illustrated in Figure 41.

Figure 41 - Reasoning Framework interactions with other components

3.6.2 Technology architecture
Reasoning Framework consists of two integrated components the one serving as an API and the
second as datastore of the semantics graphs. Both are REST microservices deployed as Docker
containers. The API, compliant with the OpenAPI18 standard, is based on the Flask19 framework. The
datastore is a Semantic Graph Database facilitating the storage of the input RDF triples (i.e.,
Application and Resource triples), SPARQL querying and reasoning over the stored data. The
community version of AllegroGraph20 was opted for the data storage needs of the Semantics Block.
AllegroGraph provides an architecture through the REST protocol and is characterized by the efficient
use of memory by combining disk storage, making it possible to scale up to one billion nodes, always
maintaining top performance. Basically, it provides services including vision building, rapid
prototyping, and proof-of-concept development, complete enterprise technology solution stack, and
best practices to maximize value from semantic technologies [2]. The internal components of the
Reasoning Framework and their main interactions are shown in Figure 42.

18 https://spec.openapis.org/oas/latest.html
19 https://flask.palletsprojects.com/en/2.0.x/#api-reference
20 https://allegrograph.com/

https://allegrograph.com/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 78

Figure 42 - Reasoning’s Framework internal components

3.6.3 Interfaces/API
This section lists all the available endpoints of the Reasoning Framework offered by its API. I t should
be noted that these endpoints are reached programmatically facilitating back-end platform
operations.

Table 17 – Reasoning Framework endpoints for Resources

Method Path/URI Description Request/
Parameters

Response

POST /cluster Register a new cluster JSON-LD JSON
GET /cluster List all clusters and their spec - JSON
GET /cluster/{id} Get cluster and its complete specs string:id JSON
DELETE /cluster/{id} Delete a cluster string:id JSON
PUT /cluster/{id} Update a cluster string:id JSON
POST /cluster/register Register cluster from OCM hub JSON-LD JSON
POST /cluster/availability Update Cluster Availability Score JSON JSON
POST /cluster/performance Update Cluster Performance Score JSON JSON

Table 18 - Reasoning Framework endpoints for Applications and Semantic Matching

Method Path/URI Description Expects/
Parameters

Response

POST /application Store a new application graph JSON-LD JSON
GET /application

Get id and names of stored
applications

- JSON

GET /application/{id} Get application graph string:id JSON
DELETE /application/{id} Delete an application string:id JSON
GET /application/run/{id} Get the required information for

the deployment of the given
application (used by Optimizer)

string:id JSON

PUT /application Update a stored application JSON-LD JSON

3.6.4 Distribution, deployment and configuration
The three integrated components in the Semantics Block (i.e., Resource Semantics, Reasoning

Framework, and Semantic Graph DB) are containerized to a single service as Docker Image with their

source code being maintained in the official repository of the PHYSICS project (Gogs repository:

https://gogs.apps.ocphub.physics-faas.eu/WP4/semantics-block). Their latest built image is stored

https://gogs.apps.ocphub.physics-faas.eu/WP4/semantics-block

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 79

on the PHYSICS Harbor repository, leveraging the Jenkins pipeline for continuous integration (see

section 5.1). The deployment of the Semantics Block follows the same process as the other platform

components in the PHYSICS AWS testbed in a dedicated namespace (i.e., WP4). The continuous

delivery (CD) part is also automated through the Jenkins pipeline.

The specific instructions required to parametrize, build and deploy the Semantics Block (i.e., Docker -

Compose, Jenkins, and K8s YAML config files) are also available in its Gogs repository. A screenshot

of the logs from the Kubernetes Pod serving Reasoning Framework (former Semantics Block) is

illustrated in Figure 43.

Figure 43 - Screenshot of Reasoning framework logs

3.7 Runtime Adaptation

3.7.1 Overview
Towards enabling runtime adaptation in the context of PHYSICS, two additional components were
developed during the second period of the project: A Monitoring-alert and a Forecasting component.
These components, integrated with the Adaptive Platform (see 3.13) and Reasoning Framework
components, work together to ensure the robustness and quality of the platform by responding to
changes in performance and predicting latency issues. This runtime adaptation process is
orchestrated to maintain the platform's performance and quality of service. The collaboration of
these components ensures that any detected issues are swiftly addressed, allowing for a resilient an d
adaptable system.

3.7.2 Technology architecture
The technology architecture for the Runtime Adaptation component is designed to facilitate dynamic
adjustments to the execution environment based on real-time performance metrics. This adaptation
process is an integral part of the platform's response to changing workload characteristics, ensuring
optimal performance and reliability.
Runtime Adaptation involves two main REST services: the Monitoring-Alerts and the Forecaster.
These components work in tandem to monitor and predict system performance. The Monitoring-Alert
component continuously assesses the quality of service (QoS) and detects deviations, while the
Forecaster component predicts future performance trends. Both components communicate
seamlessly via the RabbitMQ message broker, allowing for efficient data exchange and coordination.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 80

To ensure portability and scalability, both the Monitoring-Alerts and the Forecaster components are
encapsulated within Docker containers. These containers are deployed within the WP4 namespace of
the project's AWS testbed. A visual representation of this overall architecture and process for runtime
adaptation can be found in the accompanying figure.

Figure 44 - Runtime Adaptation Architecture

Here’s a breakdown of how they operate:

1. Monitoring-Alerts (REST service): This component is responsible for continuously
monitoring the performance of the deployed applications. It relies on monitoring tools, like
Prometheus, where applications and infrastructures metrics values are collected and stored,
and it operates under the principle of quality of service (QoS) and creates alarms when QoS
violations occur. A violation, in this context, is defined as a situation where the function wait
time (i.e., the corresponding metric value stored in Prometheus) exceeds a specified limit.
When such a violation is detected, the Monitoring-Alert publishes an alert message to a
dedicated channel within RabbitMQ (a message broker).

2. Adaptive Platform: Upon receiving an alert from the Monitoring-Alert, the Adaptive Platform
takes immediate action. The Translator of the Adaptive Platform routes incoming requests to
a fallback OpenWhisk cluster, ensuring that users experience minimal disruption even when
performance issues are detected.

3. Forecaster (REST service): Upon receiving an alert from the Monitoring-Alert, it performs
the following tasks:

a. Retrieves the most up-to-date performance metrics from the OpenWhisk API of each
registered cluster.

b. Utilizes an exponential smoothing model (see D4.2 for more details) to predict the
future average latency for each cluster.

c. Transforms the predicted latencies into performance scores for each cluster, providing
a quantitative measure of their performance.

d. Updates these cluster performance scores within the Reasoning Framework, ensuring
that the adaptation process is informed by the latest data.

e. Triggers the Reasoning Framework to re-initiate the deployment of the application
when QoS violations are detected, ensuring that corrective measures are taken
promptly.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 81

3.7.3 Interfaces/API
This section presents the endpoints of all the different components involved in the Runtime
Adaptation as described in Table 48.

Table 48 - Interfaces and Endpoints for Runtime Adaptation

Component Method Path/URI Description Expects/
Parameters

Response

Monitoring-
Alerts

GET
/api/v1/qos Returns the list of all

QoS definitions (i.e.,
function's wait time
metric constraint)

JSON
containing the
list of all QoS
defintions

Monitoring-
Alerts

POST
/api/v1/qos Creates a new QoS

definition and starts
the evaluation
process

JSON JSON

Monitoring-
Alerts

GET
/api/v1/qos/{i
d}

Returns the
information about the
QoS definition
identified by {id}

QoS
identifier in
path

JSON

Monitoring-
Alerts

DELETE
/api/v1/qos/{i
d}

Deletes the QoS
definition identified
by {id}, and finish the
evaluation process

QoS
identifier in
path

JSON

RabbitMQ JSON
message
with the
information
about the
QoS violation
and the
correspondin
g function

Forecaster GET /predict/
app_id?action_
name}

Triggers the
forecaster to predict
the future
performance score
per cluster

JSON
{app_id:“<id
>”,
“action_name
”: “<name>”}

JSON
{“clusterA”:
<score>,
“cluster”:
<score >}

Reasoning
Framework

POST /cluster/perfo
rmance

Update Cluster
Performance Score

JSON JSON

Reasoning
Framework

GET /application/r
un/{id}

Get the required
information for the
deployment of the
given application
(used by Optimizer)

string:id JSON

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 82

3.7.4 Distribution, deployment and configuration
The Monitoring-Alerts component is a Golang application that can be containerized as a Docker
image. This way it can be deployed in a Kubernetes type platform like the project test environment.
It requires the following environment variables to be defined:

 “monitoringy_adapter”: this variable specifies the monitoring tool used by the Monitoring-
Alerts component to get the metrics values needed to do the assessment of the QoS definitions
/ constraints.

 “prometheusUrl”: in the case the monitoring adapter is “prometheus”, this variable defines
the URL to connect to it.

 “notifier_adapter”: this variable defines the notifier used to send alerts and notifications (i.e.,
RabbitMQ).

 “rabbitMQ”: in the case the notifier adapter is “rabbitmq”, this variable defines the connection
string.

 “rabbitMQExchange”: this variable defines the exchange topic used to send the alerts and
notifications.

Additionally, the component starts the REST API listening in port 8080. Initially, there are no QoS
definitions created by default. Thus, to create one QoS definition and start the process of QoS
evaluation, users must connect to the REST API (POST /api/v1/qos) to create a new one. The following
JSON shows a QoS definition example:

{

 "id": "<QoS_ID>",

 "name": "<QoS_Name>",

 "state": "started",

 "details": {

 "name": "<<QoS_Name>",

 "guarantees": [{

 "name": "<constraint_name>",

 "constraint": "[<metric1>/<metric2>] < <Threshold_value>"

 }]

 }

}

The Docker and YAML files used to deploy this application in Kubernetes, including the project test
environment can be found in the git repository, under folder “resources/deployment”:

https://gogs.apps.ocphub.physics-faas.eu/WP4/monitoring-alerts-app.git

3.8 Cluster Availability Monitor

3.8.1 Overview
The Cluster Availability Monitor is a Python-based service developed to monitor the optimal
operation of OpenWhisk clusters. Leveraging real-time monitoring, it conducts systematic checks on
the availability of specified clusters at regular intervals and computes their availability scores. These
scores are computed based on successful and failed connections over a period of one week,
facilitating a robust understanding of each cluster's average availability over time. Upon changes on
cluster’s availability, the service updates the Reasoning Framework (T4.1) enabling WP4 to decide
on the placement of the income requests accordingly.

https://gogs.apps.ocphub.physics-faas.eu/WP4/monitoring-alerts-app.git

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 83

3.8.2 Technology architecture
The Cluster Availability Monitor operates on a Python-based image, ensuring lightweight and

efficient performance. It utilizes the requests library for API communications and the Python built -

in threading library to handle parallel execution of availability testing and score calculation.

The core of the architecture is built upon two main threads that operate concurrently:

1. Cluster Availability Testing Thread: Periodically tests the availability of each cluster and

stores the results in a data structure implemented using Python's deque class, which holds a

week’s worth of data.

2. Availability Score Calculation Thread: Analyzes the stored data every minute to calculate

and update the availability score based on the most recent week of data.

In terms of data storage, it leverages Python's in-memory data structures, keeping the operation

fast and efficient without requiring a separate database system.

3.8.3 Interfaces/API
The tool interfaces with the OpenWhisk clusters through REST APIs, invoking actions and

registering new actions as needed. It also communicates with the Semantics Block's Reasoning

Framework to update the availability scores of the registered clusters as shown is Table 49.

Table 49 - Cluster Availability Monitor Interfaces

Endpoint Method Input

Parameters

Output

Parameters

Description

/cluster/update_

availability

POST Cluster name,

availability score

200 OK, error

codes

Updates the

availability score

of a specified

cluster in the

reasoning

framework.

ClusterAvailabilit

yMonitor

(OpenWhisk

action)

POST Cluster name,

parameters for

action

Action output,

error codes

Invokes the

ClusterAvailabilit

yMonitor action

in OpenWhisk

with the specified

parameters.

3.8.4 Distribution, deployment and configuration
The Cluster Availability Monitor is packaged into a Docker container, making it portable and easy to
deploy across various environments, including the PHYSICS AWS infrastructure. The source code of
the service is available in the project’s git repository (Gogs), while the latest container image is stored
in the image repository of PHYSICS in Harbor. Jenkins CI/CD pipelines are set with the service
deployed on the WP4 namespace. A screenshot of the logs from the Kubernetes Pod serving Cluster
Availability Monitor is illustrated in Figure 45.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 84

Figure 45 - Screenshot of Cluster Availability Monitor logs

Deployment:

 Build the Docker image from the Dockerfile.

 Run the Docker container, with the CLUSTERS_CONFIG environment variable to specify the

clusters to monitor.

 The tool requires the configuration of environment variables to function correctly. The

critical variable being CLUSTERS_CONFIG, holding the cluster credentials in a JSON format.

 The Python script app.py serves as the entry point to the application, initializing the

necessary data structures and starting the monitoring threads.

Instructions on how to set up, configure, and deploy the Cluster Availability Monitor can be found in
the accompanying README.md file in the project's Gogs repository. Furthermore, an open -source
version of the Cluster Availability Monitor is available on the RAMP.

3.9 Resource Semantics

3.9.1 Overview
The second iteration of the component includes the necessary changes to allow the Resource

Semantics component to be deployed in each of the managed clusters by the PHYSICS platform and

communicate with the Reasoning Framework. Previously, this component was part of the “Semantics

Block”, integrated through the deployment of Reasoning Framework awaiting from external requests

to retrieve a cluster’s information. With the new approach , the capabilities expand and now the

resource semantics incorporates methods to automatically extract a cluster’s functional information,

transform it according to the designed resource ontology and finally propagate it to the central

cluster to be reasoned upon and enable application to cluster matching.

https://marketplace.physics-faas.eu/asset/openwhisk-cluster-availability-monitor

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 85

More specifically each time a new cluster is added to the platform, the cluster onboarding process

takes place which includes the component’s installation. Additionally, the cluster onboarding also

deploys a benchmark application which precedes the Resource Semantics so the latter can afterwards

retrieve benchmark related information.

This new approach is feasible due to the lightweight nature of the component and provides added

benefits such as automated by the component processes, easier debugging, and access to cluster-wise

semantic modifications.

3.9.2 Technology architecture
The component has been built as a python-based REST API service through Flask to accommodate

HTTP communication between components in the platform and to serve to the cloud engineer

valuable debugging information outside the components main pipeline. OWLready is the library used

to manipulate and populate the ontology which is ingested as an OWL file built through Protégé.

Additionally, the component communicates with each cluster’s Kubernetes and Prometheus API. This

is achieved through the Kubernetes-api-client and Prometheus-api libraries. Additionally, the

component also includes a couple of html files served through flask to provide a graphical interface

for the user.

3.9.3 Interfaces/API
The component API has been automatically documented through Swagger, a popular python library

for documentation. Decorators and methods have been implemented to export the expected models

and output for each endpoint, when necessary. The whole documentation can be found on the

service’s URL /documentation endpoint.

Essentially the endpoints have been divided into the main and debug endpoints. The first group

contains the essentials for the component’s execution and the latter contains endpoints that a id the

cloud engineer to debug the component. The exact endpoints can be found in Table 20 and Table 21.

Table 20 – Resource Semantics debugging endpoints.

Method Path/URI Description Request/
Parameters

Response

GET /debug/logs Retrieve the execution logs of the
component.

- Web
Interface

GET /debug/nod
es

Retrieve the response of the Kubernetes
API command “describe nodes” to test
component to API connection.

- Web
Interface

GET

/debug/post
-cluster-
semantics

Posts the cluster semantics to the
Reasoning framework to test
communication.

 200

Table 21 – Resource Semantics main endpoints.

Method Path/URI Description Request/
Parameters

Response

GET /main/home
page

A page with generic information on the
component and a couple of redirection
buttons.

- Web
Interface

POST /main/kube
mantics-
trigger

This is the main endpoint to trigger the
component ‘s pipeline. It is triggered by the
cluster onboarding process and sends the
semantics to the Reasoning Framework

string:
benchmark
_pod_label

200

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 86

GET /main/clust
er-semantics

Retrieves directly the cluster semantics in
an json-ld format.

- Web
Interface

GET /main/ontol
ogy-raw

Displays the ontology designed to describe
cluster resources.

- Web
Interface

GET,
POST

/main/anno
tate-cluster

An endpoint for manual annotation of the
ontology with specific individuals. To be
used in the future by domain experts to
easily import new aspects.

Json:
{“subject”:
string,
“predicate”:
string,
“object”:
string}

Web
Interface,

200

3.9.4 Distribution, deployment and configuration
The component is deployed as a dockerized service. It follows the necessary structure to ensure
compatibility with swagger for automated documentation production. As such endpoints, according
to their category (debug, main) are under the respective folder and then are declared in the main
app.py file. Additionally, the docker also includes the templates folder with all the necessary HTML
files and the OWL file which depicts the resource ontology.
In order to be able to access the Kubernetes API the component also comes with a set of
configurations that bind a cluster-role to the service which enables the listing of different Kubernetes
resources. The ClusterRole syntax of the configuration file follows.

Code Snippet – Resource Semantics ClusterRole YAML configuration file.

3.10 Performance Evaluation Framework
3.10.1 Overview
The Performance Evaluation Framework (PEF) aims at enabling REST based launching of relevant
performance driven tests against a target function. To do so, it incorporates adapted function clients
that are parametric and can be used to implement the necessary load generation process. The resu lts
are acquired and stored by PEF and available through a range of queries, either directly through
relevant REST APIs, or through the inclusion in the semantic model of the function, supporting also
multiple locations of that function. In the latter case, the results are acquired through the relevant
interfaces of the Reasoning Framework
In the second part of the project, the relevant PEF APIs and provided functions have been extended
in order to enable the realization of the Performance Pipeline, described in D3.2. Furthermore, new
queries are enabled, to collaborate with the Semantic Extractor component, so that performance
information can be included in the semantic application graph. The component has been rearranged
around a function operation, so that most of its operations can be directly integrated and executed in
a FaaS platform.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: list-resources
rules:
- apiGroups: [""]
 resources: ["pods", "nodes", "services","namespaces", "configmaps", "persistentvolumes"]
 verbs: ["list"]

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 87

3.10.2 Technology architecture
PEF consists of a REST API service and an adapter to regulate executions of deployed function-based
load generators. Compared to the previous version, which was based on Docker containers provide
load injection, it is more adapted to a FaaS platform operation. To guarantee the validity of the
measurement process and acquired performance information, PEF includes all the necessary details
of the executed load generator functions, including an abundance of timestamps across the process,
resulting in the reporting of a large number of performance metrics for different stages of the
execution.
For each submitted test, the relevant needed function load generator containers are spawned through
the FaaS platform API. All the coordination is performed through relevant flows impl emented in
Node-RED, which also implements the REST API layer to expose the results and the control of the
tests.

3.10.3 Interfaces/API
The main APIs of PEF, including the input and output format are included in the following tables.

Table 50: PEF Raw Profiling Data API

Method Path/URI Description Request/

Parameters
Respons
e

POST /data Save the prometheus
data for a profiling run
inside the PEF. Used by
the performance
pipeline to push
obtained data

{ “activationid”:”3f45…”,
 “testFunctionPayload”: stringified
json
 "actionName": "flow_1.json",
 "branchName": "vkatevas",
 "flow": "flow_1",
 "cpu": 2,
 "memory": 32424,
 "networkReceived": 12342,
 "networkTransmited": 65464,
 "fsReads": 87686,
 "fsWrites": 95465,
 “location”: OWendpoint}

200

GET /data Get all monitoring
data. To be used by the
cluster creation
process inside PEF

- Array
output

as above
input

The load generator (benchmarking) output is a stringified JSON of the load generation, which includes
information on the load setup, the function input as well as average and standard deviation statistics
on wait, initialization and execution time. It also includes the raw measurements from which these
averages have been calculated as well as indicative timestamps in the load generation process. More
information on the specific load generation function outputs can be found in D4.2 and are not
included in this document to avoid repetitions.

Table 51: PEF Benchmarking Data API

Method Path/URI Description Request/
Parameters

Respon
se

POST /loadgendata Save the loadgenerator
data inside the PEF.

{ “activationid”:”3f45…”,
 "flow": "test",

200

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 88

Loadgenerator data need
to be stringified

 "activationId":"test",
 “location”:”OWEndpoint”
 “timestamp”:unix time
 "output": "loadgenerator
output”
}}

GET /loadgendata Get the loadgenerator
data from inside the PEF

- Array
output

as
above
input

GET /loadgendata
/:flow/:bran
ch

Get load generator data
for the more recent
timestamp, filtered by
flow and branch, and
grouped by location

- Array
output

as
above
input,
with
one

element
per

location

Table 52: PEF Clustering Push Data API

Method Path/URI Description Request/
Parameters

Respons
e

POST /clusters Used by the Clustering
process to store the
cluster boundaries. Each
time the process is run,
the new boundaries get
inserted into the DB.
There is no update so that
there is a record of the
evolution of the
clustering process

{ "owendpoint": "location",
 "cpu": {
 "low":numeric value,
 "medium": numeric
value,
 "high": numeric value
 },
 "memory": {
 "low": numeric value,
 "medium": numeric
value,
 "high": numeric value
 },
 "networkReceived": {
 "low": numeric value,
 "medium": numeric
value,
 "high": numeric value
 },
 "networkTransmitted": {
 "low": numeric value,
 "medium": numeric
value,
 "high": numeric value
 },
 "fsReads": {

200

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 89

 "low": numeric value,
 "medium": numeric
value,
 "high": numeric value
 },
 "fsWrites": {
 "low": numeric value,
 "medium": numeric
value,
 "high": numeric value
 }}

Table 53: PEF Clustering Retrieval API

Method Path/URI Description Request/
Parameters

Response

GET /clusters Get latest cluster centers
(to be used by the
Classifier)

- {
 "cpu": [
 {
 "category": "low",
 "value":
0.005801420285783651
 },
 {
 "category":
"medium",
 "value":
0.029655391993717292
 },
 {
 "category": "high",
 "value":
0.1852146552507543
 }
],
 "fsReads": […],
 "fsWrites": […],
 "networkReceived":
[…],
 "networkTransmitted":
[…],
 "memory": […]
}

GET /clusters/:en
dpoint

Get latest cluster centers
for a given endpoint

- Same as above

GET /clustersall Get cluster centers as
they evolve through time

- Array of above outputs
from different runs in the
past

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 90

Table 54: PEF Function Profile API

Method Path/URI Description Request/
Parameters

Response

POST /profile Used to store the
classification for a given
function

{ “id”: auto-increment field
 "actionName": "flow_1_
532…563.json",
 "branchName":
"vkatevas",
 "flow": "flow_1",
 "cpu": “low”,
 "memory": “high”,
 "networkReceived":
“medium”,
 "networkTransmited":
“low”,
 "fsReads": “low”,
 "fsWrites": “low”,
 “location”: OWendpoint
}

GET /profile Get all available profiles
from PEF

- Array with
elements
same as
above
input

GET /profile/:
actionName

Get classification data for
a function that are stored
into PEF. It returns the
most recent classification
(higher auto-increment
id) for the function
version that is defined in
the input, grouped by
available locations

- Array of
above
inputs
with one
element
per
available
location

GET /profile/:
actionName/
:location

Same as above but
filtered for a given
location

- Same as
the input
in the
/POST
method

GET /profile/:
flowName/:b
ranch

Get more recent
classification data based
on the flow name (higher
auto-increment. It returns
the most recent
classification for this
flow, grouped by
available locations. This is
the main method to be
used by the Semantic
Extractor

- Array of
above
inputs
with one
element
per
available
location

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 91

3.10.4 Distribution, deployment and configuration
The main PEF tool is available as a code project, following the general DevOps design process of the
project, including the main flows file for the Node-RED implementation, a relevant Dockerfile for
building the main image as well as all needed declared dependencies of used npm packages. Building
the Dockerfile will result in the creation of the relevant PEF image that can be deployed as a server.
Due to its function-oriented implementation during Y3, the PEF is accompanied by relevant Docker
Images that implement its main functionalities (load generation, profile clustering etc.):

 Load generation function image21 and flow description22
 Clustering process for function resource profiles23 and flow description24
 Classification process25 and flow description26
 Image with relation to the packaged GNU Octave environment needed for model creation as

well as model inference27
 Images with relation to other helper function packaging (e.g. functions packaged as containers

for the Node-RED orchestration execution28, artificial delays etc.)

The above images need to be registered as actions in the OpenWhisk FaaS platform in order to be
used by the PEF and the Performance Pipeline in the context of the PHYSICS project and beyon d.

wsk action create loadgen --docker gkousiou/physicspef_loadgenclient:latest

wsk action create classifier –docker vkatevas/node-red_data_classification

wsk action create clustering –docker vkatevas/node-red_data_clustering

Specific care has been given to the fact that minimal configuration is needed. Hence all relevant
function implementations get the necessary configuration information from the incoming message
(e.g. target url in which to push results of a load generation) . This results in a very decoupled
implementation in which components can be changed at any time with minimal interventions as long
as the respective interfaces are respected. This was also evident during the 3 rd PHYSICS hackathon,
in which participants undertook the role of creating versions of these functions based on different
algorithms, resulting in a rich externally contributed library of relevant implementations 29.
 The detailed function interfaces as well as JSON specifications for the PEF function i nputs are
included in detail in D4.2.

3.10.5 Individual integration points of PEF with other components
The integration points of PEF with other components include from a functional point of view:

 The available PEF function endpoints (load generation, classification) used by the
Performance Pipeline (described in D3.2) during the performance analysis of the target
application function

21 https://hub.docker.com/r/gkousiou/physicspef_loadgenclient
22 https://flows.nodered.org/flow/53bf7addb6ef140ab7e9395c9a9feb1b/in/HXSkA2JJLcGA
23 https://hub.docker.com/r/vkatevas/node-red_data_clustering
24 https://flows.nodered.org/flow/48b1f88464634f5601f45e29725a764b/in/HXSkA2JJLcGA
25 https://hub.docker.com/r/vkatevas/node-red_data_classification
26 https://flows.nodered.org/flow/48b1f88464634f5601f45e29725a764b/in/HXSkA2JJLcGA
27 https://hub.docker.com/r/gkousiou/octavefunction2
28 https://hub.docker.com/r/gkousiou/noderedaction
29 https://flows.nodered.org/collection/zIYKJ6MAudpC/

https://hub.docker.com/r/gkousiou/physicspef_loadgenclient

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 92

 The aforementioned results pushing APIs, used by the Performance Pipeline to store the
results generated during its execution

 The results retrieval APIs, from which information on benchmark and profile results of a
function are given, is exploited by the Semantic Extractor, in order to enrich the application
graph with performance details.

Also, from a semantic point of view, the outputs of PEF (e.g. classification categories, available metrics
from benchmarking runs) are also taken into consideration in other dependent processes (e.g.
benchmark metrics in global function placement and classification categories in coallocation
strategies).
The PEF has also been used as the integration point between the Request Aggregator pattern and the
eHealth UC. To do so, a version of the Request Aggregator has been deployed inside PEF to act as the
aggregation point of the requests. The relevant implementation appears in Figure 46. The adaptation
needed in this case is a minor adjustment to the way the prediction vectors are received and
processed, to be compatible with the way the eHealth function needs them.

Figure 46 - Request Aggregator Instantiation in PEF for the eHealth Use Case

3.11 Global Continuum Placement

3.11.1 Overview
The Global Continuum Placement component performs the higher-level selection of the computing
continuum clusters to perform the application execution. Since each application is expressed as a
workflow composed of tasks; the component enables the deployment of the workflow by performing
the placement of each task on one of the available clusters. The selection is done by considering the
applications’ needs in resources, as described during the application design, in conjunction with the
individual resources availability and possible optimization insights. Once the pla cement of all the
tasks has been fulfilled, the actual selection of individual resources per cluster and the execution of
each task is done by the local cluster scheduler which in PHYSICS architecture will be performed by
the combination of OpenWhisk and Kubernetes.
The developments during the last period of the project were focused in enabling the placement at the
global continuum in a way to take into ac consider different multi-objective algorithms based on both
simple (first-fit) and complex (linear programming) policies allowing users to define objectives
related to performance, energy and availability. In parallel the component enables the configuration
of constraints related to the usage of resources such as the type of architecture (x86_64, arm64) a nd
level of the continuum (edge, cloud, HPC) to be used for the executions while always allowing the
demand of the number of resources such as CPUs and memory. Furthermore, the last version of the
Global Continuum Placement component enabled a fine integration with the different PHYSICS
components to allow the coherent exchange of information between the components, needed for the
optimal placement of the workflows on the continuum. The following sections provide the details of
the technology architecture, involved APIs and installation and configuration details.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 93

3.11.2 Technology architecture
The Global Continuum Placement Component architecture has been provided in Deliverable D4. 2 but
it is provided also here as well to facilitate comprehension.

Figure 47 - Global Continuum placement component

As shown in the Figure 47 the Global Continuum Placement is composed from the following parts:

 A subcomponent that will consume inputs such as the Workflows’ Characteristics and
Annotations along with the Clusters’ Static and Dynamic Status.

 The scheduler core which performs the matching of tasks with resources based on different
available algorithms.

 The output subcomponent which will push the scheduling decision.

In parallel, two additional external subcomponents are provided:

 The simulator which will allow us to perform fast experimentation and evaluation of the
different scheduling algorithms and

 The tools for installation and Continuous Integration / Continuous Deployment

Based on the current architecture of PHYSICS the Global Continuum Placement component does not
have to take the final decision of the exact resources where the execution of a task happens. This is
done by the local cluster Scheduling Algorithms which lies within the combination of OpenWhisk-
Kubernetes schedulers. Furthermore, it does not communicate directly with the local schedulers to
propose the deployment schema. It forwards the deployment schema to the Orchestrator which will
then communicate with each local-cluster scheduler.

3.11.3 Interfaces/API
The communication with other software components is performed through a REST-API. The current
version of the Global Continuum Placement provides the implementation of the following API calls.

The Table 55 shows the API operations for scheduler:

Table 55 - Global Continuum API for the scheduler

Method Path/URI Description Expects/
Parameters

Response

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 94

POST /api/v1/clusters Initialize scheduler. Provide

platform characteristics to the

scheduler

JSON 200
(Success),

400
(Failed)

POST /api/v1/applications Schedule the workload. Run the

scheduler on the given workload.

Returns placement mapping for

each allocatable task.

JSON 200
(Success)
JSON , 400

JSON
(Failed)

The Table 56 shows the API operations for monitoring:

Table 56 - Global Continuum API for monitoring

Method Path/URI Description Expects/
Parameters

Response

GET /api/v1/healthz Information about monitoring.

Check service status.

- 200
(Success),

400 (Failed)

The deliverable 4.2 contains examples of the latest version of the Global Continuum Placement
features and specific cases of JSON files to use for the scheduler initialization and workload
scheduling POST APIs methods mentioned above. In particular, the extensions involved the
adaptation of the APIs JSON structure to enable a fine integration with the rest of the PHYSICS
components and to support the new features. The new features are related with the updates in the
objectives to cover Energy, Performance and Availability along with the extensions to support the
different scheduling algorithms first-fit, FOA and FOA-e. The detailed structure of the JSON to be used
can be found in detail on the GitHub account where the code is hosted30.
In terms of workflow annotations, the following are finally supported:

 cores: number of CPU cores
 memory: memory in MB
 locality: cluster type one of: "HPC", "Cloud", "Edge", and "On-premise".
 architecture: Hardware architecture, one of: "x86_64", "arm64"
 optimizationGoal: could be one or more of the following "Energy", "Performance", or

"Availability"
 importance: the level associated to each selected goal : "Low, "Medium", "High"

3.11.4 Distribution, deployment and configuration
The implementation of the Global Continuum Placement component is done using Python
programming language. The code can be found in PHYSICS registry. We make use of NIX functional
package manager to prepare the packaged containerized environment to perform the necessary
CI/CD pipelines which are currently configured using Gitlab pipelines on a Gitlab repo. Various tests
are also implemented and incorporated in the CI/CD pipelines with a current coverage of 80%. The
whole software can be packaged and installed as a container.
For the initial setup users can use the following commands:

git clone https://github.com/RyaxTech/global-continuum-placement.git
https://gogs.apps.ocphub.physics-faas.eu/WP4/Global-Continuum-Placement.git

30 https://github.com/RyaxTech/global-continuum-placement

https://github.com/RyaxTech/global-continuum-placement.git

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 95

poetry install

poetry shell

./main.py

Or make use of the container image directly:

docker run -ti -p 8080:8080 ryaxtech/global-continuum-placement:main

A complete example of usage has been added in D4.2 and some examples can be also found in the
repository where the source code is available.

3.12 Distributed In-Memory Service

3.12.1 Overview
The DMS component has been reimplemented since September 2022. The first version of this component
was based on Pocket. This research prototype was based on Apache Crail project. However, this project has
not been maintained since July 2022. The new DMS service implementation is now based on KeyDB. KeyDB
is a multithreaded fork of the in-memory Redis database. KeyDB can run on several cores taking advantage
of multi-core computers. KeyDB provides persistence, replication and security. The DMS provides a set of
OpenWhisk actions (functions) for accessing the in-memory datastore (KeyDB).

3.12.2 Technology architecture
The architecture description of the DMS can be found in deliverable D4.2 Cloud Platform Services for
a Global Space-Time Continuum Interplay V2. The architecture consists of two main components
(Figure 48) the HAProxy or Kubernetes Service, one or several KeyDB instances. A KeyDB instance
stores some data. The HAProxy or Kubernetes Service component is in charge of distributing the
requests among KeyDB instances.

Figure 48 - DMS component

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 96

Data shared between functions can be persistent, which means that the data remains in the DMS even

if the service is stop or fails.

3.12.3 Interfaces/API
The API of the DMS provides these operations:

Method Parameters Description

KeyDB() Ip, port, dbid Receives the KeyDB service address (IP:PORT) and the database

identifier, opens a connection with the KeyDB Kubernetes service

and returns a KeyDB connection object to be used in the rest of the

methods.

Close() Closes a connection with the KeyDB service.

Keys() regex Receives a regular expression to filter the keys stored in the DMS;
it returns the list of keys that matches the regular expression.

Set() Key, value Receives a key and the associated data to be stored. It returns OK if

the data has been stored, or an error otherwise.

Get() key Receives a key and returns the stored value associated to that key

or an error, if the key does not exist.

Getset() Key, value Receives a key and a value. It reads the stored value which is

replaced by the new value. It returns the value associated to that

key. If the key does not exist, it behaves like the set method.

Append() Key, value Receives a key and a value. If the key is already stored, the value is

appended to the existing one. If the key does not exist, it behaves

like the set method. If the stored values are larger than 512MB, max
per key) the method returns an error.

Delete() key Receives the key to be deleted. If the key does not exist, it returns

an error message.

Table 57 - DMS-API

3.12.4 Distribution, deployment and configuration
The DMS component distribution is available in the PHYSICS git repository
https://gogs.apps.ocphub.physics-faas.eu/WP4/DMS.git. Each sub-component is containerized in
images that are created by the DMS-BUILD Jenkins pipeline. Those images are stored in the Harbor
image registry of the PHYSIC platform. Once the images are created, the DMS-DEPLOY Jenkins
pipeline is executed. The DMS-DEPLOY Jenkins pipeline deploys the DMS components in the PHYSICS
infrastructure (AWS or other cloud provider). This CI/CD pipeline is executed each time a new
version of the DMS code is uploaded into the PHYSICS git repository.

3.13 Adaptive Platform Deployment, Operation & Orchestration

3.13.1 Overview
The Orchestrator component will manage the deployment of the application components in the
infrastructure offering available to the PHYSICS platform chosen by the Inference Engine (Reasoning

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 97

Framework) and the Global Continuum Placement (Optimizer) components. This component will also
execute the runtime adaptations needed to enforce the QoS associated with the application
components by the user owner of the application. The final version of the component includes new
features, like the improvement of the Workflow Operator CRD Operator and the Translator
applications, and the implementation of a new subcomponent (Monitoring-Alerts) responsible for
doing the monitoring and assessment of the QoS constraints needed for the migration of functions
executions in different clusters. In the case the QoS constraints defined for the functions or
infrastructure don’t meet the values expected by the users, this component sends Q oS violation
notifications to a message broker which is connected to other subcomponents responsible for the
update or migration of the corresponding functions.

3.13.2 Technology architecture
To facilitate the integration with the components of WP5 the Orchestrator needs to implement the
Open Cluster Management (OCM) interface. To allow this the Orchestrator will parse a JSON file with
the application graph (created by the Inference Engine component) and translate it to a YAML file
with the schema defined by the ManifestWork CRD (Custom Resource Definition) component of the
OCM. This ManifestWork is deployed in the Hub or master Kubernetes cluster (part of OCM
configuration) to instruct to the target cluster infrastructure which kind of resources need to be
created in the target Spoke or managed Kubernetes cluster. This process is only half of required
deployment of the application components in the target cluster chosen by the Optimizer from the
candidate list generated by the Inference Engine. In the target managed cluster or Spoke we
implemented a Kubernetes Operator (WorkflowCRD) that defines this specific CRD that describe the
workflow functions that make up the application (also called Workflow CRD). This new Workflow
CRD will be embedded in the ManifestWork CRD inside the OCM interface. The operator implements
the specific interface to the OpenWhisk (OW) FaaS platform, pre-installed in the managed cluster,
and register the functions and sequences/flows in the local OW.

Figure 49 shows the flow of actions to be executed when deploying an application by the
Orchestrator:

Figure 49 - Orchestrator flow

These functions are monitored by tools like Prometheus. This way the Monitoring-Alerts component
can gather the metrics defined in the QoS definitions associated to these functions and can perform

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 98

the assessment of them. By now, the implementation only involves the OW interface, however, further
integrations with other FaaS platforms like KNative are foreseen in this custom-made Operator.

3.13.3 Interfaces/API
The available endpoints were described in the deliverable D4.1 (section 6.2.3 Interfaces and
integrations) and updated in D4.2, and it is repeated here for convenience to facilitate the
comprehension of the component functionalities. Many of these endpoints will be included in the
Kubernetes Operator for the Workflow CRD.
The following table shows the API operations for functions:

Table 34 - Orchestrator component functions API

Method Path/URI Description

GET /api/v1/function/{id} Get information details of a function that exists in the
function catalogue.

POST /api/v1/function Create or register a function in the functions catalogue.
PUT/PATCH /api/v1/function/{id} Update a function in the functions catalogue.
DELETE /api/v1/function/{id} Delete a function from the functions catalogue.
GET /api/v1/functions List all the functions from the catalogue.

The following table shows the API operations for invocation of runtime actions (RPC API call style):

Table 36 - Orchestrator component runtime RPC API

Method Path/URI Description

POST /api/v1/functions/deploy Install a standalone function in the target FaaS
engine/platform.

POST /api/v1/functions/undeploy Uninstall a function from the target FaaS
engine/platform.

POST /api/v1/functions/run Execute a standalone function in the target FaaS
engine/platform.

Finally, the Translator application offers the following operation:

Table 58 - Orchestrator component runtime RPC API

Method Path/URI Description

 POST /api/v1/deploy Creates a ManifestWork per function included in the
JSON description of the application (deployment graph)

3.13.4 Distribution, deployment and configuration
All the modules of this component are implemented in Go language and packetized in container
images as part of the CI/CD pipeline implemented with Jenkins. The source code will be in the official
repository of the PHYSICS project31 under an open source licence (Apache 2.0). The container images
will be stored in the image repository of PHYSICS in Harbor. For the parametrization of the container
images installation, we will use kustomizer and specific YAML config files available in the source code
repository. For the development of the API interfaces, we will use OpenAPI Generator tools 32. For the
deployment destination (testbed) we will use OpenShift as CaaS (Container as a Service) installed in

31 https://gogs.apps.ocphub.physics-faas.eu/WP4/orchestrator
32 (https://openapi-generator.tech/).

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 99

the PHYSICS testbed hosted by Amazon AWS. The CD pipeline will manage the deployment of the
components in the assigned namespaces of the cluster.

3.14 Scheduling Algorithms (Local Adaptive Scheduler)

3.14.1 Overview
This component is responsible for the local level scheduling taking place individu ally on each cluster
that participates in the global continuum. In particular, the scheduling algorithms and related
mechanisms will be responsible for the intelligent placement of the tasks of a broader FaaS
application workflow upon the underlying compute infrastructure of a single cluster. This scheduling
phase takes place after the global continuum placement has selected the most adapted cluster to
execute each task.
In PHYSICS architecture, the scheduling algorithms are implemented as OpenWhisk-Kubernetes
coordinated scheduling and are responsible for actual execution of the tasks on the selected
underlying computing resources of one single cluster.
The final version of the local adaptive scheduler involves developments mainly in Kubernetes
scheduling while keeping a close coordination with the OpenWhisk scheduler to correctly set the
adapted Kubernetes policies to optimize the FaaS applications executions. The new scheduling
algorithm implemented for the local adaptive scheduler is called LayersLocality and allows the
minimization of cold start delays by favouring the placement of tasks on nodes that already have
layers of the containers to be deployed.

3.14.2 Technology architecture
Based on the analysis provided in D5.2 and our focus to provide a scheduling algorithm that will
minimize the time a task is executed, by addressing the delays related to the downloading of
containers and their layers. Hence, the proposed scheduling algorithm has been designed to be a
“container layer aware” scheduler for Kubernetes. There is already an image locality plugin in the
Kubernetes scheduler, but it does not take into account layers in the image.
This plugin is located in pkg/scheduler/framework/plugins/imagelocality in the Kubernetes
codebase.
We have implemented a new version of imagelocality plugin named LayersLocal ity which is based on
the following basic concepts:

 The layers available with their size on each of the nodes at startup
 For each new pod compute a score regarding the cumulative size of already present layers.
 Based on the above try to favor the execution of functions on nodes where layers of the

containers to be deployed already exist, which will help in minimizing the download time of
images and hence the cold start of containers.

 For this we had to extend not only Kubernetes itself but also its Container Runtime Interface
(CRI). In our case we considered CRI-O which is one of the most widely known Kubernetes
CRI.

The CRI (Container Runtime Interface) manifest contains the layers with their sizes and it is available
at pull time. See the OCI (Open Container Initiative) reference about manifest at Git server33.
So, in this regard we collected the layers’ info from the manifest CRI and addedit in the
ImageSpec.annotations field in the CRI API, see Git repository34 .
For that we implemented a change of the internal Kubernetes interfaces to add the Layers
information into Kubernetes core.v1 protocol. This allows the layer information from the CRI

33 https://github.com/opencontainers/image-spec/blob/main/manifest.md
34 https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto#L673

https://github.com/opencontainers/image-spec/blob/main/manifest.md
https://github.com/kubernetes/cri-api/blob/master/pkg/apis/runtime/v1/api.proto#L673

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 100

interface to be propagated to the internal NodeStatus.Images interface that is already accessible by
the scheduler. We implemented our solution in our Kubernetes fork35. Besides the changes taking
place within Kubernetes, we also extended the actual CRI. For that purpose, we choose to adapt the
CRI-O (Open Container Initiative) as the CRI of reference because it is the one used in our PHYSICS
testbed and it is used as the default CRI by OpenShift.
The layer information must come from the image pulled to the CRI interface. However , this is not
possible using the default version of CRI-O. For that, we need to find a way to get information from
the manifest which contains layers digest and size to be added in CRI v1 protocol ImageSpec
Annotation map with a prefix (see Kubernetes implementation).
For that we have modified the Container Runtime CRI-O to get available layers name and size on node
and send them through annotations (without API change) on these forks3637
Finally, as mentioned in D5.2, we have pushed the LayersLocality Scheduler to the Kubernetes
community by proposing to integrate it in the upstream version.

3.14.3 Interfaces/API
The API used for the new scheduling algorithm is practically the API of Kubernetes scheduler since
we comply with the standards provided by its API. This API can be found online here 38
Nevertheless, to support the changes mentioned above certain modifications had to be made to
enhance the default API with the container layer details. For that we had to modify the
ContainerImage API from the default version here39 to also contain a map with the layers ID and layer
size. This allowed us to GET these new details related to the container layers and perform the right
scheduling decision taking into account these details as well.

3.14.4 Distribution, deployment and configuration
As mentioned previously the code of the new LayersLocality Scheduling algorithm component is
implemented within different open-source projects. The whole effort, tests and different techniques
used can be found online here40

To configure and deploy the particular version of CRI, users can follow the next steps:

1. Pull the cri-o fork with:
git pull https://github.com/RyaxTech/cri-o

git checkout image-layer-locality-scheduler

cd cri-o

2. Build cri-o with Nix:

nix build -f nix

3. Start Cri-O:

sudo --preserve-env=PATH ./result/bin/crio --log-dir /tmp/cri-o/logs --root /tmp/cri-o/root --

log-level debug --signature-policy test/policy.json

4. Pull an image and query CRI-O through the CRI API:
sudo crictl --runtime-endpoint unix:///var/run/crio/crio.sock pull

docker.io/library/debian:latest

35 https://github.com/RyaxTech/Kubernetes/compare/v1.22.6...image-layer-locallity-scheduler
36 https://github.com/RyaxTech/cri-o
37 https://github.com/RyaxTech/cri-o/compare/v1.22.1...image-layer-locality-scheduler
38 https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/
39 https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#containerimage-v1-core
40 https://github.com/RyaxTech/k8s-container-layer-locality

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 101

sudo crictl --runtime-endpoint unix:///var/run/crio/crio.sock pull

docker.io/library/python:latest

sudo crictl --runtime-endpoint unix:///var/run/crio/crio.sock images -o json

Following that we can see that the annotation map contains one common key because the Python
image is based on Debian. The common layer is:
"imageLayer.sha256:0c6b8ff8c37e92eb1ca65ed8917e818927d5bf318b6f18896049b5d9afc28343": "54917164"

On the other side changes have been made within Kubernetes to expose layer information to the
scheduler.

Pull the particular Kubernetes fork with:

git pull https://github.com/RyaxTech/kubernetes
git checkout image-layer-locality-scheduler
cd kubernetes

Build Kubernetes binaries with embeded libc to avoid portability issues:

CGO_ENABLED=0 make all
Create a dockerfile for the Kubernetes API server

cat > _output/Dockerfile.kube-apiserver <<EOF

FROM busybox

ADD ./local/bin/linux/amd64/kube-apiserver /usr/local/bin/kube-apiserver

EOF

docker build -t ryaxtech/kube-apiserver:latest --file _output/Dockerfile.kube-

apiserver ./_output

docker push ryaxtech/kube-apiserver:latest

docker tag ryaxtech/kube-apiserver:latest ryaxtech/kube-apiserver:v1.22.6

docker push ryaxtech/kube-apiserver:v1.22.6

Create a dockerfile for the Kubernetes controller:

cat > _output/Dockerfile.kube-controller-manager <<EOF

FROM busybox

ADD ./local/bin/linux/amd64/kube-controller-manager /usr/local/bin/kube-controller-manager

EOF

docker build -t ryaxtech/kube-controller-manager:latest --file _output/Dockerfile.kube-

controller-manager ./_output

docker push ryaxtech/kube-controller-manager:latest

docker tag ryaxtech/kube-controller-manager:latest ryaxtech/kube-controller-manager:v1.22.6

docker push ryaxtech/kube-controller-manager:v1.22.6

Create a dockerfile for the scheduler:

cat > _output/Dockerfile.kube-scheduler <<EOF

FROM busybox

ADD ./local/bin/linux/amd64/kube-scheduler /usr/local/bin/kube-scheduler

EOF

docker build -t ryaxtech/kube-scheduler-llocality:latest --file _output/Dockerfile.kube-

scheduler ./_output

docker push ryaxtech/kube-scheduler-llocality:latest

docker tag ryaxtech/kube-scheduler-llocality:latest ryaxtech/kube-scheduler-llocality:v1.22.6

docker push ryaxtech/kube-scheduler-llocality:v1.22.6

Some experiments related to the scheduler can be found in D5.2 and on the GitHub repository. The
coordination with OpenWhisk and the new scheduler developed in Kubernetes goes through the
webhook mechanism which is described in the following section. Moreover, the upstream work is
being done related to this with the expectations of merging it in the relevant upstream projects so
that this does not need to be done and will get it in any vanilla k8s deployment.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 102

3.15 Resource Management Controllers

3.15.1 Overview
This component focuses on the infrastructure layer, both at single cluster (i.e., Kubernetes/OpenShift
layer) and multicluster (set of Kubernetes/OpenShift clusters). It oversees providing the needed APIs
for other PHYSICS components, so that they can better control both the infrastructure itself and the
applications running on top. This means offering the functionality and APIs to be able to perform
wiser scheduling and co-allocation decisions, as well as enabling applications (in PHYSICS use cases,
functions) deployments across different clusters, including information about energy
consumption/estimations (through Kepler). In addition, it includes the automation needed for
onboarding new clusters with required configuration and PHYSICS components, as well as connecting
them to the other PHYSICS components in the hub cluster.

As a result, this component also focuses on adding the missing functionality at the infrastructure layer
to be able to support the PHYSICS architecture. This component is implemented as extensions to the
existing upstream projects, when feasible or as new components that plug into the Kubernetes
ecosystem.
In the second phase of the project, we have focused on:

 Enhancing the K8s API extensions (through the workflow CRD) to provide all the needed

information from components in the upper layers (the ones developed in WP3 and WP4)

to the relevant infrastructure components (the ones developed in WP5, in this case the co-

location engine)

 Provide a cluster onboarding mechanism that automatically detects new clusters being

added to the hub and deploys relevant PHYSICS components (in our case the semantic

components and some benchmarking load) on them. It also connects them to the PHYSICS

component in the HUB – in this case the Reasoning Framework.

 Enhancing the Kepler project to obtain energy consumption metric (estimations) on top

of cloud providers (AWS, Azure) and with enough granularity (sampling) for function as a

service use cases. This is leveraged by other PHYSICS components (e.g., semantic (WP5)

or scheduler (WP4)).

3.15.2 Technology architecture
We have developed the next subcomponents to support the resource management controllers:

 Scheduler selection webhook41 - This subcomponent uses the Kubernetes webhook extension
mechanism to control the scheduler that is used for scheduling each pod. Pods can be labelled
to use specific PHYSICS schedulers that use PHYSICS specific scheduling logic. In this case we
enforce the locally aware scheduler for the pods that runs the functions, to limit the impact of
creating new containers. In addition, this webhook also calls the co-location engine to obtain
the affinity/anti affinity rules to be used.

 The Workflow Custom Resource Operator (Workflow CRD) - CRD is one of the native
Kubernetes mechanisms for extending its API. It is used to define a new object type in
Kubernetes and create a controller (Operator) for reacting to them. Specifically, the Workflow
CRD is used as an API between PHYSICS components, where all the required information about
the sequence of functions is available, including metadata added by other PHYSICS
components, such as performance profiling information. The API and the operator reacting to
it has been enhanced during the project duration to ensure new information/parameters were

41 https://wordpress.org

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 103

included upon need by other PHYSICS component. For example, the defaultParams needed to
deploy functions across clusters or the performance profile information needed by the co -
location engine.

 The Event-Driven Cluster Onboarding mechanism based on Knative Serverless: This new
component is in charge of detecting new cluster being added to the hub (OCM managed
clusters) and perform a set of actions for their onboarding, more speci fically:

o leverages Knative services and APIServerSource service for detecting the event and
triggering the actions

o leverages OCM to deploy Kubernetes objects in the remote clusters
o leverages Submariner for the communication across clusters
o leverages Kepler for the energy consumption metrics.
o run some benchmarks so that its performance can later be evaluated by the semantic

component
o deploy the semantic PHYSICS component (note others can be added too) and pass to it

the needed information about the benchmark so that it can make use of Kepler
information to estimate the energy consumption score of the new cluster

o ensure the PHYSICS component(s) is reachable through submariner and pass the
endpoint to the Reasoning Framework

The relationship between different components in the context of cluster onboarding can be seen in
the next figure (Figure 50):

Figure 50 - PHYSICS cluster onboarding

In addition, we contributed to several upstream components in order to make them work better in
the cloud compute continuum and especially with edge nodes and function as a service use cases. The
components we contributed to are:

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 104

 Microshift42 - A small form factor Openshift that is optimised for deployment on edge nodes.
We contributed with testing, bugs identification and engagement with the community to fix
them.

 Submariner43 - This is a tool for connecting kubernetes clusters. We pushed bug reports and
fixes in order to make it work better with Microshift and ovn-kubernetes CNI.

 Kepler44 - This is a prometheus exporter that uses eBPF and linux kernel tracepoints to obtain
or estimate the energy consumption per node/pod. We worked together with the community
to make it work on top of cloud providers (i.e., on top of Vms) as well as with enough sampling
frequency to cover Function as a Service use cases.

 Knative 45 - This is a platform-agnostic solution for running serverless deployment. We have
engaged in discussions with their upstream community due to the similarities with
OpenWhisk and the work on the WorkflowCRD. As a result we have a hackathon about building
an operator around Knative to do similar things to the WorkflowCRD. In fact the WorkflowCRD
has been enhanced with Knative support as part of this effort.

Figure 51 shows an overview of the different components and their relations:

Figure 51 - Resource Management Components and interactions overview

3.15.3 Interfaces/API

 Webhook
The Webhook component is a static component and the interface with it is declarative according to
Kubernetes guidelines. It is configured by yaml files which are deployed into the cluster, and pods

42 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
43 https://www.okd.io/#what-is-okd
44 https://sustainable-computing.io/
45 https://knative.dev/docs/concepts/

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.okd.io/#what-is-okd
https://sustainable-computing.io/
https://knative.dev/docs/concepts/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 105

are registered to a specific scheduler by adding annotations to them. This process has two steps which
together implement the interface to the webhook (after it was deployed):

1. Add a label into the Kubernetes namespaces where the webhook needs to be used. The value
of this label indicates which scheduler to use. By default , "physics-webhook: enabled"

2. In order to direct Kubernetes to use any of the PHYSICS schedulers on a running pod, we need
to add annotation with a specific label (by default, "physics-scheduler") and the name of the
scheduler to be used for that pod. Then the webhook will be invoked on pod creation and
modify the pod so that the scheduler to be used is the one stated in the annotations (if the
namespace where the pod was created has the label stated at step 1).

 Workflow CRD
The Workflow CRD is managed by a Kubernetes Operator46. This is in charge of managing the events
once CRs of type Workflow are created/deleted/updated.
As stated before, the usage of CRDs allows extending the Kubernetes API with custom resources, and
Workflow CRD is a resource of this type. Therefore, the same API as for any Kubernetes object applies.
The physics components will make use of the Kubernetes API on this CRD for:

1. Creating objects of type Workflow CRD: This is the same as creating any other Kubernetes
resource (pod, services, configmaps, etc.) The different options available in that call depends
on the fields defined for the workflow CRD spec, and how internally the operator manages it.
Like when a pod is created with one option or another.

2. Deleting objects of type Workflow CRD: Same as before, it is just a call to Kubernetes API to
remove one object. The operator will be in charge of triggering all the needed actions in
reaction to that.

3. Other operations on the Workflow CRD (such as read or update) will be performed by the
operator and use the Kubernetes API - these operations are internal and are not exposed to
the users directly.

The Kubernetes API is a declarative one, it is based on creating an object (data object) and sending it
to the API. It is accessible in multiple forms. From the command line it can be invoked via the kubectl
command, for example:

kubectl apply -f <yaml file>

kubectl delete -f <yaml file>

kubectl get {resource type}

The same paradigm exists in many programming languages when you create a data structure and
apply it via different APIs. The Workflow CRD operator is written in the go programming language
and will use the Kubernetes API implementation in go: https://github.com/kubernetes/client-go

 Cluster Onboarding
The cluster onboarding components47 make use of the Knative/OCM/Kubernetes APIs for detecting
and triggering the actions:

 Detection: Knative APIServerSource object watching for OCM ManagedCluster objects
creation

46 https://aws.amazon.com/what-is-aws/?nc1=h_ls
47 https://github.com/luis5tb/physics-cluster-registration

https://github.com/kubernetes/client-go

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 106

 Triggering: Knative Service that runs the cluster onboarding logic, and that handles the
scaling up/down depending on the events – i.e., if there are no clusters being added for
some time it will remove the service pods to save resources.

As for the logic itself, it is a Python Flask service that reacts to POST events, which are generated by
the APIServerSource. The API for the user/admin is basically to onboard a new cluster with OCM.
This creates a) create an OCM ManagedCluster object which triggers b) the Knative APIServerSource,
which in turns calls c) the Knative Service running the Python Flask service (POST). Finally , the
service is d) creating OCM ManifestWork objects that contains the Kubernetes objects to create in the
remote cluster (k8s Job and Semantic service) and the information to retrieve (Semantic service IP)
and e) calling the Reasoning Framework and Semantic component REST APIs (POST) with the
relevant information about the IPs and k8s jobs.

3.15.4 Distribution, deployment and configuration
The Webhook mechanism is composed of several yaml files that should be deployed on the
Kubernetes cluster48. There are configurable options on the webhook_server to decide what
annotation should be searched on the pods to decide on the scheduler. This should be configured in
the yaml files before applying them -- kubectl apply -f XXX.yaml. Another configurable option is to
change the namespaceSelector (label) that you would like to use to tag the namespaces where the
webhook will be enforced. Along with this a Python script parses the pod annotations and changes
the pod scheduler accordingly. The Workflow CRD is implemented as a Kubernetes Operator,
therefore it is also be distributed as a set of yamls to deploy on the Kubernetes cluster. The
configurable options are implemented in the operator and are accessible by other components by
generating a CRD with one or other options, i.e. , filling in some properties or another - in a similar
way as any other Kubernetes object.
For the Cluster Onboarding mechanism, it is distributed as an open source project (Apache License),
easily installable with a set of yamls, following instructions in here:
https://github.com/luis5tb/physics-cluster-registration/blob/main/README.md. For making
modifications to the code or changing the default behaviour the steps are the next:

 change the cluster-registration.py python flask application as needed
 build a new container image using the provided dockerfile
 push the image to a container repository (e.g., quay.io or dockerhub)
 change the knative service definition so that it uses this new container instead of the

default one

For Kepler, we have made our contributions upstream, therefore is directly distributed when using
the latest released version of Kepler. It is installed in the default way, detailed in the project website
for the different options: https://sustainable-computing.io/installation/kepler/. As for the
configuration, the same applies, see: https://sustainable-computing.io/usage/general_config/.

3.16 Co-Allocation Strategies

3.16.1 Overview
The Co-location strategies component was designed and implemented under the scope of task T5.4
Optimized service co-location strategies. The description of this component was reported in
deliverable D5.2 Extended Infrastructure Services with Adaptable Algorithms Scientific Report and
Prototype Description V2. This component is triggered just before a new pod (function) is going to

48 https://www.gartner.com/smarterwithgartner/the-science-of-devops-
decoded#:~:text=Gartner%20defines%20DevOps%20as%20a,between%20operations%20and%20developm
ent%20teams.

https://github.com/luis5tb/physics-cluster-registration/blob/main/README.md
https://sustainable-computing.io/installation/kepler/
https://sustainable-computing.io/usage/general_config/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 107

be created in the infrastructure. The co-location component analyses the cluster status (pods running
at each node and node resources), the requirements of the function to be deployed (defined in a
workflow), the possible interferences of the pod with pods already running on the cluster nodes and
produces a set of affinity and anti-affinity rules to be used by the Kubernetes scheduler to find out
the most suitable node for the function deployment. The Workflow is a Kubernetes Custom Resource
Definition (CRD) object that contains information about the functions that belong to a given workflow
(sequence), the needs for each specific function and the relation with the functions in the workflow,
among other information.
In this second version of the co-location component, the internal architecture has been modified by
adding new components to analyze the resource consumption of function pods and the function
performance in different scenarios (standalone execution, co-located with other functions). This
information is used to find the most suitable nodes for the pod deployment.

3.16.2 Technology architecture
The Co-allocation strategies component is integrated with the mutating webhook component
developed in task T5.3 Resource Management Controllers and Interfaces. The mutating webhook
detects when a new pod object is going to be deployed in a Kubernetes cluster. It first invokes the
Scheduler component, developed under task T5.2 Adaptable Provider Level Scheduling Algorithms,
and then invokes the Co-Allocation strategies component (Figure 52)

Figure 52 - Co-allocation invocation Technology architecture

The co-location component is made of six sub-components: the cluster information, the cluster status,

the Function metrics and interferences, the co-location database, the Data collector and the Rules

generator (Figure 53). There are three types of sub-components, the sub-components that are

executed periodically (grey boxes in Figure 53), the database and the sub-components that are

executed when a new pod in intercepted by the mutating webhook.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 108

Figure 53 - Co-allocation strategies component internal architecture

Several processes run periodically to collect data from the Kubernetes cluster and OpenWhisk using

their own API and their own Prometheus instances. The performance of functions execution and

interferences are analyzed. This information is stored in a time-series database (Co-location DB in

Figure 53) and is used by the Data collector sub-component to define the best co-location strategy.

That information is sent to the Rules generator sub-component that modifies the pod YAML object,

intercepted by the mutating webhook, adding pod/node affinity/anti-affinity rules. An example of the

output produced by the co-location component is shown in Code 1. In this case two rules have been

added. The first one is a node affinity rule to ensure that the function is executed in a node that has a

disk of type SSD and a GPU. The second rule is a pod anti-affinity rule which prevents the function

from being executed in a node where a pod of the function Model training is being executed.

apiVersion: v1

kind: Pod

metadata:

 name: wskowdev-invoker-00-1-guest-hello

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: disktype

 operator: In

 values:

 - ssd

 - key: gpu

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 109

 operator: In

 values:

 - yes

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: openwhisk/action

 operator: In

 values:

 - Model_training

 topologyKey: topology.kubernetes.io/zone

 containers:

 - name: wskowdev-invoker-00-3278-guest-hello

 image: "gkousiou/noderedhelloaction"

Code 1 - Affinity/Antiaffinity rules example

3.16.3 Interfaces/API
The co-allocation strategies component has a Python interface with one method.

 Get_affinities()
It receives the pod YAML object to be deployed as input and returns an enhanced version of the pod
YAML with affinity and anti-affinity rules.

Table 59 - Co-Allocation/API-get affinities

Method get_affinities(pod)

Input pod: pod object

Success response pod: pod object enhanced with the affinity and anti-
affinity rules

Error response - Workflow name not defined in pod object
- Missing workflow object
- Not enough resources to allocate the pod

3.16.4 Distribution, deployment and configuration
The Co-location strategies component is implemented in Python, some of its sub-components are part
of the mutating webhook logic. The Co-location strategies component has been integrated in the
PHYSIC CI/CD pipeline, using Jenkins build pipelines. The distribution of the component is available
in the PHYSICS git repository at https://gogs.apps.ocphub.physics-faas.eu/WP5/WebhookCo-
locationStrategies.git.
The Co-locationStrategies-BUILD Jenkins pipeline creates the images and pushes the docker image to
the PHYSICS Harbor images registry each time a new version of the Co-location component is
uploaded to the PHYSICS git repository. Next the deployment of the webhook and the co-location
strategies sub-components will be done by the PHYSICS platform administrator. The Co-
locationStrategies-DEPLOY Jenkins pipeline deploys the webhook and co-location logic in the
PHYSICS AWS platform.

https://gogs.apps.ocphub.physics-faas.eu/WP5/WebhookCo-locationStrategies.git
https://gogs.apps.ocphub.physics-faas.eu/WP5/WebhookCo-locationStrategies.git

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 110

4. REUSABLE ARTEFACTS MARKETPLACE IMPLEMENTATION
This chapter covers the design and implementation of the final version of the Reusable Artefacts
MarketPlace (RAMP) application. RAMP has been refurbished to cater to a broader audience to
facilitate easy access to the various project solutions. Special attention has been given to emphasizing
reusable cloud patterns in FaaS applications.
In addition to project’s solutions, the RAMP offers training materials, including informative videos
and webinars, aiding users in leveraging the full potential of the platform’s offerings through
demonstrations based on real-life use cases. The enhancements in the marketplace facilitate the
exploitation of the project results to a more extensive degree.

4.1 Overview
RAMP implementation relies on WordPress49, which tops the list of the three most often used site
building packages in the world, followed by Joomla and Drupal. WordPress is free to download and
use, comes with numerous add-ons for specialized functionality, and can be customized to suit the
needs of individual users. Although WordPress was originally designed to support blogging and
related online publishing, it also powers a wide range of sites with other purposes. The WordPress
package plus a variety of basic and premium plugins can run complex sites for lar ge multinational
corporations, manage small businesses, and create personal blogs. WordPress sites can contain full -
service eCommerce stores, showcase a portfolio, or host a social network, group, or podcast. Thanks
to its many themes and easy access to its source files, WordPress can also facilitate the required
adaptability of a project’s changing needs.
In this version, RAMP has updated to foster a better user experience, which include:

 Enhanced User Interface (UI): The revised UI now includes market-oriented texts that

not only resonate better with the end-users but also streamline navigation, paving the way

for a more intuitive user journey.

 Expanded Artefact Repository: Towards offering a more robust solution repository, we

have augmented our marketplace with a wider array of artefacts, thereby broadening the

spectrum of resources available to aid in FaaS applications.

 X (former Twitter) Integration: To foster better community engagement and keep users

updated with the latest project developments, a Twitter feed integration has been

facilitated to bring real-time project posts directly to the marketplace platform.

These upgrades provide a more responsive, user-friendly, and resource-rich marketplace, the details

of which are presented in the following subsections.

4.2 Technology architecture
The RAMP service developed leveraging the WordPress interface which allows for the continuous

updates of web site’s structure and content. Given that a WordPress site is not a typical application

that can follow a usual DevOps pipeline where the developers maintain the application’s artefacts in

a Git repository, a self-hosted server, operated by INNOV, was opted to accommodate the PHYSICS

marketplace. This approach ensures that the RAMP will be operational after the end of the project

without requiring any migration (i.e., from PHYSICS AWS to another server). In addition, GFT

49 https://wordpress.org

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 111

facilitates the DNS server of the RAMP which is provided by the Amazon Route 53 service (see also

Figure 54).

Figure 54 - RAMP Architecture

In the current RAMP version, the user categorizations include three distinct groups: administrators,

registered users, and visitors. The administrator, encompassing INNOV and GFT, retain the privilege

to modify the website’s structure and augment its content pool directly through a web browser,

necessitating access to the site’s URL and respective logins.

Enhancements have been introduced in the access tiers given to visitors and registered users. In the

upgraded version:

 Visitors: To allow greater inclusivity and accessibility, visitors are now granted open access

to view the artefacts, thereby enabling them to get insights and leverage the available

resources to a substantial extent. The primary distinction between visitors and registered

users lies in the capability to upload assets to the RAMP, a functionality exclusive to the

registered users.

 Registered Users: Apart from enjoying unrestricted access to the resources available on the

platform, registered users are empowered to upload new assets, thereby fostering a rich and

evolving repository. Further, they can engage directly with the consortium or artefact owners

to request specific information or propose modifications to an artefact, promoting a

collaborative and iterative development environment.

 Administrative Review: To maintain the quality and relevance of the content, all new

uploaded assets undergo a meticulous review by the administrators before being granted

approval for integration into the site.

This user structure not only ensures the streamlined operation of the platform but also facilitates a
harmonious collaboration among diverse user groups while upholding the integrity and quality of the
content hosted on the RAMP

4.3 Artefacts
In its infancy, RAMP carries a foundational set of artefacts mainly sourced from the project's technical
WPs. However, it embodies a vision of growth, as these project's results are disseminated through
various channels, including conferences, workshops, webinars, and scientific publications. Even at
this stage, it has successfully managed to onboard a notable number of assets from external

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 112

contributors, laying a solid foundation for a rich and diverse library of artefacts. The existing
collection encompasses a broad spectrum of offerings such as:

 Patterns, Flows, and Functions: Pertaining to the FaaS domain, facilitating an intuitive
understanding and application in various related settings.

 Services, Semantics, and Interoperability Tools: Offering essential tools and services
promoting efficient interoperability in diverse environments.

 Optimization Artifacts: Enhancing application deployment at the edge, promising
optimized performance.

 End-to-End Use Cases: Leveraging the project’s offerings to furnish users with practical,
real-world applications of the resources available on RAMP.

 Educational Resources: Encompassing a wide array of materials such as tutorials,
webinars, and workshops, honing skills in functional programming.

The following table summarizes the artefacts hosted on RAMP as of September 2023. It should be
noted that these numbers are expected to grow further before the end of the project as the technical
work progresses towards finalization.

Table 39 - Summary of Artefacts hosted on RAMP

Type Number of Artefacts per Owner
 PHYSICS External Contributor

Total

Pattern 9 9

Flow 6 4 + 1 collection of 26 11

Function 1 1
Semantics 1 1

Service 4 1 5

Dataset 1 1

Use Case 3 3

Training Resource 5 5

Total 30 6 36

4.4 Distribution, deployment and configuration
RAMP is deployed in a dedicated cloud-based Hosting and Database Server hosted in Germany. The
utilized server follows a shared resources plan which enables autoscaling based on site’s
requirements. Thus, as RAMP will be populated with more assets, this server may be upgraded to
facilitate the respective resource needs. The management of this server is undertaken by INNOV
which is also responsible for the front-end design of the RAMP.
As a DNS server responsible for translating the Hosting Server’s IP in an interpretable name (i.e.
marketplace.physics-faas.eu/), the Amazon’s Route 53 web service was chosen. This offers a high ly
available and scalable cloud Domain Name System (DNS) which has been purchased by GFT.

4.5 User Story
The PHYSICS market platform is structured thoughtfully to include several distinct pages, each
serving a specific purpose to enrich the user experience. These pages are delineated as follows:

 Homepage
 About
 Assets
 Use Cases

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 113

 Training Videos
 FAQs

The homepage, represented in Figure 55, is crafted to immediately engage users, offering previews
of the most recent assets and use cases alongside PHYSICS social media links and a live feed of the
latest Twitter posts to keep users informed of the most recent project’s developments. Registration
and sign-in options are available to facilitate easy access for both new and existing users. A further
feature of the homepage is a section at the bottom that highlights the latest asse ts introduced in the
marketplace, complemented by a direct link that enables registered users to contribute by uploading
new assets.

Figure 55 - Homepage

The about page serves as a gateway to understanding the core principles and objectives of the
project. Here, visitors can inform themselves with the vision, mission, and goals that steer RAMP,
grasping a well-rounded perspective on the project’s underpinnings.

Moving on, the Assets page, as shown in Figure 56, presents a varied array of solutions, tools,
artefacts, and services categorized based on attributes such as pattern, service, and semantics, among
others, to foster easy navigation. A click on a specific asset takes the user to a space detailing a holis tic
view of that asset complete with comprehensive descriptions and guidelines for use . For users keen
on contributing (requesting) to (from) RAMP, the Add New Asset (Request Asset) button, opens up a
form designed for uploading (requesting) new assets; a process delineated in Figure 58. For visitors
who are yet to register, this section navigates to the registration/login form, encouraging
participation.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 114

Figure 56 - Assets page

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 115

Figure 57 - An asset in RAMP

Figure 58 - Form to add/request Asset in/from RAMP

Presently available, the Use Cases page offers users a glimpse into the real-world applications and
potentials of the PHYSICS project, illustrated through various case studies and scenarios, effectively
demonstrating the applicative spectrum of the project outcomes. In Figure 59 depicts the post of the
eHealth use case.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 116

Figure 59 - eHealth Use Case Post

The Training page is a space dedicated to hosting a range of educational materials including videos,
webinars, and workshops that are in harmony with the project's directives, offering users resources
to enhance their knowledge and skills.

Lastly, the FAQs page stands as a quick help center, addressing common questions and

providing clarifications on the platform’s functionalities, thereby aiding users in navigating the

platform effortlessly and making the most of what RAMP has to offer

5. PHYSICS SOLUTION FRAMEWORK INTEGRATION
ENVIRONMENT

This chapter summarizes the final integrated development and testing environment upon which the
PHYSICS solution framework is built, including the Continuous Integration/Continuous Delivery
processes put in place to support all the development, testing and integration activities.

5.1 Integration Infrastructure
To build and deploy the PHYSICS platform as a whole, as described in D2.4 we envision two different
strategies, one for each of the two phases, so respectively:

 Development strategy
 Deployment strategy

The Development strategy defines the collaborative work of the developers’ partners to build up the
framework, with the goal of creating a Minimum Viable Platform (MVP) of the PHYSICS framework.
The Deployment strategy defines a uniform approach to deploy all the PHYSICS components, in
particular about how to deploy them inside a cloud provider or an edge location based on a
Kubernetes cluster.
The PHYSICS RA design approach plans to consider a microservices architecture implem entation,
with services/functions interacting among them through REST APIs based on OpenAPI specification.
In that respect, all microservices run in containers on the Kubernetes platform .

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 117

5.1.1 Development strategy
The Development strategy provides that developers writing the individual components of the
PHYSICS platform need an integrated environment where they can test their components working
together with the other services. To support this process, we implemented a continuous integration
environment based on the Kubernetes50 orchestrator provided by OKD51 and deployed inside the AWS
Cloud provider52. AWS provides a cost-effective, quickly expandable, ready-to-use environment
without having to spend time on procuring resources, at the same time OKD provides many
functionalities out-of-the-box not available in Kubernetes Vanilla such as Authorization (OpenID,
LDAP), traceability, scaling and management, and much more. Kubernetes is an ideal choice for the
development strategy environment since it allows easy updates of deployments when new
application images are built, with manifests containing deployment configurations versioned in Git
alongside the application source code. Furthermore, it is easy to spin up new test environments from
scratch, which enables future scenarios including automated end-to-end integration testing. Build
agents themselves are also created on demand and removed when done, providing efficient resource
utilization and clean environments to ensure build reproducibility.
The development strategy has been implemented using the DevOps53 methodology through the tools
(shown in Figure 60) and hosted in a specific namespace named “devops” inside the OKD cluster.

Figure 60 - DevOps Tools

The DevOps tools are:

 Gitlab54 is a Git repository manager that lets developer teams collaborate on PHYSICS’s source
code.

 Jenkins55 is the de-facto standard open-source automation server for orchestrating CI
(Continuous Integration)/CD (Continuous Delivery) workflows.

 Harbor56 is a popular CNCF compliant Docker registry.

50 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
51 https://www.okd.io/#what-is-okd
52 https://aws.amazon.com/what-is-aws/?nc1=h_ls
53 https://www.gartner.com/smarterwithgartner/the-science-of-devops-
decoded#:~:text=Gartner%20defines%20DevOps%20as%20a,between%20operations%20and%20developm
ent%20teams.
54 Gitlab (https://about.gitlab.com/solutions/agile-delivery/)
55 Jenkins (https://www.jenkins.io/doc/)
56 Harbor (https://goharbor.io/docs/2.3.0/install-config/)

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 118

 OpenLDAP57 is used as the single user directory for all tools, centralising authentication and
simplifying management of developer accounts.

 Helm58 is a package manager that streamlines installing and managing Kubernetes
applications.

The interaction between these tools and the workflow that shows how they can be used by a partner
is shown in Figure 61. Starting from point 1, when a developer pushes new component code, Gogs
invokes through a webhook a pipeline (also referred as job) configured inside Jenkins. The job builds
the component, runs unit tests and, if everything has worked in a proper way, builds an updated
Docker image that is pushed it to Harbor. The following step is deploying the updated component in
the specific namespace; in fact, we will have as many namespaces as the WPs (Work Package)
allowing us to have the correct isolation from an access perspective, so each person inside a specific
WP is able to interact with WP namespace while all namespaces are opened to interact with each
other. At the end of the process, Jenkins sends a notification to a dedicated CI/CD channel on the
PHYSICS Slack59 workspace, so that developers are informed that a new build occurred and whether
it was successful or not. In case of errors, developers will have to inspect the build logs, find the
problem and correct it. In case of success, developers will go ahead and test that the new version
works correctly in the test environment.

Figure 61 - CI/CD flow

In addition to the “devops” namespace and those dedicated to WPs, it was decided to create two
further namespaces, one called "dev" and the second one called "prod".
The “dev” namespace will contain the stable (for example version 1.0) version of PHYSICS
components, in this way the developers will be able to continue developing their own components,
in their own namespace, without affecting the global functioning of a specific version of the platform
versions. The “prod” namespace instead will contain the final version of the PHYSICS components
that can be used for a demo even after the project has been completed. The integration environment
described above, together with the cross-services provided by AWS for its proper functioning, is
presented in Figure 62.

57 OpenLDAP (https://www.openldap.org/doc/admin25/)
58 Helm (https://helm.sh/docs/intro/)
59 Slack (https://slack.com/intl/en-pt/features)

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 119

Figure 62 - Integration namespaces

The interaction of developers and partners with the integration environment can take place with two
methodologies or through the OKD GUI (Figure 63) or through the use of the oc60 client (Figure 64).

Figure 63 - OKD GUI

Figure 64 - OC client

The same segregation implemented into integration environment has been reported within the Gogs
structure.
Specifically, 5 “Organizations” have been defined in Gogs as presented in Figure 65.

60 https://docs.openshift.com/container-platform/4.7/cli_reference/openshift_cli/getting-started-cli.html

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 120

Figure 65 - Organizations inside Gogs

In this way, the developer accesses his organization, and once inside he can create the repository or
the repositories for storing the code of the component to integrate (an example is given in Figure 66)

Figure 66 - Repositories inside one organization

5.1.2 Deployment strategy
The PHYSICS platform is designed to be able to operate from on-premises to the cloud and up to the
edge. The variety of the environments in which it can be deployed as well as the diversity of the
components that constitute it, requires the use of deployment methodologies that are simple, general
purpose and minimize the possibility of errors.
With this in mind, it was considered to use IaC (Infrastructure as Code) tools like Terraform61 . Such tools
are preferred, as they can easily recreate “on demand” the blueprint environment. We selected OpenTofu62
is a fork of Terraform that is open-source and it is one of the best tools for IaC available on the market and
it allows to recreate an infrastructure in a predictable and safe way.
Figure 67presents a possible flow that could be used to deploy PHYSICS components. This flow is
composed of two macro phases. During the first phase, the OpenTofu scripts are retrieved from the
PHYSICS general GIT repository and used to create the environment that will accommodate the
PHYSICS components in any location both cloud and edge. In the second phase the HELM charts are

61 Terraform (https://www.terraform.io/intro/index.html)
62 OpenTofu (https://opentofu.org/docs/intro/)

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 121

used to install and configure the components into the environments created by OpenTofu. The only
prerequisites that the customer deploying PHYSICS needs are the OpenTofu and HELM clients
alongside the resources needed by PHYSICS to run.

Figure 67 - Deployment flow

5.2 Cross infrastructure components
The partner HPE in the second phase of PHYSICS project, worked to provide some components that
are cross within the PHYSICS platform and could be used to facilitate the integration of the various
services.
In particular, two main issues often required within the PHYSICS architecture were analyzed:

1. Data historicization
2. Concurrent request handling

To address the first request, it was agreed to provide two methodologies:

a. One based on No-SQL DB that would allow unstructured data to be stored.
b. One that would provide S3-compliant storage.

As a No-SQL DB it was decided to use a single instance of MongoDB63 deployed in the dev namespace.
The deployment as well as the reachability methodology used for that component are the same as
those chosen for the components successively described in this section, and are respectively Helm
for deployment, while the ClusterIP64 service was adopted for exposure. For use by the services, a
dedicated user was set up for each Workpackage that could work on its own collection. Regarding S3-
compliant storage, MinIO65software was chosen. In this case to simplify management by all users the
GUI was also exposed externally via endpoints:

https://minio.apps.ocphub.physics-faas.eu
A specific bucket, with associated access policies, was created per specific component.

63 https://www.mongodb.com/atlas/database
64 https://kubernetes.io/docs/concepts/services-networking/service/
65 https://min.io/product/kubernetes

https://minio.apps.ocphub.physics-faas.eu/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 122

For handling multiple requests to a service, a broker message based on publisher/consumer logic in
particular the Advanced Message Queuing Protocol (AMQP)66 was chosen, so the
RabbitMQ67 has been selected. As in the case of MinIO, it was preferred to expose the GUI externally
via the endpoint https://rabbitmq.apps.ocphub.physics-faas.eu, so that we could simplify both the
creation of exchanges and queues

5.3 Visual Workflow component
The partner HPE worked with the WP3 team for the architectural definition of the Visual Workflow
(Figure 8) in order to provide some essential components for its correct functioning.
In particular, a dedicated GIT server based on Gogs was installed within the wp3 namespace
responding to the URL https://repo.apps.ocphub.physics-faas.eu to manage the code associated with
the development of the various functions that developers can implement through the Visual
Workflow.
The functions created, to be used and consumed by PHYSICS components, must be transformed into
docker images and injected into the OpenWhisk component.
To manage this transformation and interaction with OpenWhisk, it was decided to use a dedicated
Jenkins server responding to the address https://orchestrator.apps.ocphub.physics-faas.eu/
Two macro pipelines have been created on this server:

 A first one for managing the transformation of functions in Docker
 A second one for encoding of images in OpenWhisk

The use of Jenkins as an orchestration engine makes both the integration with the Visual Workflow
immediate because it has REST APIs that can invoke the created pipelines and thanks to the various
plugins it has, it is possible to address many types of interactions out of the box.
At the same time, to manage the multi-user offered by Visual Workflow, a queue system has been set
up in which to log the build number and the artefacts produced by the execution of each sp ecific
pipeline. This queue system was based as described in 5.2 paragraph on RabbitMQ server as a
backend and integrating its use inside Jenkins through the MQ Notifier68 plugin.
The last component configured in this architecture is MongoDB. It has been used to store a history of
the artefacts produced by the execution of pipelines in Jenkins. MongoDB being a no -SQL DB is
particularly suitable for this type of use, because it allows you to store unstructured data and execute
optimised queries on them for retrieving information in a very short time.

5.4 Visual Workflow on cloud
In the first part of the project HPE worked closely with the Work Package 3 team for the development
of the Visual Workflow (aka Design Environment).

In the initial version the Visual Workflow was designed to be composed of two macro blocks:

1. A block running on the edge (front-end) i.e., the customers' PCs/environments, from where to
develop the workflows of the FaaS functions

2. A cloud block with backend components

The edge was based on the use of 3 microservices (containers)

1. A microservice for managing the UI

66 https://www.rabbitmq.com/tutorials/amqp-concepts.html
67 https://www.rabbitmq.com/documentation.html
68 https://plugins.jenkins.io/mq-notifier/

https://rabbitmq.apps.ocphub.physics-faas.eu/
https://repo.apps.ocphub.physics-faas.eu/
https://orchestrator.apps.ocphub.physics-faas.eu/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 123

2. A microservice as backend based on SFG
3. A microservice based on NodeRED

Their execution relied on the docker compose69 methodology, which was easier to install and use than
using Kubernetes as an orchestrator.
However, during the project, this approach revealed several problems which can be summarized as
follows:

1. Difficulty pulling images from the PHYSICS registry from clients behind a reverse proxy or
firewall.

2. Problems with correct cloning/pushing towards GIT server in a Windows Subsystem for
Linux (WSL) environment.

3. Basic knowledge of docker/docker-compose required for correct use.

To overcome these problems, it was decided to move the edge part to the cloud, maintaining the
macro-logic between the front-end and the backend unchanged. This approach allows the user to take
advantage of the same features he previously had locally, simply by opening any browser without
having to install anything. This modification involved the development and modification of several
components.
The first was to transform the first two edge microservices, the UI and the SFG, in a standalone
application, with a full reengineering, where the SFG is evolved in a compliance GraphQL application
and the UI have a redesigned UI and integrate user and environment provisioning. Both the
application was released as standalone application in CLOUD, accessible on the route:

https://control-ui.apps.ocphub.physics-faas.eu/

For Node-RED and the application that needs a direct access to it, the approach was different because,
for the nature of Node-RED, each user needs a separate environment. To achieve this requirement, it
will be creating a POD for each registered user.

Figure 68 - Visual Workflow CLOUD

The detail of the Visual Workflow CLOUD architecture structure is shown in Error! Reference source
not found., the SFG is evolved in GraphQL that interacts with the user Node-RED POD and the already
present microservices and a POD for each user with Node-RED and a light way of the actual SFG.

69 https://docs.docker.com/compose/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 124

Each user POD is identified during deployment on OKD by the name de-pod-<username> to which a
service named de-<username> is associated and by a route identified with the nomenclature de-route-
<username>

The reachability of the POD from the outside is guaranteed by a specific route from the structure:

https://de-<username>.apps.ocphub.physics-faas.eu

Having created this system, the aim was to optimize the use of cloud resources, giving the user the
possibility of running the environment only when necessary and stopping it when not required. For
this purpose, the Visual Workflow UI integrates all the needed feature for provisioning user and POD.
For this purpose, the UI as SPA has been divided into three main blocks:

 User Creation: accessible when in login phase is providing a general user; in this section
the user can register to the UI. If the process is complete successfully the user is redirected
to the Environment Creation section.

 Environment Provisioning: is the home section of the UI, each user access is redirected
first on this page. This section is responsible for checking if the user POD is already created
and if it is started. The creation of POD is made only on the first user access; vice versa the
start of the POD is needed to make at each user login, because for a CLOUD resource
optimization the POD will be shut down at user logout. If everything is up and running, the
user is redirected to the Design Environment section.

 Design Environment: the last section, where all the actual UI features are integrated, such
as build, test and import image.

The setup of the customer's infrastructure was delegated to Jenkins through the design of a specific
pipeline DEPLOY-DE-CLOUD-USER (Figure 69) in which the following steps are carried out:

 Creation of a specific named de-cloud namespace if it does not exist
 Creation of secrets in this namespace for historicizing user credentials
 Creation of the configmap for the deployment configuration
 Preparation of PVCs for the stateful part of the deployment
 Creation of a specific branch within the GIT server, used to version the workflow code
 Creating the deployment
 Creation of associated services
 Creation of routes for external reachability

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 125

Figure 69 - Jenkins Pipeline for Visual Workflow

The security aspects have been also considered in the redesign: in fact, the whole environment was
accessible only with user credentials, not only to access the UI page exposed via HTTPS, but also for
making Node-RED safe. To create a homogeneous integration between UI and Node-RED, HPE
integrated Node-RED with Keycloak 70. We used it alongside UI, GraphQL and NodeRED to implement

OIDC authorization Flow.

The configuration used to secure NodeRED is presented in the code below:

 adminAuth: {
 type:"strategy",
 strategy: {
 name: "keycloak",
 label: 'Sign in',
 icon: "fa-lock",
 strategy: require("passport-keycloak-oauth2-oidc").Strategy,
 options: {
 clientID: "node-red",
 realm: 'master',
 publicClient: "false",
 clientSecret: "********",
 sslRequired: "external",
 authServerURL: "https://auth.apps.ocphub.physics-faas.eu/auth",
 callbackURL: "https://node-{{USERNAME}}.apps.ocphub.physics-
faas.eu/auth/strategy/callback",
 verify: function(accessToken, refreshToken, extraParams, profile, done) {
 return done(null, profile);
 }
 },
 },
 users: [
 { username: "{{USERNAME}}",permissions: ["*"]}

70 https://www.keycloak.org/

http://openid.net/connect/

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 126

]
},

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 127

6. CONCLUSIONS
This document has reported the results of PHYSICS WP6 Task T6.1 “Solution Services Integration and
Reusable Artefacts Marketplace Platform (RAMP) Creation”, achieved during the second and final
phase of the project. The document is the accompanying textual specification of the major result of
the deliverable and the task: the second version of the prototype of the integrated PHYSICS solution
framework and RAMP which has been deployed into the PHYSICS blueprint reference target
infrastructure. The document and the integrated PHYSICS solution framework and RAMP setup
constitute the overall deliverable and task output.
The achieved results provided key contributions for the fulfilment of the 7th major WP6 milestone
(MS12 – PHYSICS 2nd integrated platform release – foreseen for M34 of the project), and provide the
second and final release of the proposed solution.
The work has been carried out in close cooperation and coordination with the other PHYSICS WP6
tasks and Work Packages 2-3-4-5 tasks and partners, taking into account and integrating the
delivered results and concepts (e.g., the PHYSICS Reference Architecture proposed by WP2 and the
solution framework major components and services artefacts proposed by WP3, WP4 and WP5) in a
coherent and uniform manner.
The overall progress of T6.1 has been one of the major drivers of the remaining WP6 tasks, mainly
T6.3 (Use Cases Adaptation & Experimentation) and T6.4 (Use Case Evaluation) for the upcoming 2nd
iteration of the PHYSICS Pilots and Use Cases Operations and Stakeholders’ Evaluation of the
proposed solution framework. The delivered integrated PHYSICS solution framework and RAMP
marketplace are fundamental inputs and drivers for WP7 (Exploitation, Dissemination and Impact
Creation), with special emphasis on T7.2 (Business Innovation Development & Exploitation).
The WP6 work done on Tasks 6.1 nevertheless puts the basis for possible future (exploitation)
evolutions and enhancements of the proposed solution framework and marketplace with additional
capabilities and features, even after the project official end. Such enhancements could take into
account the latest evolutions of relevant technologies occurring after the project timeframe, and also
the expected feedback coming from the final project wave of the Pilot Operations and Stakeholders
Evaluation tasks.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 128

7. REFERENCES

[1] F. D. &. B. J., “Graph Databases Comparison: AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and
OrientDB,” In Data, pp. 373-380, 2018 July.

[2] S. University, “Pocket,” [Online]. Available: https://github.com/stanford-mast/pocket.

[3] A. a. W. Y. a. S. P. a. T. A. a. P. J. a. K. C. Klimovic, “Pocket: Elastic Ephemeral Storage for
Serverless Analytics,” in OSDI'18, CARLSBAD, CA, USA, 2018.

[4] PHYSICS Consortium, “D2.5 - PHYSICS REFERENCE ARCHITECTURE SPECIFICATION V2,” 2022.

H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

D6.2 – Prototype of the Integrated PHYSICS solution framework and RAMP V 2
 P a g e | 129

DISCLAIMER
The sole responsibility for the content of this publication lies with the authors. It does not
necessarily reflect the opinion of the European Union. Neither the EASME nor the European
Commission is responsible for any use that may be made of the information contained therein.

COPYRIGHT MESSAGE
This report, if not confidential, is licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0); a copy is available here:
https://creativecommons.org/licenses/by/4.0/. You are free to share (copy and redistribute the
material in any medium or format) and adapt (remix, transform, and build upon the material for
any purpose, even commercially) under the following terms: (i) attribution (you must give
appropriate credit, provide a link to the license, and indicate if changes were made; you may do
so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use); (ii) no additional restrictions (you may not apply legal terms or technological mea sures that
legally restrict others from doing anything the license permits).

