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EXECUTIVE SUMMARY

The goal of this deliverable is to provide the description and implementation details of the PHYSICS
components for the Extended Infrastructure Services with Adaptable Algorithms. This is the second/last
version of this document and it covers the main components description and their interactions and API. In
addition it includes some scientific experimentation outcomes. The different components are developed as
part of the work package WP5.

The Extended Infrastructure Services with Adaptable Algorithms correspond with the infrastructure level
and have Kubernetes (OpenShift [1]) as its centerpiece. It extends Kubernetes' provided functionality with
extra APIs and with other components on top of that. The interactions between components, as well as
with the infrastructure has been defined following the current upstream trends and best practices: using
WebHooks, Custom Resource Definitions(CRD) [2] , Operators [3] and running containerized on top of the
infrastructure itself. In addition, new components in this second release also made use of the new trends
on event driven implementations, serverless computing, and energy metrics.

The infrastructure layer is divided into 4 main building blocks: a) the semantic model, b) the adaptable
scheduling algorithms, c) the resource management controllers and interfaces, and d) the optimized
co-allocation strategies. For each one of them, its design specification is described in this document,
together with the main implementation and integration (API) details, and experimentation outcomes.
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1. INTRODUCTION
The main aim of the PHYSICS Extended Infrastructure layer is to provide the functionality and interfaces
(APIs) needed for enabling an optimized operation of the edge and cloud services, which in the PHYSICS
case are used for the realization of the application service graph (i.e. the execution of its functions).

PHYSICS has selected Kubernetes as the cornerstone for the Infrastructure layer, extended with different
projects to make it suitable for deploying applications in a multi-cluster setup (Open Cluster Management
[4] and Submariner [5]), including special (low-footprint -> MicroShift, K3s, kind) clusters located at
different edges.

In addition to ensure integration of those components by working together with their respective upstream
communities, the work in WP5 focuses on the next action points to better support the execution of the
application service graph:

● Semantic model to accurately depict and model each service and resource type capabilities and
needs;

● Provider level Adaptive Scheduling Algorithm that maintains the QoS level by adapting to
application needs;

● Optimized co-allocation strategies that minimize performance degradation enabling further
exploitation of the available resources;

● Integration of the above items into the resource management layer, in this case Kubernetes. This
includes the extra APIs and resources needed by the above components for interactions, in this
case CRDs and Webhooks. It also provides the extra APIs needed for WP3 and WP4 mechanisms,
such as cross-cluster orchestration or autoscaling mechanisms.

This deliverable presents the first version of the PHYSICS Extended Infrastructure architecture.

1.1 Objectives of the Deliverable
The goal of this deliverable is to define the final version of the infrastructure layer components and its
interactions/APIs. It also presents the main scientific results and/or outcomes from them.

This deliverable describes the overall architecture of the infrastructure layer, with its main building blocks
(semantics, scheduling, resource management, and co-allocation), and the interactions/APIs between
them. It focuses on the design of those components and their implementation highlights, with focus on
cross component integration (WP5 tasks).

This document is relevant for the design of the PHYSICS architecture (WP2), as well as for the interaction
with other technical components developed in work packages WP3 (Functional and Semantic Continuum
Service Design Framework) and specially in WP4 (Cloud Platform Services for a Global Space-Time
Continuum Interplay). Note that the APIs exposed in this deliverable will be consumed by WP4
components. This deliverable is also useful for future adopters of the PHYSICS infrastructure layer
platform, either as a whole or just for single components.

This deliverable presents the final version of the PHYSICS Extended Infrastructure Services with
Adaptable Algorithms. The final design and implementation details of the different components, as well as
their APIs, have been updated as the project progresses. It includes modifications from the initial design
based on both new requirements as well as due to engagement with upstream communities.

1.2 Insights from other Tasks and Deliverables
The Extended Infrastructure Services of PHYSICS have been designed using as input the PHYSICS
Architecture defined in deliverable D2.4. The infrastructure layer architecture also takes into
consideration the inputs from upstream best practices regarding Kubernetes API extensions and
integration, such as CRDs and Operators, as well as current trends on event-driven applications (based on
Knative).
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Although the deliverables D3.2 Functional and Semantic Continuum Services Design Framework, Scientific
Report and Prototype Description V2 and D4.2 Cloud Platform Services for a Global Continuum
Space-Time Continuum Interplay, Scientific Report and Prototype Description v2 are concurrent in time,
they progressed in a coordinated manner. Several meetings were organized to define the interactions and
APIs, especially in relation to WP4 components. These meetings provided very valuable information for
the definition of the PHYSICS Infrastructure layer, its requirements and API extensions.

This deliverable provides input for the several WP6, Use Cases Adaptation, Experimentation, Evaluation,
deliverables, regarding the integration of the prototypes (D6.2, D6.6) and the evaluation of it (D6.8).

1.3 Structure
The rest of the deliverable is organized as follows. First, an overview of the Infrastructure layer
architecture, components and interactions is presented in Section 2. Then, the main building blocks
(semantics, resource management, adaptable scheduling, and optimized co-allocation) are described in
Sections 3 to 6, respectively. This includes information related to their design, implementation highlights,
and scientific outcomes. Finally, conclusions are presented in the last section of the document.
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2. ARCHITECTURE PROTOTYPE

The main objective of WP5 is to provide a view and interfaces to enable optimized operations at different
edges and the cloud services utilized for running the needed functions/workloads. To achieve this, the
architecture prototype need to be able to:

● Accurately depict and model the abilities of each service, as well as resource type (e.g., nodes).
● Provide different adaptive and real-time provider-level schedulers so that current application

needs are considered and overall QoS levels can be maintained.
● Incorporate those algorithms into the resource management and controlling layer, in this case

Kubernetes/OpenShift clusters. This includes the relevant APIs so that it can be consumed by WP3
and WP4 components. Note that this also relates to the multicluster needs, such as extra
configuration upon cluster onboarding.

● Improve the resource usage by providing co-location and optimization strategies, minimizing the
performance degradation effects.

The architecture prototype focuses on both the single cluster components/extensions as well as the
multicluster aspects. All the above functionality needs to be incorporated in the infrastructure, providing
the needed APIs for the upper components (e.g. those fromWP4) so that applications (i.e. pods, functions,
workloads) can be easily deployed across different Kubernetes/OpenShift clusters (including parts of the
workflow on different clusters/edges). This also including the option to have edge clusters with limited
resources and even different architectures (e.g. ARM), such as Raspberry PIs.

2.1 Main components
The main components of the architecture prototype can be differentiated depending on whether they are
targeting the multicluster or the single cluster scenarios. Most of the tasks in this WP (all of them actually)
focus on the single cluster scenario. However, some of them also cover the multicluster scenario, specially
in its relation with the APIs provided to WP4. This is the case of tasks 5.1 and 5.3. Note that this does not
mean the scheduling and co-allocation tasks are not run in multiple clusters, but they operate on them in
an isolated mode from the other clusters. By contrast, T5.1 (semantics) needs to account for multicluster
information, and T5.3 needs to provide the relevant APIs to components in other WPs (WP3/4), enabling
spreading the load among clusters.

For the PHYSICS architecture prototype, we have based our design and implementation in both in-house
solutions and already existing open source solutions. The next Figure shows the main components of the
final architecture prototype which includes:

● Existing upstream projects (Kubernetes [6], Prometheus [7], OpenWhisk [8], Open Cluster
Management [4], Submariner [5], Knative[9], Kepler[10]). We not only used them but also have
contributed to some of them, in terms of finding bugs, fixing them, requesting future
enhancements and related discussions, etc..

● New software tools developed within the project. They are either leveraging Kubernetes
functionality as the base, such as webhooks, extending the Kubernetes API such as CRDs (Custom
Resource Definition), enhancing K8s (such as the new scheduler) or independent of it, such as
co-location engine or semantic engines.
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Figure 1. - Main components Overview

Let’s cover the main functionality of the components by splitting them into multicluster and single cluster
functional groups:

2.1.a Multicluster components
Open Cluster Management

It is a community-driven project [4] focused on the multicluster orchestration for Kubernetes applications.
It is in charge of the clusters registration, work distribution across them, enabling dynamic placement
policies and workloads. Thus, it allows the PHYSICS project to have a central Kubernetes cluster hub, from
which it can manage all the managed Kubernetes clusters, as well as the applications running on them.

In PHYSICS it is used as the main API offered for WP4 to deploy workloads on the different available
clouds, as well as to perform different configuration on the managed clusters (such as node scaling when
possible). We work on its integration (agent side: Klusterlet) into the low footprint OpenShift (such as
MicroShift or Kind, see section 2.1.2), to be able to leverage its functionality on resource scarce edges.

Submariner

Submariner [5] is an upstream (Sandbox) CNCF [11] project that targets to enable direct networking
between pods and services deployed in different Kubernetes clusters, either on-premise or in the cloud. It
is fully open source and designed to be network plugin (CNI) agnostic -- note that this does not mean it can
work with all the CNIs, and some of them require specific drivers to be fully working.

There are other similar projects, like Skupper [12] that are also suitable for multicluster connectivity.
However, Submariner joints the complete cluster (all namespaces), working on L3/4, while Skupper focus
on L7 and simply joints applications. Both could be used but Submariner is more transparent to the
PHYSICS components and helps to avoid the burden of having to create different proxies for each
namespace that needs to be connected between clusters.
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Therefore, in PHYSICS, Submariner is used to enable the distribution of pods and services across different
clusters, yet enabling the connectivity between them. We focused on possible enhancements, such as
support for ovn-Kubernetes CNI, integration into the open cluster management as well as with low
footprint k8s distributions, such as MicroShift [13] or KinD [14] (see section 2.1.2). We are fully engaged in
the upstream community (where Red Hat has the majority of contributions) and have reported issues and
fixes as well as to engage on discussion about needs and use case, to make it a better product as well as to
ensure it fulfills the PHYSICS needs [15][16][17].

Cluster Onboarding

This is a new component fully developed within PHYSICS, whose main objective is to automate the steps
needed once a new cluster gets added to the multicluster setup. More specifically, it is in charge of
installing some PHYSICS components on the new clusters and connecting them to the required
components in the main hub. It also generates some artificial load for the semantic component, so that it is
able to evaluate the new cluster. More details in Section 4.

This component makes use of serverless computing by leveraging Knative for event detection and
processing. And it uses OCM to create the resources in the remote cluster and get the needed information
about it. It can be easily extended to make extra configurations or deploy extra components. Its design can
also be leveraged by other projects to make completely different configurations.

2.1.b Single cluster components
OpenWhisk and OpenWhisk Lite

Apache OpenWhisk [8] is an open source distributed serverless platform that executes functions in
response to events, on containers. It supports different languages (such as Go, Java, NodeJS, Python, Rust,
etc.) and allows developers to focus on the functional logic (called Actions) that run in response to events
(Triggers) from external sources (Feeds).

In PHYSICS, it is used as the function as a service platform running on top of OpenShift, and it has been
adapted to provide the needed functionality. There is also a lightweight version of it for running at small
edges. In addition, as detailed in D4.2 and also in section 4 of this deliverable, we use a proxy behind it to
ease the communication between the Workflow CRD operator and OpenWhisk.

Knative

Knative [9] is a Kubernetes-based serverless platform for building, deploying and managing serverless
workloads. It is currently the leading upstream project related to serverless platforms and it has greatly
evolved in the last couple of years, adding new functionality to its core, such as functions as a service
capabilities.

Knative has two main components, Serving and Eventing, that helps to automate and manage tasks and
applications. The serving part is in charge of running serverless containers in Kubernetes with simplified
templates (one Knative service creates several k8s objects, such as pods, replica set, deployment, service
and ingress/route) and allows scaling to 0. The Eventing part is in charge of managing the flow of events
and redirecting them to the serving. It includes different types of events, such as sources, brokers and
triggers.

We leverage Knative in the Hub/Main cluster for the cluster onboarding automation (both eventing and
serving). In addition, a new controller for it has been implemented, for its integration with the workflow
CRD Operator. This allows the workflow operator to be platform agnostic, being able to easily allow other
FaaS/Serverless platforms, and helping leveraging other PHYSICS platforms components.

The present architecture with workflow CRDs allow to specify the platform for deployment. Due to the
platform agnostic description of the workflow, we can easily allow other FaaS platforms to leverage the
Physics platform components.
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While an Openwhisk proxy facilitates the deployment and update of workflow descriptions into
Openwhisk, a similar Knative proxy can be used to adapt the workflow description to Knative.

Autoscalers: HPA, VPA and KEDA

HPA, VPA and KEDA are different Kubernetes options for automatically scaling your workloads:

● HPA [18] stands for Horizontal Pod Autoscaling and automatically adjusts the number of pods
(through a deployment or statefulset) in response to memory and/or cpu consumption.

● VPA [19] stands for Vertical Pod Autoscaling and automatically adjusts the resource limits [20] and
requests for the containers in their pods. It therefore also only applies to cpu and memory. It can
work in different modes, just giving you recommendations about the expected right values for the
limits/requests or to also enforce those. It has a big limitation, which is that every time VPA
updates the pod resources, the pod needs to be recreated.

● KEDA [21] stands for Kubernetes Event Driver Autoscaling. Unlike the previous ones that were
based on cpu and memory consumption, this is based on the number of events being processed,
therefore it provides a better way of scaling for event driven workloads (such as the Function as a
Service target by PHYSICS). In addition, it already provides a large catalog of build-in scalers (such
as for kafka queues) and new ones can be created for specific applications or use cases.

In PHYSICS, we have investigated the three of them and its extensions, such as using HPA with custom
metrics (instead of just memory and cpu) as well as to write our own autoscaler plugin for KEDA.

Prometheus

Prometheus [7] is an open source CNCF (graduated) project focused on systemmonitoring and alerting. It
collects and stores its metrics as time series data and it is adopted as the main monitoring tool on many
projects/orchestrators, such as OpenShift.

In PHYSICS we leverage information provided by Prometheus from the Kubernetes clusters to improve the
scheduling and co-location decisions over time, depending on the status of the system as well as previous
executions of the applications/pods. In fact, Prometheus is broadly used across CNCF projects and thus,
tools such as Openwhisk, facilitates an Openwhisk exporter that populates metrics into Prometheus. This
feature is utilized by several components in WP3 and WP4, and the same happens for Kepler, making use
of Prometheus to export the metrics related to Energy Consumption and make them available for other
PHYSICS components (such as the semantic component).

Low Footprint K8s: MicroShift, K3s, Kind

When running workload in the Edge it must be taken into account that the available resources may be
limited. In this respect, we evaluated and tested different Kubernetes distributions that are suitable for it:
MicroShift, K3s and Kind.

MicroShift [13] is a new, experimental flavor of OpenShift/Kubernetes optimized for edge devices use
cases. It targets low footprint resources, such as single node deployments or Raspberry PIs. It is designed
to be executed on top of Fedora IoT and RHEL for Edge systems, leveraging the OS's capabilities for secure
device on-boarding and system configurations/upgrades. It aims to be secure and resilient to adverse
networking conditions as well as a very low resource footprint. In PHYSICS, we are working on integration
of MicroShift with Open Cluster Management as well as Submariner. We are also working on building a
community around it, so that the project gains some momentum and starts to be used as a solution for low
footprint devices on the edge.

In addition, and for testing purposes we are also using Kind, a tool for running a small Kubernetes cluster
using docker container nodes. Although it is primarily designed for testing, it is also useful to emulate
small edge devices as well as multicluster integration. We have worked in PHYSICS in its integration with
OCM and Submariner, engaging with their communities to solve the small issues found.
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Semantics

The Semantics component is fully developed as part of PHYSICS. It is in charge of gathering information
about the systems and building the ontologies and knowledge base that other components leverage,
mainly the Reasoning Framework fromWP4.

The component is deployed in each cluster as a dockerized Python application along the cluster
onboarding process. Through a series of methods and provided with the necessary permissions, it
retrieves functional and non functional cluster information by communicating with the Kubernetes API
and prometheus. The latter also contains the relevant energy and performance metrics that Kepler
provides. This information is afterwards translated according to the designed ontology, that captures the
domain specific knowledge on cluster components and their descriptions. Finally it is propagated as
N-triples to the reasoning framework for the data to be ingested and utilized for application to resource
matching.

Additionally, it includes several service endpoints so the cloud dev administrators can interact with the
semantics in a reliable manner for debugging and retrieving or annotating information directly. These
endpoints include checking that the semantics component can successfully connect to the Kubernetes API,
manual annotation of triples etc.

Workflow CRD (API) and its Operator

Custom Resource Definitions (CRDs) [22] is the standard way defined by Kubernetes to extend the
Kubernetes API. We have defined a new one, named Workflow CRD, for the interactions with WP4, as the
main API offered to its components. It stores all the needed information for registering functions, as well
as extra parameters that are needed by other components such as the co-location engine.

The CRD operator is another component fully developed for the PHYSICS project. It is a new Kubernetes
operator that will be in charge of reacting to Workflow CRD objects creation and fill in their information
with the status information. Depending on the spec information of the Workflow object, some actions will
be triggered, in this case the registration of OpenWhisk functions (by calling the OpenWhisk proxy
developed in WP4) or Knative (serverless) services/functions -- by stating the target platform.

In addition, this Workflow CRD in coordination with statusFeedback from OCM serves to provide details
on the workflow from the edge to the hub cluster without the need of additional tooling.

Webhook

The pods created by OpenWhisk need to be updated so that the proper scheduler and affinities as
specified before Kubernetes process the pod. To this end we develop a Kubernetes Webhook, which:

● processes the labels added by OpenWhisk on the pod definition.
● selects the right scheduler to be used.
● selects the affinities/antiaffinities (see next two subsections).
● modifies the pod object accordingly before it is stored on the Kubernetes ETCD database [23], and

therefore processed by Kubernetes operators.

Scheduler and Scheduler pod(s)

In Kubernetes the scheduler has 2 phases, filtering plus weighting, and they can be done based on different
parameters/metrics available, such as the cpu and memory, or nodes labels, or even container images
presence.

In PHYSICS, we have developed a new image layer aware scheduler that makes use of new information
about the container images layers in the nodes, to speed up the boot time of containers by selecting the
node with more layers already downloaded -- thus minimizing the cold start problem for functions.

This means not only the presence or not of the whole container image is considered, but also the presence
of their different layers. This is important for FaaS use cases as there may be a lot of similar images that
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share most of the common layers. The proposed scheduler will noticeably reduce the cold start problem in
these cases, unlike existing scheduling mechanisms which are not aware of the container image layers.
Note there are still ongoing efforts to fully upstream this scheduler and make it part of the default
Kubernetes installations.

The scheduler component is another component developed for the PHYSICS project. It is integrated into
the Webhook (see previous subsection) and it simply selects the scheduler type to be used for that pod.
There are different types of schedulers running on the system as pods. As highlighted in the previous
section, the webhook executes the scheduler logic to select the type of scheduler (i.e., scheduler pod) to be
used.

Co-location

Similarly to the scheduler, the co-location component is another component developed for the PHYSICS
project that will be integrated into the Webhook. This enables the addition of affinities/antiaffinities on
the pods. This component also makes use of the information present on the WorkFlow CRD to better
decide on the co-location strategy for a given set of functions (run as pods).

This component receives information regarding the usage of resources of the function (CPU, RAM, network
and storage) and hardware needs. This information is provided at design time (WP3) and also during the
performance evaluation component (WP4). The component keeps information regarding resource
consumption of the pods running in the cluster and excludes some nodes for deploying the pod (the
hardware needed is not present, there are no resources available) and recommends a subset of suitable
pods where the pod can be deployed.

Kepler

Kepler [10] stands for Kubernetes-based Efficiente Power Level Exporter. It is a Kubernetes exporter that
uses eBPF to probe CPU performance counters and Linux kernel tracepoint. Then it uses that data,
together with cgroups data to deed Machine Learning models that estimate the energy consumption by
Pods.

In PHYSICS we have been greatly involved in its upstream development, engaging with its upstream
community and reporting important issues that blocked their usage in nested environments (i.e., running
on top of VMs in, e.g., AWS or Azure). We have worked together with the community in demonstrating and
finding the issue as well as testing solutions for it -- more information in section 4.2. In addition we have
evaluated the accuracy of the ML model by comparing the obtained metrics by it with the real metrics
obtained when running on Grid5000 [24].

In PHYSICS we have integrated Kepler by making use of its metrics (through Prometheus) as part of the
cluster onboarding and the semantic component to estimate the energy scores for the new clusters.

2.2 API and Interactions
After defining the main components, let's describe how these components are connected/associated
together. The focus is for the interactions between the different components in WP5 and the extended
infrastructure/APIs (part of T5.3). For the interactions across WPs you can check the architecture
deliverable (D2.4).

The next diagrams describe the interactions in the context of a single cluster. Multicluster interactions
should be agnostic on whether if there is one or more clusters in the platform, this behavior is a
consequence to the fact that the underlying layer that provides the multi-clusters connectivity
(Submariner) and API (Open Cluster Management), which make it transparent as long as we use services
IPs or the services domain name associated with the Submariner exposed service-domain -- when services
are exposed through Submariner, so that DNS resolution works across cluster too.
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2.2.a Semantic API and Interactions with Resource Management layer
The semantic engine captures clouds and service's functional and non-functional requirements,
capabilities and characteristics, such as service types, hardware needs, scaling parameters, energy
consumption, etc. The semantic component additionally provides an API for the WP4 components
(available through Submariner in the multicluster scenario), more specifically for the Reasoning
Framework. These WP4 components will use this information to improve the cluster selection for future
functions/workloads. In addition, to provide an API that other (Kubernetes) components can easily
leverage, PHYSICS makes use of the Kubernetes Custom Resource Definition (CRDs). This extends the
Kubernetes API with specific objects, in our case the Workflow CRDs created from the WP4 ecosystem
(OCM), which contains extra information needed by other PHYSICS components.

The main interactions are captured in the next Figure.

Figure 2. - Semantic component Interactions (dotted line means indirect interaction)

As it can be seen, the semantic engine obtains information from Prometheus about both the cluster
resources and about the energy consumption of (some) pods -- made available through Kepler. This
information may then also be part of the workflow CRD objects which in turns can be used by other
PHYSICS components, in this case the Co-location engine to make better decisions about where to locate
the new pods to be created (see section 2.2.c). Note that the workflowCRD object is generated in WP4, by
using the OCM and leveraging the information provided by the semantic component to the Reasoning
Framework. More details on WP4 related workflow can be found in D4.2.

Initially, a node CRD was envisioned (in the first prototype version), but after the initial phase it was
decided that it won't be needed and the Reasoning Framework component could consume directly the
information from the semantic component instead -- thanks to Submariner.

2.2.b Scheduling APIs and Interactions with Resource Management layer
The support for multiple intelligent scheduling algorithms for a more efficient resource sharing is
integrated into the system through Kubernetes webhooks and different scheduler pods:

● Each scheduler logic should be running in a pod in the Kubernetes cluster. There may be
schedulers focused on energy efficiency, while others more targeted to the FaaS platform,
considering things like image layers presence in the different nodes, or performance interference
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(including information coming from co-location and semantic engines). In PHYSICS, we have
developed a prototype that implements a CacheLocality scheduler which takes into account not
only the images available in the nodes, but also their layers. More details on this scheduler are in
Section 5. Example information about how to run different schedulers on Kubernetes can be found
in [25].

● A Webhook is created so that different schedulers can be selected for different pods. The way
webhooks work in Kubernetes is explained with more details in [26], as well as in section 4. For
the PHYSICS case, the process is as follows (also depicted in Figure 3):

1. Pod object creation request arrives to the K8s API.
2. The Webhooks kicks in, fetches the pod object and performs certain actions on it. In our

case, the scheduler engine gets executed and analyzes the pod annotations (made by the
OpenWhisk and WP3/4 components, regarding the workflow it belongs to, and other extra
information to be used, such as particular constraints or objective scores coming from the
global continuum placement component, as mentioned in deliverable D4.1). It also includes
the information about the scheduler to use, and if none stated it used the new
CacheLocality scheduler.

3. The webhook changes the pod object definition to include the scheduler to be used:

apiVersion: v1
kind: Pod
spec:
schedulerName: physics-scheduler
containers:
...

Code 1. Pod template with specific scheduler

4. The modified pod object gets stored, after the webhook modifications, into the ETCD
Kubernetes DB.

5. The scheduler pod sees there is a new pod without an associated node, and executes its
logic to decide the node it should be scheduled to.

Figure 3. - Scheduler component(s) Interactions

Each scheduler (pod) may use different information to perform its decisions. For the PHYSICS project, the
CacheLocality scheduler uses node information about the existing container image layers.
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2.2.c Coallocation APIs and Interactions with Resource Management layer
The coallocation engine integration is similar to the scheduler case. It focuses on the definition of affinities
and antiaffinities rules. It is integrated into the webhook as shown in Figure 4, by having a second round of
pod object modification to also add the affinity information to the pod object. This information needs to be
considered by the scheduler pod in their filtering (usually Kubernetes schedulers divide its execution in 2
phases, filtering out the nodes that do not satisfy the requirement, and then weighting in the remaining
nodes by some factor).

Figure 4. - Co-location components Interactions

Unlike in the scheduler case, here the coallocation part of the webhook needs access to the Workflow CRD
information in order to select the right affinities -- while in the scheduler case that may be done only at the
scheduler pod, not at the webhook phase if the information in the annotations is enough. Of course, it can
also be used if the scheduler type should be selected depending on the workflow semantics.

The final prototype was enhanced by making use of the information stored in the WorkflowCRD, that
comes from the performance profiling done in WP3/4. The co-location engine has been enhanced so that
affinities are calculated based on the performance expectations of the functions as well as their possible
interferences with other already running functions. To achieve that, it accesses local information stored in
the local cluster (Prometheus) as well as information related to the functions profiling through the
workflowCRD object.
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3. SEMANTIC MODELS FOR SERVICE CHARACTERISTICS
The goal of this task is twofold; (a) to design an ontology that acts as the basis for semantic representation
of resources and their capabilities, and (b) to develop the necessary endpoints and functionalities to
extract and transform such information to ensure that it is in accordance with the aforementioned
ontology model.

Designing the aforementioned ontology sets the standard for PHYSICS to capture information on resources
and along with the application semantics (T3.1), enables semantic reasoning in the inference stage (T4.1),
matching resources to applications according to their specifications. For the remainder of this deliverable,
these three components, when they need to be referenced together, will be referred to as the “Semantics
Block”.

Examples of specifications for the service semantics to capture are the locality of deployment, GPU
enablings, SLA and more functional and non- functional capabilities. It should be noted that resources in
this sense refer to internal project based services, edge services and services provided by external public
providers with either computing or storage capabilities. In addition, information from the resource
ontology will be available to be leveraged by other components in the work package, described later on in
the present deliverable.

Many of the concepts described in this section that refer to the Service Semantics component have also
been documented in a relevant publication focused around the ontology that has been designed as part of
the PHYSICS project [27].

3.1 Design Specification
3.1.a Domain Specific Language

The first step towards component realization is choosing a domain specific language that will semantically
describe the ontology. Several standards and such languages have been introduced to enable the creation
of ontologies. TOSCA [28], CAMEL [29] and OWL [30] are all viable options for semantic representations,
all of them utilized in a variety of different contexts such as the semantic web. The domain specific
language of choice for T5.1 Semantic Models for Service Characteristics is OWL, which has been chosen as
the main domain specific language due to its flexibility, popularity and the general consensus among the
components included in the “Semantics Block”.

OWL ontologies are essentially RDF graphs that consist of triples. These triples are composed through the
usage of the following components:

● Classes: Represent objects that are to be described.
● Data Properties: Characteristics of the classes.
● Object properties: Indicate relationships between classes.
● Datatypes: Indicate the data type for a data property.
● Individuals: Instantiated classes with actual information.
● Annotation properties:Meta Characteristics of all the previous types.

Furthermore, a unique IRI (Internationalized Resource Identifier) has been assigned to the ontology and is
used as a prefix in ontology objects. This unique identifier plays a key role when importing ontologies,
allowing the source origin of classes to be easily distinguished..

The normative exchange syntax for OWL is composed of XML and RDF. Although it is not in the scope of
this document to describe all the XML/RDF and OWL vocabularies and syntax, certain examples are
provided to visually aid the reader in understanding the proposed standard. Examples of the XML/RDF
syntax are presented below, while visual examples of the classes are available in the section
“Implementation and Integration highlights”.
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The first XML block below showcases the definition of the ontology while the second gives an overview of
how a Class is defined. The latter two indicate the syntax for creating the object and data properties
respectively.

<!-- Example of ontology iri specification, addressed at the top of the ontology -->
<?xml version="1.0"?>
<rdf:RDF xmlns="http://www.physics-h2020.eu/physics/"

xml:base="http://www.physics-h2020.eu/physics/"
....
<owl:Ontology rdf:about="http://www.physics-h2020.eu/physics/"/>

Code 2 - Example of ontology IRI specification

<!-- Example of class definition in the ontology -->
<owl:Class rdf:about="http://www.physics-h2020.eu/physics/EdgeDevice">

<rdfs:subClassOf rdf:resource="http://www.physics-h2020.eu/physics/Node"/>
</owl:Class>

Code 3 - Example of class definition

<!-- Example of object property definition in the ontology -->
<owl:ObjectProperty rdf:about="http://www.physics-h2020.eu/physics/isHostedOn">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:domain rdf:resource="http://www.physics-h2020.eu/physics/Cluster"/>
<rdfs:range rdf:resource="http://www.physics-h2020.eu/physics/Resource"/>

</owl:ObjectProperty>

Code 4- Example of object property definition

<!-- Example of data property definition in the ontology -->
<owl:DatatypeProperty rdf:about="http://www.physics-h2020.eu/physics/architecture">

<rdfs:subPropertyOf rdf:resource="http://www.physics-h2020.eu/physics/so"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#FunctionalProperty"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

Code 5 - Example of data property definition

3.1.b Service Semantic Models in the PHYSICS ecosystem
The service semantics component is deployed in each cluster managed by the PHYSICS. More specifically
when the cluster onboarding (section 4.1 , Task 5.3) process takes place for a new cluster, a benchmark
application is deployed and when it is finished the service semantics component is notified of its execution
and the pod’s name. It then starts a pipeline of methods that retrieve, semantically transform and finally
send to the Reasoning Framework (T4.1) the cluster’s information. The whole process is visually
represented in Figure 5.

Firstly, the component retrieves information from the cluster by performing various queries to the
Kubernetes API and the Prometheus endpoint, which also consumes metrics from Kepler. Specifically,
Kepler is responsible for providing the energy consumption and performance metrics of the benchmark
pod that is used to generate cluster scorings. Afterwards, the component transforms this raw information
into semantic representations which ensure that semantic rules are followed. Certain aspects of this
information are inferred logically from a set of rules. Examples of this are the total energy used by a
benchmark pod and the locality of the cluster based on the architecture of the nodes cpu units. Finally, the
ontology that consists of the individuals is propagated to the Reasoning framework through Submariner
and the triplets are stored in the AllegroGraph database. This database is a graph database that enables
reasoning over the ontology and execution of SparQL queries.
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The Service Semantics component is deployed as a service in each cluster and as such it incorporates a
number of endpoints that allow for users, usually cluster administrators, to interact with the component in
various ways. One such important feature is the manual annotation endpoint to which the user can add
triplets directly in the ontology that describes the cluster.

Figure 5. - Semantic Models for Service Characteristics in the PHYSICS architecture

In the scope of PHYSICS, semantics information is utilized in an automated manner in the reasoning
framework. In different situations, where an actual user would be necessary to have immediate access to
the information, two cases can be foreseen; For a single cluster the user can retrieve the ontology of the
cluster by the service semantics endpoint. If the user needs to retrieve information for all the managed
clusters and/or the application deployed, they can use SparQL queries through the Reasoning Framework.

3.2 Implementation and Integration Highlights
The ontology is built using Protege [31]. It is a staple Java-based framework in building ontologies using
OWL syntax and provides a graphical user interface for doing so. It also allows for the export of ontologies
in various formats. Although it is visually impossible to include the view of the whole ontology. In Figure
6, we include a preview of some of the included classes, using the Protege builtin add-on OntoGraph. For a
more elaborate view, we refer to WebVowl, a web-based ontology visualization interactive tool.

D5.2 – Extended Infrastructure Services with Adaptable Algorithms Page | 29



H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 6. - A sample of ontology classes visualized through protege

The component is built using Python as the programming language of choice and some front-end
languages and elements with HTML, CSS and JS along the Flask web framework [32] to realize its
functionalities. Owlready2 [33] and OntosPy [34] are two key Python libraries that allow the handling of
ontology data. They provide the necessary methods to create individuals and manage aspects of the
ontology, such as deleting and creating classes and properties.

Additionally, Kubernetes-api-client and prometheus-client are two libraries that allow the service to
extract information from the respective endpoints. The first one allows us to retrieve information about
the cluster and the nodes. Additionally, it enables the component to discover the Prometheus in-cluster IP
and therefore perform queries to it. The latter allows us to access Prometheus and retrieve information
about the benchmark pod.

A couple of rules have also been developed that allow the service to infer semantic information directly
from the available information. Examples of such cases include the energy related metrics, in which case it
is ensured that they are all measured using the same unit of measurement and are summed to provide a
new attribute totalEnergyConsumption. Another includes the identification of edge nodes according to the
CPU architecture, in case this is not explicitly stated in the ontology. Almost certainly all edge nodes, such
as raspberry pi, employ ARM based CPU which allows us to identify them in an inferred way.

The component is packaged as a dockerized service which is deployed along with the necessary
permissions to list and get Kubernetes resources such as nodes and services. Endpoints and parameters
are discussed further in deliverable 6.2.

3.3 Experimentation Outcomes
Due to the nature of the services provided by the task, the outcomes are difficult to be quantified in order
to be assessed. First, we provide some quantifiable measurements of the ontology that allow for a more
thorough examination. We report the ontology components to be 69 classes, 18 object properties and 39
data properties. These numbers indicate an ontology that consists of many subclasses , is not densely
connected and contains classes with many properties.

A representative example of this is the benchmarkResult class contains many subclasses of results like
cpu_cycles, execution_time etc. but each is only connected with the benchmarkWorkload class.
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We have opted to include a couple of ontology related metrics that provide some insights on some of its
aspects, but should be interpreted with caution when used to compare different ontologies. Namely, the
two metrics are (a) Relationship Richness (RR) and (b) Attributes Richness (AR). Both are defined as
follows :

(1)𝑅𝑅 =  𝑃| |
𝑆𝐶| |+ 𝑃| |

and,

(2)𝐴𝑅 =  𝐴𝑇𝑇| |
𝐶| |

The Relationships Richness ( Equation 1) metric is defined as the ratio of existing relationships in the
ontology divided by the number of subclasses and relationships. It indicates the diversity of relationships
of the ontology and we report this value to be 0.68 for our ontology. The Attributes Richness ( Equation 2)
is defined as the ratio of all data properties (attributes) by the number of classes. It is an indicator of the
amount of data properties that are tied to classes on average and provides some insight on how densely
information is linked to classes. For our ontology, we report this number to be 0.57. We also report these
values to be 0.55 and 0.65 for another IT related ontology [35] as point of reference.

In terms of execution time, the component is relatively lightweight. As tested on two of the available to the
project clusters, one hosted on AWS and one on Azure, the response time to receive the semantics service’s
output is under a minute. In actuality the component is only affected in terms of its execution time by the
number of nodes of the cluster it is deployed, in which case even we deem these changes insignificant as
some operations are performed not matter the number of nodes and the transformation of an extra node’s
information retrieved through Kubernetes API is still very fast.

Figure 7. - Total number of the ontology different components.

3.4 Next Steps
In the previous sections we presented the design and various aspects of the implementation and
integration of the component. We also aspire for the future continuation and support for the component
after the project’s lifespan has come to an end. Both the ontology and the actual service that extracts
cluster level information are open sourced through GIT projects and the PHYSICS ramp. As such, we expect
future usage of the component and its included functionalities to point towards potential improvements to
the next guide future development according to needs. Especially among ontologies, it is a common
practice to reuse them either as standalone or by importing them into other ontologies which can be
connected semantically.
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As it currently stands, we expect that improvements could be made by developing additional methods that
support various information extraction methods. One such domain could be potentially using natural
language processing (NLP) to automatically extract SLA information from the official documents provided
by each cloud vendor. Of course, this is not a straightforward task and it remains to be seen whether
future services will be developed that need to reason upon such information depicted in a standard
format.
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4. RESOURCE MANAGEMENT CONTROLLERS AND INTERFACES
This section (related to Task 5.3) focuses on the infrastructure layer, both at single cluster (i.e.,
Kubernetes/OpenShift layer) and multicluster (set of Kubernetes/OpenShift clusters). It is in charge of
providing the needed APIs for the upper layers (WP4 components) and the components developed in this
Work Package (Semantics, Scheduler and Co-allocation engines), so that they can better control both the
infrastructure itself and the applications running on top. This means offering the functionality and APIs to
be able to perform wiser scheduling and co-location decisions, as well as enabling applications
deployment across different clusters, including cluster onboarding processes.

As a result, this task also focuses on adding the missing functionality at the infrastructure layer to be able
to support the PHYSICS architecture. When possible, this functionality is added to already existing
upstream projects, increasing the impact, reusability, and innovation achieved (for example to core
Kubernetes or Kepler). And for the components that do not have a clear fit upstream, we develop them so
that they are well integrated into the Kubernetes ecosystem, by leveraging the tools that Kubernetes
provides for such scenarios. For example by using Custom Resource Definition and the Operators Model to
extend Kubernetes API -- OpenShift is based on this to extend the Kubernetes API and have controllers
able to manage the cluster itself, the CNI, the monitorization, etc; or by using the new Serverless
framework, in this case Knative, to manage event driven actions, such as the cluster onboarding.

4.1 Design Specification
As previously highlighted, the cornerstone of the Infrastructure layer is Kubernetes. However, this is not
enough for PHYSICS needs as it does not cover the multicluster bits, nor the low-footprint with central
orchestration/management. Also, it does not come with the needed extra hooks for
scheduling/co-allocation options to make a more efficient usage of the resources.

We have followed different approaches to take each one of the above issues, as previously highlighted in
Figure (Main Components Overview):

● For the multi cluster problem, in PHYSICS we researched the upstream options and decided to
base our architecture in two upstream projects. First one is Submariner, which provides
connectivity and discovery of pods and services across clusters. The second one is Open Cluster
Manager, which allows onboarding of new clusters and central management of them, both in
relation to the cluster configuration as well as related to running applications on them. In addition
we have developed a cluster onboarding mechanism [36], based on Knative for both event
detection and service (serverless), which performs remote configurations on the joined cluster
upon onboarding event.

● For the edge problem, PHYSICS (in this case Red Hat) has started a new project, named MicroShift,
to provide a minimal, low-footprint OpenShift binary that can be used to deploy small clusters at
the edges, including IoT devices such as Raspberry PIs. In addition we have studied other options,
such as K3s or KinD -- and used KinD for testing purposes and edge emulation.

● For the integration of semantics, adaptive schedulers and optimized co-allocation strategies,
PHYSICS has extended the Kubernetes API with CRDs and aWebhook. The first one (CRD) allows
special types of objects behind the Kubernetes API (in this case with information about the
Workflows), and therefore provides a perfect mechanism for the different PHYSICS components to
interact and communicate -- for example for the co-location to get the needed profiled information
about the functions to be created. The latter (Webhook) allows the scheduler and co-allocation
strategies developed in this WorkPackage to be executed at the right moment, before the pods are
scheduled with the default Kubernetes scheduler, without any extra co-allocation hint.
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● Finally, for energy consumption information we have evaluated different upstream options to
identify the ones that are more suitable for PHYSICS use cases, as well as evaluated how responsive
their communities are. We evaluated Scaphandre and Kepler. Even though Scaphandre looked a bit
more mature, it had some gaps that were blocking its usage. We decided to go for Kepler, seeing the
community was much more reactive.

Next we cover more details about each one of those components.

4.1.a Submariner for Multicluster networking
To allow the connectivity between applications (pods and services) deployed at different Kubernetes
clusters, PHYSICS is using the Submariner upstream project.

Submariner architecture have 4 main components:

● Gateway Engine: manages the secure tunnels to other clusters, by default IPSEC tunnels. It is
deployed in the selected Gateway Node in each cluster.

● Route Agent: routes cross-cluster traffic from nodes to the node with the active Gateway Engine.
● Service Discovery: provides DNS discovery of Services across clusters.
● Broker: facilitates the exchange of metadata between Gateway Engines enabling them to discover

one another. Note, unlike the other components, this only needs to be installed in one cluster (the
central/hub one).

This provides out of the box IP connectivity, and it provides the APIs to provide service discovery (DNS)
across clusters -- deciding what services to expose. This is the API needed by upper layers in case DNS is
required. There are pros and cons of using the IP connectivity or the DNS/submariner service. Using the
service IP is simpler and it does not depend on the extra service discovery mechanism of submariner.
However it may be impacted if the service gets recreated with a different IP (it can easily be managed in
the application layer though). This is what the DNS option covers, at the expense of having to take care of
that service exposition on the application (instead of IP discovery).

4.1.b Open Cluster Management for Multicluster management
To allow the centralized management and configuration of clusters, as well as the deployment of
applications on them, PHYSICS selected the Open Cluster Management upstream project. Open Cluster
Management (OCM) is a powerful, modular, extensible platform for Kubernetes multi-cluster
orchestration. Unlike previous efforts trying to bring the Kubernetes federation, OCM tries a different
approach. It embraces the "hub-agent" model. In OCM, the multi-cluster control plane is modeled as a
"hub" and on the other hand each of the cluster being managed by the "Hub" will be a "klusterlet":

● Hub Cluster: cluster that runs the multi-cluster control plane of OCM. It is supposed to be either
light-weight cluster hosting merely a few fundamental controllers and services, or have 2 roles --
hub cluster and klusterlet-- so that workloads can also be executed on it.

● Klusterlet: clusters being managed by the hub cluster, also called “managed cluster” or “spoke
cluster”. The klusterlet actively pulls the latest prescriptions from the hub cluster and consistently
reconciles the physical Kubernetes cluster to the expected state.
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Figure 8. - Open Cluster Management Architecture (taken from [37])

It is important to note that each klusterlet works independently and autonomously, so they have a weak
dependency to the availability of the hub cluster. If the hub goes down (e.g. during maintenance or
network partition) the klusterlet or other OCM agents working in the managed cluster are supposed to
keep actively managing the hosting cluster until it re-connects. This is ideal for edge cluster use cases. In
addition, it provides a mechanism to provide back information from the objects deployed in the edges to
the HUB cluster. This is done via the OCM feedbackStatus and it is leveraged by several PHYSICS
components, such as the cluster onboarding.
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4.1.c Cluster Onboarding
When a new cluster gets added to the set of clusters managed by the OCM hub, there are certain extra
actions that are required. In the PHYSICS use case we need to ensure that certain components are installed
and configured as needed, as well as connected to the needed components in the hub -- note this can be
further extended to include any other resources/components, as long as they are Kubernetes objects.
The cluster onboarding mechanism (see Figure 9) is designed in a serverless fashion, using Knative
eventing and serving (see next subsection):

● Eventing: It makes use of the ApiServerSource Knative Sink component to detects events related
to cluster creation (OCM object)

● Serving: and then makes use of Knative services to deploy the actual logic in a serverless fashion
to save resources -- scaling to 0 as clusters are not being added at the time.

The logic inside the Knative service is the one that can be easily extended/modified/changed to account
for new/extra/different components/resources. And it is in charge of creating the needed resources in the
remote cluster as well as to gather the required information, such as the service IPs to be used (through
submariner) in the central hub components. It also performs calls to both local and remote PHYSICS
components to provide the required information/configuration - again leveraging submariner networking.

Figure 9. - Cluster Onboarding overview
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4.1.d Knative
Knative is used only on the Hub, an overview of its components is shown in Figure 10, as part of the cluster
onboarding process, we use both the serving and the eventing. The serving part makes it easier to run
containerized applications in Kubernetes as it abstracts away some of the complexity. By creating a
Knative service, the Knative operator takes care of creating the needed resources in Kubernetes, including,
deployments, replicaset, services, routes, etc. The eventing part provides an easy way to react to events, by
providing components to handle different types of data streams in a declarative manner, and connecting
them to their related services -- thus it is perfect to enable event-driven architecture, in this case related to
new clusters being onboarded. Note it uses standard HTTP POST requests to send/receive events between
producers and sinks, following the CloudEvents specifications [38].

Figure 10. - Knative Components (taken from [9])

4.1.e Low footprint Edge deployments: MicroShift, K3s, Kind
In the edge (as well as for testing) we may have limited resources and therefore there is a need for
Kubernetes distributions with a low footprint. As an example, it is not needed to have API HA tooling if
there is only one single node. In PHYSICS we have studied several suitable projects, such as K3s, MicroShift
and Kind. We have focused on the last two.

Kind [14] is a tool for running local Kubernetes clusters running containerized nodes. It was primarily
designed to make testing easier, but it is also used for local development as well as for CI systems. We have
made use of it to have an easier way of testing remote edges, as well as for development purposes, mainly
on the multicluster related components. We have also worked on making sure its integration with both
OCM and Submariner works and covers the need for PHYSICS.

MicroShift [13] started as a research project to create an experimental OpenShift/Kubernetes (OKD, the
Kubernetes distribution by the OpenShift community) flavor which is optimized for edge use cases. Edge
devices/clusters deployed out in the fields (as in PHYSICS e-agriculture pilot) pose very different
operational, environmental, and business challenges from cloud computing. Due to that, MicroShift flavor
makes some trade-off and cleanly layers on top of edge-optimized Linux OS like Fedora IoT or RHEL for
Edge. At the same time, it aims to be secure and resilient to adverse networking conditions and have a very
low resource footprint. In PHYSICS we have worked in promoting it, ensuring it can be used together with
submariner and OCM for our use cases. During the time of the projects, this has evolved to a Red Hat
product, part of the "Red Hat Device Edge" [39] .

4.1.f CRDs for PHYSICS components interactions
Kubernetes Custom Resources (CRs) [40] are extensions to Kubernetes API that are not necessarily
available in default Kubernetes installation. It represents a customization of a particular Kubernetes
installation and is how many core Kubernetes functions are built nowadays, making Kubernetes more
modular. This model is the one followed by PHYSICS.
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As previously shown in section 2, the different components developed in this WP as well as in WP4 need to
communicate and generate/consume shared information. To this end, at the infrastructure level, we have
created a new CRD, named WorkflowCRD, so that the needed information is accessible behind the
Kubernetes API.

The CRD API resource allows defining CRs. By defining a new CRD object, a new CR is created with the
name and the schema specified. And then Kubernetes API serves and handles the storage of that CR (in our
case Workflow and Node). This frees us from writing our own API server to handle those resources. In
addition, CRs can appear and disappear in a running cluster through dynamic registration, so a cluster
admin can update the CRs independently of the cluster itself, and therefore not break the
applications/controllers using them.

Once a custom resource is installed, users (in this case the PHYSICS components) can create and access its
objects using standard Kubernetes APIs (for instance, kubectl), just as they do for built-in resources like
Pods.

There are well known examples of CRD usage in the Kubernetes ecosystem. For example, to manage the
own Kubernetes infrastructure as another Kubernetes resource: this is done with the Cluster API, where
servers are defined by machine and machinesets CRD objects (in the same way as pods and replicaset are
defined for applications). A definition of the machine CRD can be found here [41]. And once defined in
Kubernetes, they can be retrieved as normal objects:

$ oc get machines -n openshift-machine-api

NAME PHASE TYPE REGION ZONE AGE

ocphub-t4rh8-master-0 Running m5.xlarge eu-north-1 eu-north-1a 44d

ocphub-t4rh8-master-1 Running m5.xlarge eu-north-1 eu-north-1b 44d

ocphub-t4rh8-master-2 Running m5.xlarge eu-north-1 eu-north-1c 44d

ocphub-t4rh8-submariner-gw-eu-north-1a-krrtj Running m5.xlarge eu-north-1 eu-north-1a 32d

ocphub-t4rh8-worker-eu-north-1a-txkh8 Running m5.xlarge eu-north-1 eu-north-1a 14d

ocphub-t4rh8-worker-eu-north-1b-fxhzw Running m5.xlarge eu-north-1 eu-north-1b 14d

ocphub-t4rh8-worker-eu-north-1c-ktkjn Running m5.xlarge eu-north-1 eu-north-1c 14d

Code 6 - Kubernetes machine objects

And the object looks like:

apiVersion: machine.openshift.io/v1beta1

kind: Machine

metadata:

annotations:

machine.openshift.io/instance-state: running

finalizers:

- machine.machine.openshift.io

labels:

...

name: ocphub-t4rh8-worker-eu-north-1a-txkh8

namespace: openshift-machine-api

ownerReferences:

- apiVersion: machine.openshift.io/v1beta1

blockOwnerDeletion: true

controller: true

kind: MachineSet

name: ocphub-t4rh8-worker-eu-north-1a

uid: 590ce0b9-7a7f-4f81-bc97-b1147b827ef0

uid: b4601937-6be3-4572-bac2-407f48c27423

spec:

metadata: {}
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providerID: aws:///eu-north-1a/....

providerSpec:

value:

ami:

id: ami-...

apiVersion: awsproviderconfig.openshift.io/v1beta1

blockDevices:

- ebs:

encrypted: true

iops: 0

kmsKey:

arn: ""

volumeSize: 120

volumeType: gp2

credentialsSecret:

name: aws-cloud-credentials

deviceIndex: 0

iamInstanceProfile:

id: ocphub-t4rh8-worker-profile

instanceType: m5.xlarge

kind: AWSMachineProviderConfig

placement:

availabilityZone: eu-north-1a

region: eu-north-1

securityGroups:

- filters:

- name: tag:Name

values:

- ocphub-t4rh8-worker-sg

subnet:

filters:

- name: tag:Name

values:

- ocphub-t4rh8-private-eu-north-1a

tags:

- name: Kubernetes.io/cluster/ocphub-t4rh8

value: owned

- name: ocphub

value: "true"

userDataSecret:

name: worker-user-data

Code 7 - Kubernetes machine CRD example

In the PHYSICS architecture, the design around the CRDs is the next:

1. The Workflow CRDs is created at the infrastructure layer (more information about the specifics of
this CRD in the Implementation and Integration in section 4.2)

2. WP4 components are in charge of creating objects of those new types (through OCM for the edges),
with the relevant information. For example, for a given Workflow CRD, information about the
functions that belong to a given workflow, the needs for each specific function, the relation to the
functions in the workflow, etc. It also includes information from performance profiling for instance,
that can be later consumed by other components in the edges, such as the co-location engine.

3. Pods will be annotated with information about the workflow CRD they belong to, as well as what
function they represent in that workflow.
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4. Both the scheduler and the co-allocation engines can access this information to make their
decisions. As an example, the co-allocation module, when defining the affinities for a pod it will:

○ check the pod annotations to get the workflow it belongs to, and the function it represents.
○ get the information about the workflow, by retrieving the specific workflow CRD object.
○ execute its logic, depending on the information in the workflow, such as the functions it

receives inputs to, or where the outputs should go, its profile information, etc.
○ update the pod object with the relevant affinities and antiaffinities.

More information about the co-allocation logic can be found at section 6. And more information about how
it gets triggered in the next subsection.

4.1.g WebHook for triggering scheduling and co-allocation actions
Another part of the design is how to make sure that our scheduling and co-allocation techniques get
applied in a Kubernetes cluster when a pod gets created by another entity, in this case fromWP4 by using
an OCMManifestWork template, or by OpenWhisk itself.

In Kubernetes, the way to specify the scheduler to use by a pod (if the default one is not to be used) is to
add the name of the scheduler in the pod spec [25]. Similarly for affinities [42]. To be able to inject that
into the pod object before it is processed by Kubernetes (and therefore scheduler with the default
scheduler, and with no affinities) we leverage the functionality offered by Kubernetes named Dynamic
Admission Controllers and Webhooks [26].

Admission webhooks are HTTP callbacks that receive admission requests and do something with them.
There are 2 types of admission webhooks: validating admission webhooks and mutating admission
webhooks. Mutating admission webhooks are invoked first, and can modify objects sent to the API server,
usually used to enforce custom defaults. After all object modifications are complete, and after the incoming
object is validated by the API server, validating admission webhooks are invoked and are usually used to
reject requests to enforce custom policies. In PHYSICS we focused on the Mutating admission webhook
and the logic is the next:

● The pod object gets created, triggering the HTTP callback to execute the webhook
● The webhook has both the co-allocation and scheduler logics

○ Scheduler: based on pods annotations it selects the scheduler to be used by the pod and
modifies (inserts) the information by changing the pod spec. If nothing is annotated the
CacheLocality scheduler gets selected (see next section for details on the scheduler).

○ Co-allocation: based on pod annotations related to the Workflow CRD it belongs to and the
function, it performs the optimizations and resolves a set of affinities and antiaffinites that
are added to the pod spec too.

● The modified pod object gets stored into the Kubernetes DB (ETCD), which triggers the pod
scheduling process with the new scheduler stated and the set of affinities/antiaffinities.

4.1.h Energy consumption in virtualized environment: Kepler
In PHYSICS we have chosen to use the Kepler project to obtain the energy consumption related
information that other components (scheduler) leverage. Kepler uses eBPF and linux kernel tracepoints to
obtain the needed data and then uses a ML model to estimate the power consumption per container. We
used in nested environments, meaning on top of VMs in Azure/Amazon, therefore it was important that
this functionality was provided and we worked together with the upstream community on it.

Kepler has two main components:

● Exporter (Figure 11): exposes a variety of metrics about energy consumption of Kubernetes
components (pods, nodes) to Prometheus.
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● Model Server: Its main feature is to return the power estimation model model. Two power
modeling approaches are supported, Power Ratio Modeling and Power Estimation Modeling. More
information on them at [10]. In PHYSICS we have focused on the Power Estimation Modeling, as
that is the one that provides estimations when no direct access to the power metrics is available,
such as when running on top of public Cloud Providers.

Figure 11. - Kepler Exporter (taken from [38])

4.1.i Autoscalers: VPA, HPA and KEDA
The autoscalers are not represented in the main components overview at Figure 1, as the work done is
presented in deliverables related to WP3, i.e., in D3.2. However, at the infrastructure level, we have made
available the different autoscalers APIs from the Kubernetes side. Initially we focused on the Horizontal
and Vertical Pod Autoscalers (to scale the number of pods and their associated cpu/memory, respectively).
However, those are related to CPU and Memory, which are not the best metrics for event driven
applications, such as in Function as a Service, which is what we target in PHYSICS. For this reason we kept
investigating the upstream space and found out the growing KEDA project [20], which focuses on the
events needing to be processed instead to take the scaling decisions. More information in D3.2.

4.2 Implementation and Integration Highlights

This section covers the different implementation and integration details between components. Note some
of them will keep evolving after the due time of this deliverable, and even after the PHYSICS project
finishes.

4.2.a Submariner and Open Cluster Management integration
As part of PHYSICS, we are contributing to the upstream projects used for multicluster management.
Besides being involved in the relevant communities along the whole life of the project (e.g., slack channel
where upstream work happens), ensuring alignment with PHYSICS needs, we have worked on:

● Integration of Submariner and Open Cluster Management projects.
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● Reporting bugs we discovered, and collaborating in their troubleshooting and fixes. We have
reported several issues and worked upstream in their resolution:

○ https://github.com/submariner-io/submariner/issues/1608
○ https://github.com/submariner-io/submariner/issues/1625
○ https://github.com/submariner-io/submariner/issues/1631
○ https://github.com/submariner-io/submariner-operator/issues/2144

● Submariner support for the ovn-Kubernetes CNI used by OpenShift, needed to be able to connect
clusters with ovn-Kubernetes to other clusters.

○ https://submariner.io/getting-started/architecture/networkplugin-syncer/ovn-Kubernete
s/

○ https://github.com/submariner-io/enhancements/issues/96
● Integration of Submariner and Open Cluster Management on the edge clusters based on vanilla

Kubernetes distributions (the one we have deployed in the Azure (edge) cluster or
MicroShift/Kind (low footprint)

○ https://github.com/submariner-io/submariner-operator/pull/2146.

Regarding their integration into the PHYSICS architecture, PHYSICS leverages their provided APIs. For
Submariner, as mentioned before, for IP connectivity there is nothing different to be done. If Submariner is
properly installed and configured, it provides connectivity for pods and services when they are created in
the standard Kubernetes way. The ServiceExport CRD offered by Submariner needs to be used in case
service discovery is needed (DNS resolution of services cross clusters). This would be managed through
the Open Cluster Management integration, providing the needed API for ServiceExport at WP4
orchestration engines.

As for the Open Cluster Management, we leverage the clusters related CRDs for multicluster management
APIs. We add annotations into them so that extra information can be available, such as the cluster region.
For application lifecycle management we also use the ManifestWork CRD offered. This is how the WP4
components can make use of different clusters through the central hub cluster, deploying the applications
in the same way as it was in the local cluster, but with the ManifestWork CRD wrapper. The next is an
example of how to deploy a container (CONTAINER_IMAGE) in a pod named "hello", in the "default"
namespace, in the cluster "edge-cluster". Note the ManifestWork is created in a namespace in the central
cluster, which is associated with the remote (edge) cluster. This namespace is the one being watched by
the remote cluster agent to detect the need for deploying the manifest.

apiVersion: work.open-cluster-management.io/v1

kind: ManifestWork

metadata:

name: mw-test

namespace: edge-cluster

spec:

workload:

manifests:

- apiVersion: v1

kind: Pod

metadata:

name: hello

namespace: default

spec:

containers:

- name: demo

image: CONTAINER_IMAGE

Code 8 - OCMmanifest work example
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4.2.b Low Footprint Kubernetes distribution: MicroShift integration
In PHYSICS we have contributed to the development and testing of the MicroShift Kubernetes flavor. We
have worked to make this project a more widely known upstream project, and build a community around
it. We have prepared several talks in upstream events (e.g., Kubernetes meetups or devconf), as well as
engaged in discussions with the folks developing them (most of them in Red Hat).

This project started as a research project in Red Hat and now it is part of the portfolio offering, as part of
Red Hat Device Edge. In PHYSICS we focused on its integration with Open Cluster Management and
Submariner. We discovered several issues related to pod connectivity across site due to its initial default
CNI used (flannel). Later the project switched to the option to use ovn-Kubernetes instead, and we had
already worked on that on the submariner side as reported in the previous subsection. As for the APIs,
once integrated into Open Cluster Management, it behaves exactly the same as any other Kubernetes
clusters, so the same ManifestWork (API) can be used to deploy applications on them, and thanks to
Submariner integration, pods in that cluster should be able to reach to or be reachable from other
pods/services in other clusters.

The main target was to be able to provision a low footprint edge by simply setting the image in a device,
shipping it on-site (for example in our greenhouse use case), plug it into the network and power, and then
simply join it to OCM. Then the cluster onboarding mechanism should do the rest and install/configure the
needed components leveraging both OCM for management and Submariner for the connectivity across
sites. Note this is partly done by the cluster onboarding mechanism where the steps to configure any extra
components are explained -- see subsection 4.2.e.

4.2.c Workflow CRDs
As explained in the design specification section, as well as in Section 2, in PHYSICS we rely on new CRDs to
store the information needed by different PHYSICS components and make them available through the
Kubernetes API.

We have defined a new API (WorkflowCRD) in Kubernetes, and developed an operator for it, named
Workflow CRD Operator, which is in charge of creating the specification of the CRD objects that we use
(Workflow CRDs), following the Kubernetes Operator pattern [3]. Operators are software extensions to
Kubernetes that make use of those CRDs to manage applications and their components, i.e., it allows you to
extend the Kubernetes cluster's behavior without modifying the Kubernetes cluster itself.

Once the operator defines the Workflow CRD, both OCM and the PHYSICS components (mainly WP4) can
start creating and/or updating objects of this type (workflow) which contain the relevant information for
the other WP5 components, in this case scheduling and co-allocation engines. WP4 components are in
charge of adding information related to the workflow CRD object created through OCMManifestWorks:

● Functions that belong to the workflow
● inputs and outputs for those functions
● requested resources: cpu, mem, net
● specific hardware needs: GPUs, FPGAs, ARM/IoT,…
● performance profile of those functions, e.g., memory intensive, cpu spiky,…

Then the workflow CRD operator, local to each cluster, detects the creation of those objects and performs
the needed steps:

● Detects the target platform, it can be OpenWhisk or Knative. Note the project is mainly based on
the OpenWhisk support as that was the platform supporting Function as a Service when the
project started. Recently Knative has added support for it and we have worked in PHYSICS in
adding support for Knative functions too. The support is basic and just to highlight the workflow
CRD versatility to integrate new platforms.
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● Then it process the rest of the spec on the WorkFlow CRD object and perform the needed steps to
register/create the function(s)

○ If the platform is OpenWhisk, it reads the information about the functions in the workflow
CRD object, supporting different sources for the functions, such as code repo (e.g., GitHub),
or function image (including NodeRED image). Then, it calls the OpenWhisk Proxy
developed in WP4 (to abstract away some extra configuration) with the required
information about extra resources and performance profile. And with that the OpenWhisk
Proxy will call the OpenWhisk API to register the function, ensuring the pods generated by
it will contain the required specification, regarding labels/annotations as well as resource
requirements.

○ If the platform is Knative, it reads the image to deploy (i.e., it only supports passing the
image at the moment, not generating it from the source code as the Knative client
supports) and generates a Knative Serverless service CRD object with the parsed
information from the Workflow CRD spec, in this case the maximum and minimum scaling
targets and the concurrency. This triggers the Knative operator to process that CRD and
create the Kubernetes objects (service, deployment, pods, routes,…). Finally, the status of
the Knative CRD is reported back, including a link to the deployed function for invocation.

Note both platforms work slightly differently with regards to functions registration/deployment. While in
OpenWhisk it is only registered and then the pods are created on the first invocation, and then maintained
for some time waiting for successives invocations, in Knative the service is created and the pod for the
function gets created and then its deployment is scaled down to 0 if no activity/request is received within
some predefined period of time (30 seconds by default), then, upon the next invocation it will scale the
deployment up again.

We defined an initial version of the CRD and then it was enhanced with the extra information that was
needed to be passed from WP3/4 to components in WP5, more specifically related to the performance
profiling. This highlights how easy it is to update the CDR spec (API) and discover new information that
can be relevant for other components.

The final structure of the Workflow CRD spec is defined as:

● Type→ Flow
● Platform→ OpenWhisk|Knative
● Execution→ NativeSequence|NodeREDFunction|Service
● ListOfActions→ ordered list of actions -- for native sequences
● Actions→ array of actions with its spec

Then, each Action is defined as:

● Name: name of the function
● Description: description
● Id
● Version
● Runtime: NodeJS|Python
● CodeRepo: repo to obtain the function code from
● Code: function code passed as string
● Image: function code in a docker image directly
● Annotations: extra annotations passed fromWP3/WP4 components
● Resources: default K8s resources, limits and requests
● ExtraResources: other extra resources that may be needed, such as GPUs or DiskType
● PerformanceProfile: performance profile for the function, obtained in WP3. It contains

low|medium|high|spiky information for the next
○ CPU, memory, fsReads, fsWrites, networkReceived, networkTransmitted
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● DefaultParams: name and value parameters. It provides a way to pass extra parameters into the
function invocation without further changing the API, in case they are needed for different
platforms. This is leveraged for spreading actions across clusters, pointing to the endpoint in the
remote cluster.

In the next code snippets, we see one example for a NodeREDFunction, a NativeSequence, and a
NodeREDFunction but for multicluster -- actions across different clusters.

apiVersion: wp5.physics-faas.eu/v1alpha1

kind: Workflow

metadata:

name: hello-NodeREDfunction

namespace: physics-namespace

annotations:

id: "7c6a3de135b840c5"

version: "1"

spec:

execution: NodeREDFunction

listOfActions: []

native: true

platform: openWhisk

type: flow

actions:

- name: hello-world

description: "hello world"

id: 247a1728e0231123

version: 1.0.0

runtime: blackbox

code: "function main(msg){\n\nconsole.log(msg);\nmsg.payload={'response':'hello

'+msg.payload.value.name};\nreturn msg;}"

image: "gkousiou/NodeREDhelloaction"

annotations:

optimizationGoal: Performance

importance: "High"

resources:

limits:

memory: 128

requests:

cpu: 1

memory: 128

extraResources:

gpu: true

diskType: ssd

performanceProfile:

cpu: medium

memory: low

networkTransmitted: low

Code 9 - NodeRED Function (single cluster)

Note in the above code snippet that type, platform and execution. In addition, it just contains one single
action, with some extra annotations, requesting a GPU, and with some performance profile set for helping
the WP5 components -- in this case helping the co-location engine to decide where to locate/not-locate the
pod created for it.
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apiVersion: wp5.physics-faas.eu/v1alpha1

kind: Workflow

metadata:

name: hello-sequence

namespace: physics-namespace

annotations:

id: "19fe4293742e0b2c"

version: "1"

cluster: cluster1

spec:

execution: NativeSequence

listOfActions:

- id: 339d2ef8b0b29795

- id: 3a807141f16764a5

native: true

platform: openWhisk

type: flow

actions:

- name: hello

description: "hello"

id: 339d2ef8b0b29795

version: 1.0.0

runtime: nodejs

code: "function main(msg) {\nmsg.payload=msg.payload+' hello';\nreturn msg;}"

performanceProfile:

cpu: medium

memory: low

networkTransmitted: low

- name: world

description: "world"

version: 1.0.0

id: 3a807141f16764a5

runtime: nodejs

code: |

function main(msg) {

//implies affinity with the other function in the sequence

msg.payload=msg.payload+' world';

return msg;

}

resources:

limits:

memory: 256

Code 10 - Native Sequence Function (single cluster)

Similar to the previous one, this object defines a flow which consists of two native sequence actions. It
includes a performance profile only for the first function, and a resource limit only for the second one, just
to demonstrate that different functions can have different parameters/options.

---- # In cluster1

apiVersion: wp5.physics-faas.eu/v1alpha1

kind: Workflow

metadata:

name: hello-sequence

namespace: physics-namespace
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annotations:

id: "19fe4293742e0b2c"

version: "1"

cluster: cluster1

spec:

execution: NodeREDFunction

listOfActions:

- id: 339d2ef8b0b29795

native: true

platform: openWhisk

type: flow

actions:

- name: hello

defaultParams:

actionname-host: ip ow cluster 2

actionname-namespace: openwhisk namespace

actionname-credentials: credentials ow cluster 2

description: "hello"

id: 339d2ef8b0b29795

runtime: blackbox

image: registry/image:label

performanceProfile:

cpu: medium

memory: low

networkTransmitted: low

---- # In cluster 2

apiVersion: wp5.physics-faas.eu/v1alpha1

kind: Workflow

metadata:

name: hello-sequence

namespace: physics-namespace

annotations:

id: "19fe4293742e0b2c"

version: "1"

cluster: cluster1

spec:

execution: NodeREDFunctionNativeSequence

listOfActions:

- id: 3a807141f16764a5

native: true

platform: openWhisk

type: flow

actions:

- name: world

description: "world"

id: 3a807141f16764a5

runtime: blackbox

image: registry/image:label

performanceProfile:

cpu: medium

memory: low

networkTransmitted: low

resources:

limits:
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memory: 256

Code 11 - NodeREDFunction for Multicluster invocation. Function Hello in cluster1 gets the default parameter to
build the invocation for the world function in cluster 2

For the multicluster, each part of the application is an independent manifest and the workflows are
deployed in each corresponding cluster using OCM. The important part is the usage of the defaultParams
to pass the key:value pairs that allow invoking the functions. The values are processed by the internal node
red application to call the right functions. For this reason, the solution uses the main deploying object, the
NodeRED image. Then it uses WP3 flows to obtain parameters from invocation to build the remote
invocation. This allows us to point to remote endpoints and keep the flow of functions execution in a
different cluster, while changing them without interfering with the internals of the node red application.
Each function could have more than one remote function as a dependency, for this reason the names of the
related functions in the application should be included in the application graph (see D4.2 Chapter 6).

4.2.d Webhook for scheduler and co-allocation engines
As mentioned before, and as explained in the next Pod/Function workflow creation flow section, we made
use of Kubernetes Mutating Webhooks to implement the functionality that allows us to modify the pod
object definition with the decisions of the schedulers to be used and the affinities to enforce.

The implementation consists on 3 main building blocks:

● MutatingWebhookConfiguration Kubernetes object: This is the Kubernetes knob to allow us to
define what type of objects we are going to receive a call back from. In our case the next, which
ensure we receive events in case of pods being created, which is the step when we need to decide
on the scheduler to use and the affinities:

apiVersion: admissionregistration.k8s.io/v1

kind: MutatingWebhookConfiguration

metadata:

name: physics-webhook

webhooks:

- name: physics-adminssion-controller.openshift.io

...

rules:

- operations: ["CREATE"]

apiGroups: [""]

apiVersions: ["*"]

resources: ["pods"]

Code 12 - Mutating webhook example

● Kubernetes DaemonSet: Runs our webhook logic in a container, ensuring it is running in all the
master nodes.

● The webhook logic itself, runs as awebhook HTTP server that will receive the pod object request
and perform the needed actions to modify it with the proper scheduler and affinities to use.

Note the pod object needs to have some annotations that allow the co-allocation and scheduler to take the
needed decision. In addition, note the scheduler being selected needs to be running on the cluster as a pod,
as explained here [25]. For more information about the co-allocation engine actions, see chapter 6.
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4.2.e Kepler integration
PHYSICS uses Kepler to obtain the energy related information for both the applications running on top
(pods) as well as for the cluster/nodes itself. As mentioned in subsection 4.2.e, and in Section 3, its
information is used to obtain an energy score for the managed (edge) clusters -- through Prometheus.

In our case, where our cluster is running on VMs in different cloud providers (AWS and Azure), it was
important that Kepler was able to work in a virtualized environment, hence the use of power estimation
modeling.

We found some problems in such a type of deployment where Kepler was only getting information about
the pods that were running before it was deployed. To tackle the problem we engaged with the Kepler
upstream community, providing valuable inputs about missing functionalities that PHYSICS use cases will
require. We worked together with them to report the problem, replicate the issue and evaluate the
solution. The different details on the issues we reported, for the particular problems and how we
collaborated with the upstream Kepler community can be found in these already closed and corrected
issues34. The code changes made in the context of these bug corrections and the involvement of the
PHYSICS team to resolve them were crucial for the correct functioning of Kepler in the particular context
of PHYSICS project and use cases.

Furthermore, another aspect that we needed to update was the sampling rate of Kepler’s collection (or
estimation) of energy data, which by default was hardcoded at 3 seconds. We needed this to be modifiable
in order to have the flexibility to minimize it using a configuration parameter and hence be able to have
more accurate monitoring. This was reported in this issue5 and eventually our team proposed a pull
request which has been accepted by the Kepler community and merged in the upstream version6.

In addition, we have made use of the Grid5000 experimental testbed to perform an evaluation and
validation of the Kepler’s power estimation model, comparing the values that were being estimated with
the real values obtained from Grid5000. Grid5000 provides per node wattmeters which capture the
instant power consumption of the different components of the node (such as CPU, Memory, network card,
etc). More on this evaluation is provided in Section 4.3. Our ongoing efforts are dedicated to addressing a
recently identified bug that prevents us from experimenting and eventually proving the validity of the
power estimation model with real wattmeters. This can be followed in the currently open (at the time of
the writing of this report in September 2023) issue here7. In any case, the collaboration with the Kepler
upstream community will be continued after the end of the project, since the integration of energy related
aspects with serverless environments, FaaS applications and in general Clouds is very important as it can
play a role in the decarbonization of future Cloud platforms.

4.2.f Cluster onboarding flow
This section describes the interactions between the above components during the cluster onboarding
process, i.e. when a new cluster (managed cluster) joins the OCM Hub.

Once a (set of) cluster(s) is onboarded into Open Cluster Management, the different clusters can be
managed from the hub cluster (i.e. the central cluster used to manage the different edges, and that
contains the Submariner broker). The first step, before being able to deploy Functions in a given edge, is to
configure (from the central cluster) the edge with the required PHYSICS components/applications,
connecting them with the required components in the central (Hub) cluster. This is depicted in the next
Figure:

7 https://github.com/sustainable-computing-io/kepler/issues/790

6 https://github.com/sustainable-computing-io/kepler/pull/942#event-10436063440

5 https://github.com/sustainable-computing-io/kepler/issues/539

4https://github.com/sustainable-computing-io/kepler/pull/635

3https://github.com/sustainable-computing-io/kepler/issues/594
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Figure 12. - Cluster Onboarding overview

As highlighted in Figure 12, the API and components of Open Cluster Management are leveraged as the
basis for configuring the (edge) clusters as needed. The OCM ManifestWork contains a list of
Kubernetes objects to be created, and that could include not only pods, but also services, ServiceExports
(for the Submariner support, to make the pods/services available across different clusters), and other
specific CRDs, for instance the ones related to the Workflow CRD, or the Kubernetes nodes itself.

In addition, PHYSICS relies on Knative capabilities to make it event driven and serverless (saving
resources as clusters are not being added all the time).

The process is the next:

1. A remote cluster gets added to the HUB (as Managed Cluster) through OCM, which creates an
object of type ManagedCluster

2. The Knative APIServerSource receives this event and invokes the Knative Serverless Service
3. The Knative Serverless Service receives the event and creates a new pod with the cluster

onboarding logic (if there is not one already created), and once it is ready, it redirects the event to
it.

4. The cluster onboarding pod process the request and:
a. Obtains the cluster name
b. Create an (OCM) ManifestWork which includes a Kubernetes Job that will generate some

benchmarking load in the managed cluster. The klusterlet agent in the remote cluster is in
charge of applying this ManifestWork associated to it, and create the pod with that
benchmark

c. Waits until the job is completed -- by using OCM feedbackRule
d. Create an additional (OCM) ManifestWork which includes the definition of the semantic

deployment and its associated service. Again the klusterlet agent is in charge of creating
the local resources in the remote cluster.

e. Waits until the deployment is ready and obtains its service IP - by using OCM
feedbackRule
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f. Makes use of submariner to call the semantic service IP and provide the information
about the previous job, to be used to estimate the energy consumption and cluster score

g. Calls the Reasoning framework to provide the information about the semantic service IP,
so that it can start requesting semantic information from the new cluster.

Note extra configurations can be easily added, as part of the cluster onboarding logic component, or even
created extra Knative Serveless Services that react to the same events and perform other actions in
parallel.

4.2.g Pod/Function registration and invocations flows
This section presents the interactions between the above components for both the functions registration
and their execution. Once the infrastructure is configured as needed, the functions/pod registration and
invocation can be started. The creation flow is depicted in the next Figure.

Figure 13. - Function Registration flow and interactions

And the steps are:

1. WP4 components, making use of the Semantic information, will select one or another managed
cluster and will use the OCM (Kubernetes) API to create a ManifestWork object which includes the
WorkflowCRD object that defines the flow with the set of action(s) and its related information.
This object gets created in the HUB, in a specific namespace that is associated with the selected
Managed cluster.

2. The selected managed cluster gets the ManifestWork object to apply and creates the objects inside
it in the local cluster (this is the OCM Klusterlet component).

3. When the WorkflowCRD object gets created, the WorflowCRD operator gets notified about it and
processes its specification (this is called a reconcile loop in the Kubernetes operator world).

4. Then, the Operator calls the OpenWhisk API proxy with the preprocessed information from the
WorkflowCRD, which in turns calls the OpenWhisk API to do the actual registration of the function.

5. Finally, the workflowCRD Operator reports back the status of the operation in the WorkflowCRD
status section.

6. In parallel, the OCM also fills in the status information in the ManifestWork that is used by the Hub
to obtain the status of the operation.

Once the function is registered, it can be executed. There are other PHYSICS components that are exercised
as part of this function invocation operation. Figure 14 shows the flow and interactions.
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Figure 14. - Function Execution flow and interactions

When a function gets invoked by directly using the OpenWhisk API or from another Kubernetes
application consuming it, the flow is the next:

1. If there is no available (hot/warm) pod already running for handling the execution of the function,
OpenWhisk will contact the Kubernetes API with the pod specification that needs to be created,
which in addition will contain certain annotations that may be required or passed through other
WP components

2. This pod creation request is intercepted by the Webhook. The webhook selects the scheduler that
must be used for the pod, in our case by default the CacheLocality scheduler presented in Section 5
and modifies the pod spec accordingly to point to it.

3. Then, the second part of the webhook logic is to execute the co-allocation logic, which in turns
makes use of the workflowCRD associated object to obtain the affinities/antiaffinities depending
on the function performance profile and the possible interferences with other already running
functions. The result gets also annotated on the pod spec and finally stored in Kubernetes ETCD
datastore for further processing.

4. The normal scheduling process starts in Kubernetes. The scheduler is notified about a pod that
needs to be scheduled (it is not associated with any node) and executes the filtering (depending on
the resources availability and the affinities) and the weighting. The weighting selects the most
suitable node to associate with the pod, depending on the presence of container image layers.
Note: the scheduler executed is not the default scheduler, but the one associated with that pod.

5. Finally, the pod gets associated with the node, that kubelet and the CNI running in that node are
the ones in charge of creating the pod and connecting it to the network -- this is the normal
Kubernetes process.

4.3 Experimentation Outcomes
During the first phase of the project, the focus was on the selection of the main (upstream/open-source)
components as well as defining their interactions and APIs by using the CRDs and Operators model. We
have implemented a first prototype based on those, as well as an initial (limited in functionality) Webhook
that is able to trigger the scheduling and co-allocation engines. With more details we have:
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● Deployed the main OKD (upstream version of OpenShift) on AWS and started its configuration and
the deployment of other components/operators on top.

● Deployed an external (testing) cluster and connected it to the cluster running on AWS.
● Deployed and evaluated the feasibility of using Open Cluster Management for our multicluster

orchestration needs.
● Deployed and evaluated the feasibility of using Submariner as the tool to interconnect workloads

in a multicluster scenario. We have identified several bugs and worked with the upstream
community on them, as reported in section 4.2.a.

● Work with the MicroShift project for low footprint openshift at the edges. Initial testing and
evaluation of missing integration points with OCM and Submariner. We started working on fixing
the issues (contributing the fixes to the respective projects).

● Create the initial webhook logic that can later be extended to plug in the scheduler and co-location
engines.

● Create the initial CRDs definitions used for interactions between WP4, and WP5 semantic,
scheduler and co-allocation engines.

During the second phase we have focused more on the multicluster setup and completing the integration
points that were missing. We have also worked on new components, such as Kepler for the energy
consumption, or the Knative integration due to its increasing adoption and evolution upstream (now they
support function as a service too, not just serverless). With more details we have:

● Work on the cluster onboarding mechanism, and its deployment in the HUB cluster, including
testing with remote edges

● Work on extra issues with Submariner integration with OCM, when a multicluster setup containers
heterogeneous clusters (different Kubernetes/cni versions)

● Extended/Update APIs by updating the WorkflowCRD APIs to enhance the communication
between different PHYSICS components

● Energy Monitoring tools evaluation and adoption of Kepler, including configuration and testing in
our testbeds

● Engagement with Kepler community for fixing the gaps of the tool, specially targeting the PHYSICS
use cases

● Engagement with Knative upstream community to enhance both projects (WorkflowCRD operator,
and Knative) and find synergies between both projects. As part of that we also included basic
support for Knative in our WorkflowCRD operator.

● The deployment, testing and usage of different upstream tools/projects led us to report several
bugs or missing functionalities, as well as collaborating with the communities in their resolution. A
complete list is gathered in deliverable D7.4.
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4.3.a Knative Integration and Upstream engagement
When we started the project, there was no support for functions at Knative, which made us go for
OpenWhisk instead. During the project duration, Knative has matured a lot and it included, among many
other features, the support for Function as a Service.

In addition, we made a presentation about PHYSICS as part of the Red Hat Research Days where there was
a good attendance from people working on the Knative upstream project. This started a nice collaboration
with their upstream team. We engaged in several discussions about the gaps we found in Knative as well as
the extra functionality being provided by the WorkflowCRD operator or the extra requirements from the
PHYSICS point of view. This engagement was also continued as part of the DevConf Hackathon that we
organized, where people from Knative team wanted to participate and whose main topic was about the
PHYSICS infrastructure and how to build an operator for Knative abstraction, with the focus on
multicluster [43]. As a result of that, we also integrated basic support for Knative in our WorkflowCRD
Operator, so that it could create either OpenWhisk or Knative functions.

4.3.b Kepler Performance Model Estimations Evaluation Methodology
As part of the Kepler usage in the projects, and besides the contributions made to its functionality, we have
started a study about the accuracy of Kepler performance estimations which will be used as a validation of
their ML based energy estimations. This is an important point because even if Kepler is supported by a
large community there is no previous work performed that evaluates the accuracy of their energy model
estimations.
The interesting aspect of Kepler is that through its fine-integration with Kubernetes, it allows the
collection of energy related metrics in the granularity of pods, and since we know exactly which pod
participate in each FaaS workflow and application, it will allow us to calculate the energy consumed for
each FaaS application. This may eventually enable the motivation of users to better optimize their
applications, while opening to new functionalities such as charging the consumed energy per application.
In the context of PHYSICS WP4, we have developed and published a multi-objective algorithm and study
for FaaS applications’ execution optimizations upon the edge-cloud continuum [44]. The algorithm
proposed in that article is currently being enhanced to take into account the energy consumption as one
additional heuristic and objective in the algorithm. In this context, we are taking into account the Kepler
monitoring since it can give us fine-grained results per pod level.
For this purpose, we have prepared the following methodology to evaluate the accuracy of the models
Kepler estimation models. It consists of the following steps:

● We make use of Grid5000 experimental testbed which provides Omegawatt wattmeters on a
number of nodes, on some of the Grid5000 sites8. These wattmeters give us accurate instant power
consumption in watts per node (including the consumption of CPUs, RAM, network card, PDU, etc)
with a 1 sec sampling rate.

● We allocate 2 compute nodes with the wattmeters on Grid5000 and we collect their power
consumption profile when running just the OS on the node.

● We then deploy Kubernetes, Openwhisk and Kepler on the compute nodes having one as master
and the other as worker and we collect their power consumption profile with the Wattmeters
again. We are mainly interested in the worker node profile.

● We then deploy a workload composed of 10 repetitions of each FunctionBench benchmark and
collect the power consumption profile of the worker node when executing each benchmark. We
pay attention having only one benchmark (meaning one pod) running at each time to be sure that
only this benchmark/pod (besides the default OS and basic tools) is influencing the power
consumption of the node.

8 https://www.grid5000.fr/w/Lyon:Wattmetre
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● We collect the power consumption profile from the wattmeters at the node level and from Kepler
at the pod level. This will allow us to extrapolate the Kepler values and try to determine how
accurate its power estimation model is in comparison to the real values collected by wattmeters.

This methodology is currently being used and the experiments are currently being conducted but we are
blocked because of another bug9 that we have found in Kepler which does not allow us to get valid results
when Kepler is deployed upon Grid5000 nodes. Once we have managed to resolve this bug we will be able
to use the above methodology and validate the Kepler estimation models and then use these results in a
new article which is currently being written for the multi-objective algorithm considering energy
consumption as a new objective.

As an initial example of usage of energy consumption metrics in the context of this methodology; Figure 15
shows the power consumption profiles of different FunctionBench benchmarks per pod level when
executing them upon the PHYSICS Azure testbed. Figure 16 depicts different power consumption profiles
of different FunctionBench benchmarks per node level when executing the 10 repetitions of the same
benchmark, one after the other upon different Grid5000 nodes.

Figure 15. - Instant power consumption (in Watts) per pod when executing a workload composed of different
Function Bench applications upon the PHYSICS Azure testbed

9 https://github.com/sustainable-computing-io/kepler/issues/790
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Figure 16. - Instant power consumption (in Watts) per node, featuring different Grid5000 nodes, when executing a
workload composed of different Function Bench applications upon the Grid5000 testbed

4.4 Next Steps
After the project concludes, we intend to remain actively involved in the infrastructure resource
management components. Our goal is to enhance versions of some of the components as well as increased
usage of them. The primary objective is as follows:

● Keep engaging with the Knative upstream community. This will hopefully end up in more adoption
inside the Knative project of developments (or ideas) investigated during the PHYSICS project in
the WorkflowCRD operator. As an example, a similar idea about the workflowCRD is being used
now in Knative, defining sequences. More details in [45].

● As part of partners participation in other EU projects, the target is to reuse some of the PHYSICS
components, from the infrastructure layer, in some of them that have some similar needs. As an
example, Red Hat is participating in the CODECO [46] project and there is interest in automation
around multicluster configurations and the mechanism developed for the cluster onboarding may
be resources/enhanced to cover their use cases.
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5. ADAPTABLE PROVIDER LEVEL SCHEDULING ALGORITHMS

This section focuses on the description of the local level scheduling taking place individually on each
cluster that participates in the global continuum. In particular, the scheduling algorithms and related
mechanisms will be responsible for the intelligent placement of independent “Functions” of a broader
FaaS application workflow upon the underlying compute infrastructure of a single cluster.

The research upon scheduling algorithms for FaaS applications executed on hybrid computing
infrastructures has to pass through studies that analyze the behaviour of FaaS applications executions
capturing the different phases of deployment environment preparation, resources utilization, load
balancing, etc. This study makes use of a scheduling simulator Batsim[47], a real testbed infrastructure
deployed upon Grid5000[24] and a suite of FaaS benchmarks FunctionBench[48] that have been
particularly adapted to fit the needs of our experimentation. The methodology and mechanisms used
during this study play an important role not only in the initial development of the scheduling algorithms
but also in their optimizations and scalability improvements. Hence, it will be described as side
mechanisms of the component and the relevant code will be made available in the PHYSICS repo.

Based on this methodology and the initial study we have determined a scheduling algorithm with very
interesting benefits for FaaS applications and we have implemented it in the context of PHYSICS. This
algorithm has been implemented as a plugin in the level of Kubernetes and its goal is to minimize the cold
start delays of FaaS applications by taking into account the layers of the images to be downloaded and by
favoring the placement of a function to nodes where more layers of the particular image are available.

The remainder of this section is as follows: Initially, we provide an experimentation methodology and an
initial analysis which is performed to have an initial feedback on which are the most interesting scheduling
algorithms to explore in a FaaS execution environment; then, we provide the design specification of our
component followed by the implementation and integration highlights of the simulated version along with
the related experimentation outcomes. The following subsection presents the details related to the actual
implementation upon Kubernetes, along with the experimentation procedure to validate the effectiveness
of the new scheduling algorithm. Finally, the last subsection describes the next steps.

5.1 Experimentation methodology and initial analysis
Based on the specific architectural choices of PHYSICS, such as the selection of OpenWhisk as the FaaS
layer and Kubernetes as the resource manager and orchestration layer; the local level scheduling
algorithms will be implemented as schedulers in Kubernetes to capture the allocation of computational
resources, but also parts of the scheduling logic will lie within OpenWhisk to address the problematics
related to each individual function to be deployed.

In order to better understand the internals and interactions taking place during the scheduling of
functions and try to investigate which are the most interesting scheduling algorithms to focus on we have
started our research by defining an experimentation methodology and by performing an analysis of FaaS
applications execution. For this, we have used the following tools:

● A suite of FaaS benchmarks FunctionBench which we have adequately adapted to be executed
under the OpenWhisk-Kubernetes context [49].

● The usage of Grid5000 experimental platform to allow the deployment of our analysis.
● A set of scripts to automate and reproduce the deployment of an

OpenWhisk-Kubernetes-Prometheus environment upon the Grid5000 platform.
● A set of scripts to collect the outputs of the experiments and provide plots and graphs to visualize

various metrics and get insights regarding the behavior of FaaS applications’ executions [50].
● The Batsim-Simgrid scheduling simulator to allow the study of scheduling policies under

particular contexts in a simulation mode.
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Based on these tools we have defined an experimental methodology that makes use of the real FaaS
benchmarks deployed upon a pre-provisioned Openwhisk-Kubernetes-Prometheus cluster upon Grid5000
under different conditions to study the internals of Openwhisk and Kubernetes while trying to extract
interesting insights related to the execution of typical FaaS applications and their scheduling needs.

In this context, we were initially able to separate and study the different phases of functions’ execution -
allocating container, deploying container, executing containers, destroying containers - and regarding the
platform level - downloading input data, executing functions, uploading input data - to then analyse
potential space for improvements.

In order to do this, we have deployed Kubernetes-OpenWhisk on two isolated nodes of the Cluster
Grid5000, with the following configuration per node: CPU: 2 x Intel Xeon E5-2660 v2, cores: 10 cores/CPU,
memory: 128 GiB, storage: 1 x 600 GB HDD + 4 x 600 GB HDD, network: 1 Gbps (SR‑IOV) + 2 x 10 Gbps
(SR‑IOV). Then we performed executions, with different inputs, several FaaS adapted functions[41] such
as, float operation, matrix multiplication.

Figure 17. – Results from executing several functions

The Figure above summarizes our results and the execution of several functions. The y-axis shows
function names while their duration(s) is shown in the x-axis. By the colors it is possible to see the
different phases performed by each function, and by the lines (solid or dashed) it is possible to see the
node where the functions were executed. The phase from 00 to 02 relies on the preparation of the
containers required by the functions. They are performed by Kubernetes.

D5.2 – Extended Infrastructure Services with Adaptable Algorithms Page | 58



H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The following phases, from 03 to 05, are performed by OpenWhisk, once the containers are ready for
usage. This simple experiment aims to show the different behavior of different instances of the same
functions, when allocated to different nodes. It is possible to see that instances of functions allocated to the
same nodes reduced the duration of the three first phases in subsequent instances. For example, from top
to bottom, rnngenerate, pyaes and facedetection considerably reduced the duration of phases related to
their containers when executed the second or third instance of the same function in the same node. This is
due to the re-usage of the same container when such functions were allocated to the same machine. On the
contrary, functions such as, from top to bottom, pyaes and matmul performed the same phases twice or
more because their different instances were allocated to different nodes.

Hence, our observation is that in a typical FaaS context where task executions are usually less than 10
minutes the containers’ download and initialization time have taken, proportionally, a considerable part of
the whole deployment, while most of the times taking even longer than their functions’ execution time.

Based on the above analysis as performed for the default Openwhisk-Kubernetes case we decided to
initially focus on the image and image layers locality as a means to minimize the download phase and
speed-up the deployment of functions. This leads us in designing scheduling policies in a way to favor
nodes that already have the needed container image or at least some layers of it. Both cases will contribute
in minimizing the pre-execution phase and eventually decrease the turnaround time of each function while
improving the performance of the system.

5.2 Design Specification
The local cluster scheduling algorithms are provided basically by specific Kubernetes scheduling policies.
The way that these algorithms are called and interact with the various components of PHYSICS stack is
described in more detail in section 2.2.2, where a detailed figure shows where the scheduler is situated
and how the information flows in relation to it.

In particular, the higher level placement decision, as performed by the Global Continuum Placement
component, described in D4.1 is forwarded through the global Orchestrator by using Open Cluster
Management to the local cluster orchestrator, managed by Kubernetes. Then through the described
technique using the webhook a particular scheduling algorithm is selected to better fit the needs of the
execution to be performed, while of course respecting the constraints. Figure 18 shows a high-level view of
the structure of the 2 scheduling levels as taken into account in PHYSICS. The scheduling algorithms
implemented in this deliverable are related to the 2nd Scheduling level, which resides on the local clusters
managed by Kubernetes, as mentioned previously.
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Figure 18. – High-level view of the 2 scheduling levels of the continuum as managed in PHYSICS

The design of our scheduling algorithms is based on the experimentation and simulation methodology
that we described in the previous section. In particular the study of scheduling algorithms needs to be
done using particular platforms which will allow us to simulate different aspects of scheduling under
various contexts. For that we make use of platforms such as Simgrid [51] and Batsim [52] which simplify
the simulation of distributed systems and in particular the scheduling on complex hybrid infrastructures
which is our focus here. Hence the design of our algorithms in parallel with the preparation of our
simulation platforms is an important aspect of our study.

After the analysis described in section 5.1 we started designing our first scheduling policies that seemed
most interesting based on our initial results. These policies focused on the placement of tasks-functions
based on the locality of the containers or its layers as required by the functions.

Hence, our initial designs of scheduling algorithms are based on the locality of the containers and their
layers and are named CacheLocality. These scheduling policies search for available resources and among
them, search for the container required by the particular function. If found, the function execution will
benefit from a reduction of the time needed to download and deploy the required container. The goal of
this policy is to explicitly search for containers, since we have seen in our studies the benefits of avoiding
having to download a container prior to an execution. In this context, there are many possible scenarios of
investigation.

For instance, it is possible to reverse the order of the priorities of such a policy, and first search for nodes
that already have a required container and then to check if such nodes are available or not. This can result
in two different policies: the first one can enforce the function to wait for the nodes to become available,
once the ones with the required container are found but are currently utilized; the second possible policy
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would not wait for the nodes to become available and would just download a new instance of the
container in an available resource.

Going further, we also designed variations which take into account the existence of particular layers of a
container again following the similar choices like in the whole containers case. When we say layers here,
we mean Docker container layers. Since each container is based on layers, if the needed container uses
layers from other containers that already exist then its download time is minimized to the time needed to
download only the layers that are still missing. This can greatly speed up the download of a container (and
also save overall space on disk needed as we avoid downloading the same layers in other nodes). Such
variations of the CacheLocality policy were designed, implemented and studied and are described more
thoroughly in the following subsections .

5.3 Implementation details and Integration highlights
5.3.a CacheLocality Scheduling algorithms variations

As described before we focused first on the CacheLocality policies and its variants in order to try to
address the various delays that we may have when downloading containers and their layers. In order to
adapt to the different contexts, we created several variations of the CacheLocality policy as described right
beneath:

a) Algorithm1 CacheLocality: it looks for the available machines that already have the required container
and selects the first one that fits on these requirements. If the required container is not found among these
available machines, the container will be downloaded in the first available machine.

Algorithm 1: CacheLocality

Require: functions_queue, machines_available

while functions_queue is not empty do

f←functions_queue[0]

container_required←f.container

machines_cadidates←sort(machines_available, container_required)

m←machines_candidates[0]

allocate(f, m)

end while

Code 13 - Cache locality algorithm

b) Algorithm2 CacheLocalityHard: it looks for machines that already have the required container, and it
selects the first machine that is available among them. If none of them is available, but the container exists
on at least one of them the function is forced to wait until one of the machines that already has the
container becomes available. This behavior avoids as much as possible repeated download of containers;

Algorithm 1: CacheLocalityHard

Require: functions_queue, machines_available

while functions_queue is not empty do

f←functions_queue[0]

container_required←f.container

machines_cadidates←sort(machines_available, container_required)

m←machines_candidates[0]

while m is not available do

sleep()
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end while

allocate(f, m)

end while

Code 14 - Cache locality hard algorithm

c) CacheLocalityWithLayers: it looks for the available machines that already have the required container
and selects the first one that fits on these requirements. If no complete image is found, it looks for
container image layers that can be used from other available containers and the task is scheduled on the
machine that has the most shared layers while it downloads the remaining ones. If neither the required
container nor usable layers are found among these available machines, the container image will be
downloaded in the first available machine.

Algorithm 3: CacheLocalityWithLayers

Require: functions_queue, machines_available

while functions_queue is not empty do

f←functions_queue[0]

container_required←f.container

for m in machines_available do

m.score←score(m, container_layers_required)

end for

machines_cadidates←sort(machines_available, container_required)

m←machines_candidates[0]

allocate(f, m)

end while

Code 15 - Cache locality with layers algorithm

d) CacheLocalityWithLayersHard: it searches at first for machines with the required container, if there is
none, it searches for container image layers from other available containers that can be shared. After
listing the machines with the required containers or usable layers, it verifies if there are any machines
available among them, if so, it is selected. If none of them is available, the function is forced to wait until
such availability. This behavior avoid as much as possible repeated download of containers or layers;

it looks for the machines that already have the required container and selects the first one that fits on
these requirements. If no complete image is found, it looks for container image layers that can be used
from other available containers and the task is scheduled on the available machine that has the most
shared layers, while it has to download the remaining ones. If none of them is available, but the container
or some of the needed layers exist on at least one of the machines, the function is forced to wait until one
of the machines that already has the container or some layers, becomes available.

Algorithm 4: CacheLocalityWithLayersHard

Require: functions_queue, machines_available

while functions_queue is not empty do

f←functions_queue[0]

container_required←f.container

for m in machines_available do

m.score←score(m, container_layers_required)

end for

machines_cadidates←sort(machines_available, container_required)

m←machines_candidates[0]

while m is not available do
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sleep()

end while

allocate(f, m)

end while

Code 16 - Cache locality with layers hard algorithm

In addition, a baseline policy has been created which was called AlwaysDownload, that will always
download every container for all functions, even if containers already exist in the machines. This is a basic
policy (that can happen in specific contexts, as for example, in applications that enforce security, not
re-using containers).

The implementation of our first prototype of algorithms has been done initially within the simulator so
that we can study their behaviour in different contexts. However, we have studied and analysed the
internals of Kubernetes scheduler and we are currently implementing the above algorithms as new
scheduling plugins within Kubernetes. In particular, based on the details given in [50] and [25], we are
working on adapting the existing ImageLocality plugin in order to provide the above variations of
CacheLocality.

These are only some first algorithms to be implemented and further policies will be evaluated such as the
ones that prioritize warm or hot containers. For that there are some parts of scheduling that take place
within Openwhisk and hence in that case both Openwhisk and Kubernetes schedulers will need to be
modified.

Finally, most of the different scheduling constraints and parameters forwarded from the Global Continuum
Placement are taken into account by default by using the typical parameters of defining a task/pod
execution. Furthermore, in relation to the co-allocation strategies of task T5.4 the scheduler will set the
needed affinities and antiaffinities as an additional filter based on the related inputs. If further adaptations
are needed we will need to modify the definition of task/pod scheduling and take this into account within
new adapted scheduling algorithms.

5.3.b Layers Locality Kubernetes Scheduling algorithm
Based on the CacheLocality algorithm we have implemented the Layers Locality scheduler on Kubernetes
which aims to minimize the delays due to image downloading for function execution: minimizing the Cold
starts of functions. In this context, Kubernetes already provides an ImageLocality plugin which takes into
account the existence of images on particular nodes. Following the same path, we have implemented a
variation of ImageLocality plugin taking into account the existence of Containers’ Layers and trying to
favor the execution of functions on nodes where layers of the containers to be deployed already exist. The
new scheduler is named LayersLocality. The LayersLocality scheduler is going one step forward by scoring
nodes using the percentage of the container images already available and thus taking advantage of the
image layer caching.

Here are some advantages and limitations of this scheduler:

Advantages
● May reduce significantly the deployment time of large images for workloads with containers that

share container layers.

● It is based on the same mechanism as Image locality scheduler plugin so since it does not make
huge changes in the code it has more chances to be accepted by the Kubernetes community in the
upstream version, hence increasing the impact of it.
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Limitations
● Only useful when the containers in the workload are sharing layers.

● Like in the image locality plugin, it requires some spread policy to avoid allocation to always select
the same node (the one with large layers already present)

● The first time a container image is encountered by the scheduler, it doesn't know its layers'
characteristics until it is pulled for the first time by the CRI. Thus, this scheduling optimization only
kicks in when a container image is deployed for the second time.

On the more technical side, the main issue for this plugin is to acquire the layers size and locality. For this
implementation we need the following:

● To get the available layers on each node (name and size)

● For each new pod compute a score per node considering the cumulative size of already available
layers

For this we had to go through 2 different software of the Kubernetes hierarchy. The first is Kubernetes
itself and second is the Container Runtime Interface (CRI). In our case we consider mainly CRI-O which is
one of the most known and used Kubernetes CRI. Hence in this regard, we had to make changes on various
areas of the different involved software without breaking retro-compatibility:

● So we made changes in the Kubernetes internal interfaces to add the Layers info into Kubernetes:
optional Layers field in the core.v1.Node.NodeStatus API and add a new field in the scheduler
snapshot to have it exposed to the plugin.

● while modifying the Container Runtime CRI-O to get available layers name and size on node and
send them through annotations (without API change)

Exposing layers info for each of the nodes might have an impact on the message size, and thus the overall
Kubernetes performance, but most of the images have only 2 or 3 layers (and they might be shared) so the
overhead should be very limited. Also, to cope with this issue, we can add some mechanism to make the
CRI only expose layers if their size is above a certain threshold or simply expose the N biggest layers.
These are all possible enhancements under evaluation.

The implementation of the new scheduler composed by adaptations on the two different tools has be done
initially upon specific forks of the upstream software code repositories and currently reside in the
following forks: one for Kubernetes1011 and one for CRI-O,12-13. Furthermore, we have pushed the
LayersLocality Scheduler to the Kubernetes community14 by proposing to integrate our changes in the
upstream version. In particular we are in contact with the SIG-Scheduling15 group which is responsible for
the different upgrades related to the Kubernetes scheduler and we hope to have this accepted and
integrated to simplify the usage of it directly through the open Kubernetes version.

The Kubernetes LayersLocality scheduler has been integrated to the rest of the components through the
webhook described in 4.1.g and it has been installed and configured on the PHYSICS testbed and in
particular on the Azure-based cluster of the continuum where it can be leveraged by the different FaaS
applications and use cases running on the clusters.

15 https://github.com/Kubernetes/community/issues/7379

14 https://github.com/Kubernetes/Kubernetes/issues/120672

13 https://github.com/RyaxTech/cri-o/compare/v1.22.1...image-layer-locality-scheduler

12 https://github.com/RyaxTech/cri-o

11 https://github.com/RyaxTech/Kubernetes/compare/v1.22.6...image-layer-locallity-scheduler

10 https://github.com/RyaxTech/Kubernetes
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5.4 Experimentation Outcomes
5.4.a Scheduling algorithms experimentation and performance evaluation

To evaluate our scheduling algorithms we have performed simulations based on Batsim-Simgrid. For that,
we modeled the FaaS applications to be executed on top of Batsim. We created workloads specific for
Serverless Functions, using the FunctionBench benchmarks, specifying their execution time, the
containers name, tag, and list of layers - the different layers size along with the cpu processing time and
memory required will be added in next steps. With that, on simulation time, we can know how long the
function will take and how long it will take to download and deploy a container. With the information of
the layers, we were able to compute a ratio with the existing layers in the different machines, to reduce
their download and deployment time based on the amount of common layers. In this simulator we were
also able to model different platforms, with a number of machines and nodes - network configuration will
be added in next steps.

Concerning the modeling of the computing infrastructure, we simulated the same computing
infrastructure used for the real FaaS execution experiments, which took place in the first phase. To do the
simulation we made use of the SimGrid features which allows us to define in detail the different
characteristics of our simulated environment. Hence with the usage of both Batsim-Simgrid we managed
to execute simulated experiments on our scheduling policies and managed to get quite promising results.

We have run several experiments to compare the different implemented versions of CacheLocality
scheduling Policy. In the following it is presented a simple example to illustrate how such policies can
reduce the makespan of the platform, reducing the container or layers download. Figure 19 shows the
execution time and the container download time, both in seconds, for three serverless functions, with
specific input, used in our benchmarks. It shows the ratio is non-negligable between the time needed to
download and deploy the containers and the time to execute the functions.

Figure 19. – Execution and container download time

In addition, it is important to emphasize that it was investigated that video processing and image
processing container images share about 80% of their layers, and linpack shares 0% on the contrary.
Figure 20 illustrates such functions grouped in a workload, with three invocations of video processing, one
invocation of linpack and one of image processing, followed by their submission time.
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Figure 20. – Functions grouped

It was defined as a platform with two machines and it was simulated two different variations of the
CacheLocality scheduling policy: c) CacheLocalityWithLayers and d) CacheLocalityWithLayersHard, in
addition to the AlwaysDownload policy. The following figures will present the functions as the numbers on
Figure 21, <function_id>, and their containers name will be composed by
<container_name>_<job>_<function_id>_<container_counting>. For instance, function 0 will be preceded
by python3action_video_processing_job0_0.

Figure 21. – Always policy result

Figure 21 shows the result of the Always Download policy. It is possible to see that as designed, all
functions download their containers, even if the machine already executed the same function previously.
This is basically to show the behavior in the worst case scenario which is something possible.
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Figure 22. Cache locality with layers results.

Figure 22 shows the results of the Cache Locality with Layers policy. This policy searches at first for
machines available and after for layers to be shared. If the machines available do not have any useful layer,
the entire container will be download there anyway, as the python3action_video_processing_job1_2 of
function 1, which found machine 0 busy when it was submitted, and then was allocated to machine_1 even
without any useful container layer. On the contrary, it is possible to see that the container
python3action_image_processing_job4_3 of function 4 had its download time considerably reduced in
comparison with expected. It happened due to the sharing of 80% of layers with the
python3action_video_processing_job0_0 of functions 0 and 2. And finally, it is visible that function 2 does
not have any container directly before it because it shares the same container used by function 0

Figure 23. - Cache locality hard with layers results

Figure 23 shows the results of the CacheLocalityHardwithLayers policy. This policy searches at first for
machines with layers to be shared and once found, select the best ones and check if they are available. If
the selected machine is not available, the function will wait until the machine gets available and it will
reduce the download of new containers or layers as much as possible.
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For instance, we can see that only three containers were downloaded:
python3action_video_processing_job0_0, python3action_linpack_job3_1, and
python3action_image_processing_job4_2, which represent one container per type of function. It is possible
to see that in comparison with Figure 22, the execution of function 1 was delayed to be executed on
machine_0 that already had the required container. Then the function 4, image processing, followed the
same behavior as on Figure 22 and was allocated to a machine that could share layers from other
containers.

In addition to the different behavior of each illustrated policy, it is possible to observe that the makespan
was reduced in both CacheLocality variantes in comparison to the AlwaysDownload baseline, which is
around 3500s for the last one, and around 2500s for the CacheLocalityWithLayers and 1500s for the
CacheLocalityHardWithLayers. So it is possible to conclude that the sharing of layers can reduce the
makespan of any workload if there are functions requiring compatible container images. Furthermore, we
can conclude with this simple example that a more rigid approach such as delaying the execution of
functions to benefit the sharing of possible container layers can produce an interesting tradeoff between
increased functions waiting time and the makespan of the platform. Of course this is something that we
need to validate with simulations.

Hence the above results showed us the interest of our implemented algorithms and since the simulations
have presented good results, the plan is to continue with the implementation of such policies in the real
platforms. Kubernetes is the main layer where we are going to implement a new scheduler. Studying the
Kubernetes Scheduler, which is based on predefined Policies and Profiles, we can modify the standard
Profiles to use different Policies, and there is one Policy named Image-Locality that implements a behavior
similar with the one we developed on top of our simulator. This will be adapted and enhanced to take into
account the locality of the layers.

5.4.b Kubernetes LayersLocality Scheduler experimental validation procedure

Following the LayersLocality implementation on Kubernetes, we hereby provide the procedure for the
experimental validation of the new scheduler. For this we will go through Kind [14] which is a tool for
running local Kubernetes images based on Docker containers for “nodes”.

First we need to build CRI-O and Kubernetes using our forked versions as explained in detail in the tutorial
we created here16. Then we can create a configuration for the kind cluster to use CRI-O and our custom
images:

cat > kind-crio.yaml <<EOF

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

- role: control-plane

image: quay.io/aojea/kindnode:crio1639620432

kubeadmConfigPatches:

- |

kind: InitConfiguration

nodeRegistration:

criSocket: unix:///var/run/crio/crio.sock

- |

kind: JoinConfiguration

nodeRegistration:

criSocket: unix:///var/run/crio/crio.sock

16 https://github.com/RyaxTech/k8s-container-layer-locality#testing
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- |

kind: ClusterConfiguration

KubernetesVersion: 1.22.6

imageRepository: docker.io/ryaxtech

- role: worker

image: quay.io/aojea/kindnode:crio1639620432

kubeadmConfigPatches:

- |

kind: JoinConfiguration

nodeRegistration:

criSocket: unix:///var/run/crio/crio.sock

- role: worker

image: quay.io/aojea/kindnode:crio1639620432

kubeadmConfigPatches:

- |

kind: JoinConfiguration

nodeRegistration:

criSocket: unix:///var/run/crio/crio.sock

EOF

Code 17 - KinD configuration for the validation of LayersLocality scheduler

Then create the cluster:

kind create cluster --name crio --config kind-crio.yaml

Code 18 - KinD cluster creation

Inside the cri-o repository, replace the Cri-o executable by ours with:

for n in $(kind get nodes --name crio); do

docker cp ./result/bin/crio $n:/usr/bin/crio

docker exec $n systemctl restart crio

sleep 1

docker exec $n systemctl status crio

done

Code 19 - CRI-O executable modification

Check if this work with:

docker exec -ti crio-control-plane crictl --runtime-endpoint unix:///var/run/crio/crio.sock images

-o json

Code 20 - CRI-O deployment

You should see this kind of annotations:

"annotations": {

"imageLayer.sha256:b0e18b6da7595b49270553e8094411bdf070f95866b3f33de252d02c157a1bc7":

"15879307",

"imageLayer.sha256:d256164d794efdde4db53b59b83dd6c13cabf639c7cac7b747903f8e921e32c9":

"23796084"

}
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Code 21 - CRI-O new annotations

Inside the Kubernetes repository, push the kubelet in all nodes:

for n in $(kind get nodes --name crio); do

docker cp _output/local/bin/linux/amd64/kubelet $n:/usr/bin/kubelet

docker exec $n systemctl restart kubelet

sleep 1

docker exec $n systemctl status kubelet

done

Code 22 - kubelet update

Fix the coredns image name (use a hardcoded subpath coredns/coredns unsupported by dockerhub):

Inside the Kubernetes repository, push the kubelet in all nodes:

kubectl set image -n kube-system deployment/coredns coredns=docker.io/ryaxtech/coredns:v1.8.0

Code 23 - new Kubelet on nodes

And now we are ready to test with the following (or similar) scenario. We can consider two images which
are going to be composed by at least one or two same layers for example:

● Img1: Layers: L1, L2, L3
● Img2: Layers: L1, L2, L4

Then we can consider three homogeneous nodes: N1, N2 and N3 and two pods: P1 using Img1 and P2
using Img2 both requesting all the resources of one single node. Now let’s consider an empty cluster with
no layers of Img1 and Img2 in cache.. At time `t0` we submit P1 which will be placed to node N1. Then at
time `t1` we submit P2 which will be placed to node N2. Then at time `t2` we remove P2 and at time `t3` we
submit P1 again. Now since it will be using the LayersLocality scheduler, the P1 will go to node N2 because
some of the layers are already present and not on N3 which does not have any layers. This will accelerate
the download of images, especially if the layers have large size.

The Kubernetes LayersLocality scheduler has been installed and configured on the PHYSICS testbed where
it is validated through similar experiments and the real use case applications.

5.5 Next Steps

In previous sections, we described the different aspects of the studies that took place during the design,
implementation and experimentation of the local-level scheduling algorithms of our global continuum. We
have started with an initial analysis of the way FaaS applications are scheduled using default
Openwhisk-Kubernetes scheduling techniques and we have tried to understand what is needed to further
improve various aspects.

In addition we have provided an adapted simulator along with an experimental methodology to study the
different scheduling algorithms. Based on our initial outcomes we have designed some first policies to
address the delays due to downloads of containers in clusters where the containers or layers of the
containers exist already. Hence the placement is adapted based on which resources provide particular
containers or layers. We have implemented different variations of these policies and we have evaluated
them using the simulator which showed promising results.
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Furthermore, we have studied the Kubernetes scheduler and its internals and we have implemented the
LayersLocality as extensions of the ImageLocality plugin of the Kubernetes scheduler, while integrating it
with the currently designed Physics local-cluster architecture connecting with the webhook and the
different Kubernetes APIs.

As we move forward, our focus is to follow-up, the effort that has already started, with the SIG-Scheduling
group, in order to finalize the adoption of our new Kubernetes scheduler in the upstream version. This will
allow us to minimize the cold start delays for FaaS applications and increase the impact of our scheduler.

Our studies will also continue after the end of the project to explore, design and implement new
scheduling policies based on various new parameters as defined within the higher layers such as the
Design Environment, the Global Continuum Placement, the Performance Evaluation Framework and the
Orchestrator -- from WP4, see D4.2. One of the important aspects that may be explored in the future is the
selection of warm and hot containers instead of cold ones to deploy the tasks/functions. For this particular
adaptation, work will be needed not only within the Kubernetes scheduler, but also within the Openwhisk
scheduler.
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6. OPTIMIZED SERVICE CO-LOCATION STRATEGIES
The co-location strategies component, developed under Task T5.4, Optimized Service Co-location
Strategies, is in charge of finding the most suitable placement decision for a new Pod to be deployed,
taking into account the workloads that are running in a cluster in order to reduce the noisy behavior effect.
The co-allocation strategies look at the complementarity of deployed Pods, that is, CPU intensive, memory
intensive, or network intensive, but also at the requirements defined by the application at design time in
WP3. Some functions may require a given hardware to be executed (e.g. GPU), some functions are not
isolated, they are part of a workflow (e.g. a sequence of function invocations) that may run in the same
node. Some functions may use a service and should be placed together with the service for improved
performance. Those requirements are expressed with annotations by the applications designer in WP3
Functional and Semantic Continuum Services Design Framework. The application developer can also
follow the Performance Pipeline Stage (described in D3.2) that leads to annotated information regarding
the expected behavior of a function (CPU/memory/IO/network resources needed). All this information is
passed to the infrastructure where a concrete pod will be deployed and the associated YAML file will be
updated to include Kubernetes node and inter-pod affinity rules [53], which are used by the scheduler. The
scheduler will decide the placement of a concrete pod based on these rules The node affinity constrains
the nodes where the pod can be executed. For this purpose, nodes are labeled with key and value pairs,
and the pod YAML will use that label and indicate if this is a required or preferred node. Inter-pod affinity
and anti-affinity rules constrain the nodes where a pod can be deployed based on the labels of the pods
that are already running on the cluster. The coallocation component will be in charge of generating these
affinity rules. Moreover, statistics regarding the actual consumption of resources the pods in the cluster
are collected and used to classify pods according to their CPU/IO/Network/Memory, so that future
executions of the same type of pod can take this information into consideration. The infrastructure will
also collect aggregated metrics of the resource usage for each node. This information will allow us to
approximate the resource consumption of nodes. The co-allocation component will use this information
to produce the affinity rules for each pod to be scheduled.

The rest of the section presents the design of this component, and its implementation, the information it
uses and produces, and an example to understand its behavior.

6.1 Design Specification
The goal of the co-location is to find a set of candidate nodes for the deployment of new pods based on the
current running nodes (workload) in a given cluster. The co-location component is made out of 6
subcomponents as depicted in Figure 24. The subcomponents are: a database, processes that run
periodically (cron job pods) and processes that run when a new pod is created (Section 4.1.g). The cluster
status and function execution metrics are stored in the co-location database, a Prometheus database. Three
subcomponents run periodically: Cluster information, Cluster status, and Function metrics and
interferences. The data collection and the Rules generator are executed before a new pod is created.
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Figure 24. Co-location component architecture

The Cluster information process gets information about the nodes available in the Kubernetes cluster and
their technical specifications (CPU, memory, disk type, GPU and network bandwidth). This information is
obtained through the Kubernetes API. This process is executed when the Co-location component is
deployed and periodically to check if the cluster status has changed. The information is stored into the
Co-location database to be used by other subcomponents. The Cluster status subcomponent periodically
checks the resource consumption of the nodes and the pods that are running in the Kubernetes cluster.
This information is obtained from the Kubernetes Prometheus instance and is stored into the Co-location
database. The Function metrics and interferences subcomponent gets information about the functions
executed in the FaaS platform such as the execution time and the invocation time of the function to detect
interferences with other functions executed at the same time in the same node. This information is kept in
memory and also stored in the Co-location database to be used to generate the affinity/anti-affinity rules.

The Data collector subcomponent is executed each time the webhook intercepts the creation of a new Pod.
This subcomponent retrieves the information from the Co-location database and the Workflow CRD and
selects the set of nodes where the function can be allocated so that performance is not degraded. The
subcomponent finds the nodes with the needed hardware resources and among them selects the nodes in
which the function executed previously with the lower response time if the same functions are running
concurrently. Otherwise, if there is no previous information, the less loaded node is selected. If none of
these conditions are met, the nodes that have more available resources are recommended. The Rule
generator subcomponent updates the pod yaml object to add the affinity and anti-affinity rules that will be
used by the scheduler to deploy the pod.
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6.1.a Cluster information
The Cluster information subcomponent retrieves the features of the nodes that belong to the cluster. This
subcomponent is executed periodically, i.e., once per day. The component uses the Kubernetes Python
library, this a Python client for the Kubernetes API. The component gets features of each node registered in
the Kubernetes cluster, the memory, the number of cores and all the labels set to the nodes like GPU, disk
type and the DMS component keydb label. The labels have to be set by the cluster administrator. This
information is stored in the Co-location database.

6.1.b Cluster status
The Cluster status subcomponent collects the CPU, memory, network, and disk metrics of each node within
the Kubernetes cluster. This component is executed periodically, i.e. every 5 minutes. The metrics are
provided by Kubernetes and accessed using the prometheus_api_client and Kubernetes Python libraries.
These metrics are stored in the Co-location database.

6.1.c Function metrics and interferences
The Function metrics and interference subcomponent is executed periodically, i.e., every 5 minutes. This
component gets information about the execution and starting time of the functions executed in the FaaS
platform during the last 5 minutes and updates the database.

The OpenWhisk(OW) client(wsk) is used to retrieve the information about the functions executed in the
last 5 minutes:
$ wsk -i activation list –-since 1694428612 –-upto 1649928912 –-limit 200

This command returns the list of functions (up to 200) executed from timestamp 169442861 till
timestamp 1649928912. Once the activation list is collected, the function metrics and interference
sub-component analyzes the activations of each function and checks if the function has been executed
alone or collocated with other functions. The component gets the information about the pod which runs
the function and where the pod runs. Then, the latency, the CPU usage, the number of vcores, memory and
network I/O used by the function are stored into the database.

6.1.d Co-location Database
The Co-location database is a central component in the co-location component used by the rest of the
subcomponents. The information is stored into the temporal series Prometheus database each time the
process that collects the information (Cluster information, cluster status and Function metrics and
interference components) stores their output in the database.

6.1.e Data collection
The Data collection subcomponent is executed each time a pod creation is intercepted by the mutating
webhook. This component receives the pod YAML object, which contains the workflow CRD name in the
metadata>annotations>workflow field. This sub-component accesses the workflow CRD object the pod
belongs to. The workflow CRD stores the workflow structure (function execution order) and annotations
related to the workflow as shown in Code 24. For instance, if all functions must or should be executed in
the same node (affinities) or in different ones (anti-affinities).
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The relevant information extracted from the workflow CRD is:

● Cluster: This annotation is required to know if all the functions of the workflow are executed in the
same cluster. In case the functions are executed in the same cluster, the component has to take into
consideration interferences of the different functions with the ones running in the cluster.

● optimizationGoal and importance: If the optimization goal is performance, the component has to
minimize the interferences of the function with the ones that are deployed in the cluster.

● extraResources: Allows to filter the nodes from the available ones and create nodes
affinity/anti-affinity rules.

apiVersion: wp5.physics-faas.eu/v1alpha1

kind: Workflow

metadata:

name: hello-sequence

namespace: physics-namespace

annotations:

id: "19fe4293742e0b2c"

version: "1"

cluster: cluster1

spec:

execution: NativeSequence

listOfActions:

- id: 339d2ef8b0b29795

- id: 3a807141f16764a5

native: true

platform: openWhisk

type: flow

actions:

- name: hello

description: "hello"

id: 339d2ef8b0b29795

version: 1.0.0

runtime: nodejs

code: "function main(msg) {\nmsg.payload=msg.payload+' hello';\nreturn msg;}"

annotations:

optimizationGoal: Performance

importance: "High"

resources:

limits:

memory: 128

requests:

cpu: 1

memory: 128

extraResources:

gpu: true

diskType: ssd

performanceProfile:

cpu: medium

memory: low

networkTransmitted: low

- name: world

description: "world"

version: 1.0.0

id: 3a807141f16764a5

runtime: nodejs
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code: |

function main(msg) {

//implies affinity with the other function in the sequence

msg.payload=msg.payload+' world';

return msg;

}

resources:

limits:

memory: 256

Code 24: WorkflowCRD example

Then the algorithm first restricts the candidate nodes based on the hardware requirements to reduce the
search space. For instance, if the new pod requires a GPU, nodes in the cluster without a GPU are not taken
into consideration. The nodes that fulfill the hardware requirements are considered as candidates.

Next, the algorithm gets the functions that are running in candidate nodes at this time and checks for
interferences. If the optimization goal specified for the Pod to be deployed is performance and the
importance is high the algorithm discards the nodes where functions that may cause interference are
running. If there are not enough nodes or the importance is lower the algorithm minimizes the
interference selecting the nodes with no interferences or with functions that can cause a low impact in the
performance of the function running in the pod to be deployed.

When a new function arrives to the cluster and there are no records about how the function behaves in
this cluster, the profile annotations available in the WorkflowCRD are considered. First, the algorithm is
going to consider executing the function alone to analyze the resources consumption. If this is not possible
due to all nodes in the cluster having other functions deployed, the algorithm selects the nodes with
functions that have different behavior/profile to minimize the impact in the performance. From then on,
this new function will be monitorized by the Function metrics and interferences component. If there are
records about the function the algorithm uses the interference registry to select the most suitable nodes.

6.1.f Rules generator
Based on the outcome provided by the Data collection subcomponent, a set of affinity/antiaffinity rules are
created. The hardware requirements are translated into node/pod affinities/antiaffinities that depending
if they are strong constraints, the affinity will be required
(requiredDuringSchedulingIgnoredDuringExecution in Kubernetes) or optional
(preferredDuringSchedulingIgnoredDuringExecution in Kubernetes)[42]. Each node that is an outcome of
the Data collection algorithm (candidate to deploy the new pod) are translated node affinity rules. The
interferences detected by the Data collection algorithm are set as pod antiaffinity rules. Other
requirements of the pod that come in the workflow such as some functions that should (not) be
co-allocated, are added to the pod YAML file as inter-node affinity (anti-affinity).

An example of affinity and antiaffinity rules is represented in Code 25 where two node affinity and a pod
antiaffinity rules have been set for the pod intercepted by the Mutating webhook that is going to deploy
the hello function. The Node affinity rules have been set to satisfy extra resources requests of GPU and SSD
disk. Then, the pod antiaffinity rule has been set to avoid the pod to be deployed within a node that has a
function with the label openwhisk/action: Model_training. This type of antiaffinity rule is set due to
interferences detected when the two functions are executed together. The algorithm detects that running
the function to be deployed with model_training functions decreases the performance.

apiVersion: v1

kind: Pod

metadata:
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name: wskowdev-invoker-00-1-guest-hello

spec:

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: disktype

operator: In

values:

- ssd

- key: gpu

operator: In

values:

- yes

podAntiAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:

matchExpressions:

- key: openwhisk/action

operator: In

values:

- Model_training

topologyKey: topology.Kubernetes.io/zone

containers:

- name: wskowdev-invoker-00-3278-guest-hello

image: "gkousiou/NodeREDhelloaction"

Code 25. Affinity/Antiaffinity rules example.

6.2 Co-location evaluation
We have run the Function Bench benchmark [54] using OpenWhisk in a Kubernetes cluster to measure the
effect on performance of co-locating functions that compete for the same resource. Function Bench defines
a set of functions (workload) that compete for resources. More concretely, we have run the functions on
OpenWhisk both isolated, being the single pod in a node, and co-located in the same node with other
function to show the effect on the function execution time of the co-location of functions that compete for
the same resources (CPU and memory).

The evaluation was run in a Kubernetes cluster composed of 3 Intel(R) Xeon(R) CPU E5-2620 v3 @
2.40GHz Processor instances (24 virtual CPUs and 128GB memory), a TCP/IP emulation with 1 Gbps
bandwidth. One machine is the master node and the other two are workers nodes. One of the workers
executes all OpenWhisk master pods such as the controller. The other node was labeled as
openwhisk-role=invoker and is where the OpenWhisk invoker is deployed and thus where all function
pods will be scheduled. Some of the tested functions, like Model_training and video processing, require an
external storage. To satisfy that requirement a MinIO [55] instance was deployed in the same node as the
invoker to reduce IO latency.
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The functions used for this evaluation are:
● Float17: This function performs the operations sine, cosine and square root in a loop of 100M

iterations. The amount of memory is the default one, 256MB.
● Video_processing18: This function loads a 30 MB video stored in MinIO, transforms the video into

gray frame and stores the new video into MinIO. The function was configured with 512 MB RAM.
● Model_training19: This function trains a scikit-learn linear model20, LogisticRegression, with a CSV

file of 50 MB. The CSV file is loaded at the beginning of the function execution and the trained
model is stored into MinIO once the train process finishes. The function was configured with
512MB RAM.

● Model_serving21: This function loads a 5 MB video and a model available in MinIO and runs a
model for face recognition. The RAM function is the default one, 256MB.

The assigned memory is enough to avoid running out of memory during the execution of the
corresponding function.

A client invokes the function for 30 minutes. The average execution time, CPU usage, number of cores used,
memory and network IO metrics were monitored during the standalone evaluation of each function. Table
1 shows the results.

Execution
Time (s)

CPU usage
(%)

# vcores Memory
(MB)

Network
Received

Network
Transmitted

Float 6.13 5.36 0.16 25.6 26.5 B 17.24 B
Video_processing 97.9 5.82 1 219 201.8 KB 329.11KB
Model_training 36.5 27 4.5 201 223 KB 1.68KB
Model_serving 33.5 19 4.1 109.8 63KB 114KB

Table 1. Functions standalone execution results.

Next, functions have been executed in pairs monitoring the same metrics. Table 2 shows the results:

Execution
Time (s)

CPU
usage
(%)

#
vcores

Memory
(MB)

Network
Received

Network
Transmitted

Video_processing
+
Model_serving

Video_processing 120.5 30.3 0.89 241 159 KB 264 KB

Model_serving 33.5 5.6 213.5 541 KB 161 KB

Video_processing
+
Model_training

Video_processing 121.4 38.04 0.93 219 174.2 KB 275.2 KB

Model_training 36.6 7.82 262 725 KB 3.5 KB

Video_processing
+
Float

Video_processing 103.22 8.9 0.87 240 167 KB 269 KB

Float 6.4 0.17 26.4 26.4 B 17.24 B

Model_serving
+

Model_serving 38.9 52.67 5.13 212 706 KB 174 KB

21 https://github.com/ddps-lab/serverless-faas-workbench/tree/master/openwhisk/cpu-memory/Model_serving

20 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

19 https://github.com/ddps-lab/serverless-faas-workbench/tree/master/openwhisk/cpu-memory/Model_training

18

https://github.com/ddps-lab/serverless-faas-workbench/tree/master/openwhisk/cpu-memory/Video_processing

17 https://github.com/ddps-lab/serverless-faas-workbench/tree/master/openwhisk/cpu-memory/float_operation
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Model_training Model_training 38.4 7.12 261 681 KB 285 KB

Model_serving
+
Float

Model_serving 33.61 27.9 5.7 210.7 495 KB 162 KB

Float 7.3 0.18 24.8 26.8 B 27.9 B

Model_training
+
Float

Modelt_training 37.49 35.34 7.6 250 699 KB 288KB

Float 8.3 0.2 25.2 25 B 16.3B

Table 2. Functions co-located execution metrics.

Figure 25 shows the latency in seconds obtained from the execution of the Video_processing function
standalone, and co-allocated with other functions. The average latency of this function, during the
standalone execution, is 97.9 seconds. This latency increases 5%(Co-located Float), 19% (Co-located
Model_training) and 18%(Co-located Model_serving), when it’s co-located. The number of cores used by
this function remains stable (1 vcore) in all executions, instead, the network I/O decreases 21% and 13%
when the function runs co-located with the Model_serving and Model_training functions respectively.
Those functions also read and write in MinIO so the Video_training function is competing for the same
resource. Analyzing the evolution of the network IO metric during the evaluations, when the
video_processing function running in standalone the network consumption reaches 56% of capacity, when
co-located with the other functions it is 54%(Co-located Float), 95% (Co-located Model_training) and 75%
(Co-located Model_serving). This function must therefore be prevented from being executed with either of
the other two functions. The float function response time increases only 5% when co-located with other
functions. These two functions do not cause interference since the nodes have enough resources to run the
two functions at the same time.

Figure 25. Video_processing function co-location.

Figure 26 shows execution time of the Model_training function standalone, and co-located with the float,
Video_processing and Model_serving functions. This function running alone has an average response time
of 36.5 seconds. The latency increases when co-located in 2% (float), 0.2% (Video_processing) and 4%
(Model_serving). The increment is low in comparison with increment suffered by the Video_processing
function. However, it is remarkable the increased usage of vcores when the function is co-located. The
function running alone consumes an average of 4.5 vcores. However, when the function is running
co-located, the Model_training function consumes 7.6 vcores (an increment of 40% ) when running with
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the Float function. Consumes 7.82 vcores when co-located with the Video_processing function (42%) and
7.12 vcores when running with the Model_serving function (37%).
This behavior occurs because the node has enough resources to execute all functions and increase CPU
usage, a resource that is not limited by OpenWhisk functions. We have limited the CPU usage of the
Model_training function to 2 vcores. For this purpose the Muttating webhook intercepts the pod YAML and
adds the resource limit to 2 vcores. Figure 27 shows that the latency of the function when the resource
usage is limited has increased by 36% compared to the execution without resource limit. If the user
indicates that the performance is not so crucial , the function could be placed on a node that has less
available resources or run it with another type of function competing for the same resources would
increase the latency.

Figure 26. Model_training function co-location

Figure 27. Model_training function without and with CPU usage limit

Figure 28 shows the performance for the Model_serving function when it is running alone and when it is
co-located with the float, Model_training and Video_processing functions. The average latency of the
Model_serving function is 33.5 seconds. However, the latency increment of this function when co-located is
very small (float 0.3%, Model_training 13% and 0%, Video_processing). The highest increment is obtained
when it is co-allocated with the Model_training function 5.4 seconds. This function has the same behavior
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as the Model_training function when it is co-allocated with another function, it increments the number of
cores usage.

Figure 28. Model_serving function co-location.

This evaluation shows how interferences are detected taking into consideration the standalone execution
of the function in the cluster and comparing the usage of the resources when the function is co-located
with other functions in the same node of the cluster.

6.3 Profiling Process and Annotations from the Performance Pipeline
Outputs

In this section the background details of the Profiling Process for characterization of deployed functions
are portrayed. The aim of profiling is to be applied in the context of the Performance Pipeline, presented in
WP3 and D3.2, following which a function will be annotated with relation to its usage of underlying
resources. The goal is to categorize functions with respect to the usage of the resources in order to provide
information to the co-location service described in this chapter. Thus the latter will not schedule functions
that require the same type of resource on the same node, avoiding severe bottlenecks and making
informed decisions for the placement of functions on the available nodes.

In order to design the profiling process, it was considered that this should be performed relatively to the
other available functions. Thus the platform, at the WP4 level, can exploit a kind of function profiles
crowdsourcing from all the available executions of the performance pipeline. This would remove the need
to define arbitrary boundaries on what is considered to be a low/medium/high behaviour in terms of e.g.
CPU usage, while these limits will be determined based on the available and observed traces.

While the function executes in the context of the performance pipeline, the averages for pod CPU, memory,
file system and network data are received. An example trace appears in the following figure and is
available through the PEF APIs described in D4.2.
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Figure 29. Example trace

Given that the function categorization needs to be performed in a relative manner, and based on the
available function traces, we have selected an unsupervised learning algorithm for determining the profile
boundaries. The process is based on an implementation of the well known “k-means” algorithm, in which k
centroids of areas are determined from the available data. A k value of 3 has been selected, indicating
three categories of resource usage: low, medium and high. Although this process can be extended with a
silhouette analysis in order to determine the optimal value of k [56], in our case this is not considered
practical for two reasons. Initially, the dataset on which the clusters are going to be applied is expected to
grow with time, as more functions get registered and executed in the platform. Furthermore, the
categories and according annotations are used by the underlying infrastructure components in order to
perform the function scheduling. This implies an agreement on the specification of the potential
annotations between the performance pipeline and the lower management layers, such as the co-location
strategies. Hence, if from time to time the k value changes based on the silhouette analysis, this implies
that this specification would be broken and further adaptations would need to be performed across the
platform.

The clustering process is performed individually for each resource metric. This means that there is a
separate categorization for each resource metric (CPU usage, function memory usage, file system usage,
network data sent and received). This enables us to have more detailed annotations and potentially map
them to the capabilities of the nodes. The determination of the resource usage clusters (k-means
re-training) is performed in a periodic manner, set as a Kubernetes CronJob in the supporting framework
while utilizing a respective clustering function registered in Openwhisk. More details on the according
function implementation are provided in D4.2, as part of the Performance Evaluation Framework (PEF).

Once the newly analyzed function has been executed through the performance pipeline, we need to
determine the clustering category to which it belongs for each resource metric. For this categorization, a
relevant classifier function is used. This is based on a euclidean distance calculation for each metric in the
function trace against the 3 available cluster centroids for that metric. The lowest distance from a centroid,
compared to the other 2, means that this function is closer to this category than the others for this metric.

An overview of the approach appears in Figure 30.
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Figure 30. Overview of the Profiling and Classification Process for Function Characterization

6.3.a Experiment for the identification of function profiles
To evaluate the execution and outcome of the profiling and categorization process in terms of identifying
and reducing bottlenecks from similar behavior, we selected four functions with varying computational
requirements, implemented in native Python. These include sorting and Fibonacci functions, a large list
generation function and a file read and write function for I/O-bound operations. Each of these functions
accepts an integer as an input parameter, which determines the n-th number in the Fibonacci sequence,
the length of the list to be sorted or generated, and the size of the random data read or written to the file
(in bytes). Default values used for n were 30 for Fibonacci, 1 million for List, 1048576 bytes for fileRW and
10.000 for the sorting function.

Following their execution through the Performance Pipeline described in D3.2, the resource usage
footprints of the pods executing each function in its main run were collected and appear in Figures 31, 32,
33, 34 and 35 for different resource types.
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Figure 31. CPU Usage per Function

Figure 32. Memory Usage per Function
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Figure 33. Network Received per Function

Figure 34. Network Transmitted per Function
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Figure 35. File System Use per Function

The related results of the clustering process and the according centroids for each resource usage category
appear in Table 3, while the function classification per utilized resource intensity are presented in Table 4.
From these we can identify which one of the functions is more resource intensive for each type of resource.
In this case some profiles seem to be misleading since for example the fileRW case has lower filesystem
use than the fibonacci case. This is due to the small input argument used for its function execution. In the
case where more indicative executions are available for a given function (i.e. with smaller or larger
arguments), the mechanism can acquire the average values of all these runs to get a better insight. But this
is also indicative of misconceptions that might exist for the computational nature of a function. For
example, if the developer was asked to annotate by hand these functions, they would annotate the fileRW
case as disk intensive, whereas it appears from the acquired profiles that in fact other function types that
would not appear as such use more the specific resource. Thus the usage of the presented mechanism can
help avoid such stereotyping and base our decisions on the acquired data and compared relative usage of a
resource.

Resource Low Medium High

CPU 0.00580 0.02965 0.18521

Memory (Bytes) 22821091 27701589 47930026

Network (Bytes)
Received

173.33377 663.13804 983.72398

Network (Bytes)
Transmitted

196.98828 359.94572 495.84016

File System (Byte)
Reads

1494016 12274688 49229824

Table 3. Resource Usage Category Centroids Determined from the Clustering Process
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Resource sort (n=10000) fibonacci (n=30) fileRW (n=1 MB) list (n=1 million)

CPU low high low medium

Memory medium high low low

Network Received medium medium medium high

Network
Transmitted

medium medium medium high

File System Reads low medium low low

Table 4. Function Category Classification per Resource Type for Default Inputs of the Test Functions

6.3.b Function Input Dependencies on Execution Time

One question during the performance pipeline testing was howmuch a given function’s input can actually
affect the resulting categorization of that function. Given that the input may determine how many
computations are performed or how much memory is needed, it is necessary to investigate that aspect.
This is especially true for the tested functions in our case. For this reason a number of tests were
performed, altering the default values of n applied in the test functions. The results are presented in Figure
36. From these it is evident that it’s possible for a function profile to shift between categories for different
input values. In all examined cases specific values of n caused this category shift. On the other hand, there
are types of functions (e.g. model inference ones such as the one in [57]) in which the input applied does
not actually affect the resources used. In that case the input vector, regardless of the contents, is applied to
a neural network in order to get a predicted output. The amount of computation applied is the same
regardless of the actual input vector in that case.

The main conclusion from the analysis in this section is the fact that there are functions that are severely
influenced by the type or size of inputs that are applied. Through the defined process, the developers can
investigate whether this applies to their given function. This also implies that the framework may need to
categorize not only by the function name (thus one profile for each function), but a combination of the
function name and the input applied.
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Figure 36. CPU usage and according classification for each function with different inputs

6.3.c Co-location experiments and performance degradation based on profiles
In order to check the effect of the categorization and validate its usage, the following experiment was
designed and implemented. The execution of the functions was limited to a node with 4 cores and 16 GB of
RAM and the aim was to measure the concurrency overhead of different combinations (e.g. low-low,
low-medium, low-high etc) of characterized functions. In each scenario, the node would execute around 16
container functions, in which half should be from each category. The goal is to demonstrate that with the
use of the annotations, the provider may reduce the observed concurrency overhead.

A blocking thread client based on JMeter was developed in order to ensure that at any given time, only the
defined number of concurrent requests would be active towards the FaaS system from each category
defined in a scenario. The JMeter client appears in the following Figure. It has been parametrically
designed so that the configuration can be performed for each test series through user defined variables
that are propagated to the relevant fields in the workload structure. Through this we are able to easily
change configurations and adapt the designed load.

D5.2 – Extended Infrastructure Services with Adaptable Algorithms Page | 88



H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 37. JMeter client snapshot

The measured scenarios included:

● Scenario 1 (High-Medium): 8 threads targeting a high CPU function like fibonacci (with n=30) and
8 threads targeting a medium CPU profile function (list with n=1000000)

● Scenario 2 (High1-High1): 16 threads targeting a high CPU function like fibonacci (with n=30). In
this case we consider that this should be the worst case, since it is a high-high coallocation
scenario in which the 16 functions are of the same type thus exemplify the largest possible
competition for similar resources

● Scenario 3 (High1-High2): 8 threads targeting a high CPU function like fibonacci (with n=30) and 8
threads targeting another high CPU function (but of different type) like List with n=3000000

● Scenario 4 (High1-Low1): 8 threads targeting a high CPU function like fibonacci (with n=30) and 8
threads targeting a low CPU profile function (sort with n=10000)

● Scenario 5 (High1-Low2): 8 threads targeting a high CPU function like fibonacci (with n=30) and 8
threads target- ing a low CPU profile function (fileRWwith n=1048576 bytes)

● Scenario 6 (Low1-Low2): 8 threads targeting a low CPU function (sort with n=10000) and 8
threads targeting an- other low CPU profile function (fileRWwith n=1048576 bytes)

● Scenario 7 (Medium-Low1): 8 threads targeting a medium CPU function (list with n=1000000) and
8 threads targeting a low CPU profile function (fileRWwith n=1048576 bytes)

● Scenario 8 (Medium-Low2): 8 threads targeting a medium CPU function (list with n=1000000) and
8 threads targeting a low CPU profile function (sort with n=10000)

For all used tests, the baseline times were extracted from 8 threads of the load running as standalone
(without any other function type executing on the node). The runs were set to last for 2 minutes in each
case.

The results appear in Figures 38, 39, 40 and 41 and relate to the response time from the client. Initially we
plot the response time of the function that was categorized as high (Fibonacci with n=30), in the various
scenarios where it participates (38). From this it is evident that while its baseline time is around 2036
milliseconds, its coallocation with a low function incurs a degradation of around 15% (2329 for the case of
FileRW and 2387 for Sort). Going to a medium-high combination raises the degradation to around 39.68%
(or 2844 milliseconds of runtime). The largest degradation appears for the High1-High2 case (3387
milliseconds of response time or 66.3%) and finally for the High1-High1 case (3865 milliseconds or
89.83%).

For the low function cases, fileRW times appear in Figure 39. In this case, the baseline time is 101
milliseconds, while its co-location with another low function (sort 10000) causes it to reach 165
milliseconds, thus increasing by 63.36%. Assigning it with a medium case has a mediocre effect, since it
reaches 171 milliseconds or 70.29%, very similar to the low-low case. However, collocating it with a high
function like Fibonacci causes the delay to skyrocket to 659 milliseconds or 552% of degradation.
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Thus although this combination is beneficial for the high function, as seen in the according Figure 38, it
takes a heavy toll on the low function.

A similar behavior appears in Figure 40 for the medium case (List with n=1 million), that portrays a 43%
degradation when collocated with the low fileRW and a 24% one when collocated with the low sort.
However when the high function is used, the according degradation reaches 467%. In Figure 41 the low
sort case is portrayed. In this we observe similar behaviors, with the only exception being that the
medium-low case has a slightly better performance on the low sort than the low-low combination.

Thus it is evident that the produced categorization from the proposed mechanism can inform the provider
on potential overheads and enable them to apply optimizations of co- allocation in order to minimize that
effect. Through this they can achieve both competing goals, i.e. further utilize their infrastructures while
reducing the deterioration of the user experienced QoS. Another approach would be to offer Quality of
Service classes to customers. It is evident in some combinations (e.g. High-Low) that while the
combination is good for the High case (producing the least overhead), it is not beneficial for the low case.
Thus low characterized functions that belong to a cheaper QoS could be scheduled with High functions,
whereas more expensive offerings may prevent these low categorized functions from participating in such
combinations.

Figure 38. Response time of Fibonacci function when paired with functions of different category
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Figure 39. Response time of fileRW function when paired with functions of different category

Figure 40. Response time of list function when paired with functions of different category
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Figure 41. Response time of sort function when paired with functions of different category
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7. CONCLUSIONS
This deliverable presents the final version of the PHYSICS Extended Infrastructure Services. The main
building blocks are described, together with the design decisions taken, its implementation and
interaction details, initial results. Some next steps that will happen during the last month of the project
and even after it finishes (such as upstream work) are also described.

This deliverable describes:

● the upstream components selected as main building blocks for the infrastructure layer, including
multicluster setups.

● the new APIs created at the infrastructure layer that the upper layers (WP3 andWP4) components
leveraged.

● the components (i.e. operators) behind those new APIs, providing the PHYSICS functionality
● the other components that improve the performance at the infrastructure layer (scheduler and

co-location)
● the semantic component that provides needed information to WP4 to operate.

In addition the interactions between the components of the infrastructure layers, as well as with other
WP's components are detailed.

The work presented in this document demonstrates the cooperation and synchronization with upstream
communities, towards enhancing specific projects. It also highlights that the project has followed the best
upstream Kubernetes practices on the developed components (e.g. by using Webhooks, CRDs and
Operators).
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