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EXECUTIVE SUMMARY

This document (D4.2) has been built on top of the V1 version (D4.1) produced in M13. It
includes the previous content, updated where necessary, so that there is one overall
document that describes the entire WP4 outcomes at the end of the project. The
Summary of Changes table details the sections that have been changed in relation to the
V1 version and which ones are new or have been heavily updated since V1. This version
presents all the work done in the different WP4 tasks. The main objective of this release is
to describe the final software components from this technical WP aligned with the result
of the other technical WPs of the PHYSICS project (WP3 and WP5).

The scope of this deliverable consists of a functional and technical description of the
prototype of every component of the WP4 toolkits. This includes functionalities,
components architecture details, overall data models, public interfaces and some
demonstrations and/or experimentation outcomes.

Each component in this document has a dedicated chapter with a common structure to
describe the work done. WP4 aims to bridge the gap between the WP3 development
environment and the WP5 infrastructure. For this a Reasoning Framework collecting the
information from the overall application and platform is described in chapter 2. The
Performance Evaluation Framework (PEF in Chapter 3) helps in integrating performance
analysis of functions and FaaS platforms in order to aid, among others, in function
development, placement and operation. In Chapter 4, the Global Continuum Placement
serves for optimal allocation of functions across the available clusters, while Chapter 5
provides state handling services for functions. All the previous components require a final
step to attain application deployment in the infrastructure. This work is attained by the
Orchestrator whose details are described in Chapter 6. New APIs have been defined in
order to support the processes and interconnect platform components. Data on the
detailed experimentation has been supplied when suited to defend specific choices and
additions. Finally, the document ends with general conclusions for the work done in this
WP.
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SUMMARY OF CHANGES

CHAPTER UPDATE SECTION(s)

Chapter 1 Updated text to reflect the presentation of
this second version of the WP4 deliverable

1.3

Chapter 1 Update Overview diagram

Chapters 2-6 Removed (the info is planned to be
included in D6.2)

Installation and usage
Next steps (last
deliverable)

Chapter 2 Additional features related to Runtime
Adaptation; Updates (text and figures) on
the Reasoning Framework based on the
2nd period developments

2.1.1, 2.1.2, 2.2

Chapter 2 New Experimental Results 2.3

Chapter 3 Minor or no updates (Sections can be
skipped)

3.1.1, 3.1.2 ,3.1.3, 3.2.3b
and 3.2.3c, 3.2.5,
3.3.1-3.3.5

Chapter 3 Major updates. Reengineering of PEF
around a more FaaS based architecture and
PEF APIs.

3.2.1, 3.2.2, 3.2.3a, 3.2.6

Chapter 3 New Sections 3.2.4, 3.3.6, 3.3.7

Chapter 4 Extended the technical description to
describe the developed extensions and
optimization algorithms and extended the
demonstration and experimentation to
capture the changes and the new
evaluations

4.2 and 4.3

Chapter 5 Description of the new implementation of
the component, the functions created to
integrate with the new implementation and
the new evaluation.

Chapter 6 New features and overall architecture

Chapter 7 New section that summarizes the
installation and usage

Previously, each chapter
had a section for this
topic.
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1. INTRODUCTION

This second version of WP4 deliverable describes the main components of the WP, the success
concerning the main objectives and functionalities proposed in the first version of the
deliverable, and the relation with other components in the same WP and other WPs. Moreover,
the component architecture is explained in detail together with the overall data model and state
of the development for the release of the second prototype of the WP4 toolkit before the final
integration.

The main objective of WP4 is to implement an abstraction layer to allow management and
optimization of applications consisting of flows or functions that are obtained using WP3
infrastructure and allow these functions connected to whole applications to be distributed in
multiple clusters. These clusters could be from different CSPs (Cloud Service Providers) or
located in different sites of the same CSP. This does also include possible hybrid edge/cloud
scenarios with different possible distributions of Kubernetes.

Additionally, we provided the capability to run the function in multiple FaaS (Functions as a
Service) engines or platforms by using workflow abstractions from WP5 which facilitates the
adaptation and future proof of the platform to possible upcoming FaaS alternatives. Figure 1
shows the WP4 logical components (T4.1, T4.2, T4.3, T4.5) and their relationship with the rest
of the PHYSICS system. These components are connected in a pipeline that transforms, enriches,
and forwards information about the application and its constituent functions to obtain an
optimized deployment of the overall application considering all the nuances of both the
multicluster platform as well as the functions and their specific constraints.

Figure 1: WP4 tasks logical components relationship extracted from D2.5 Physics architecture.
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The main components of this WP4 are the following:

● Inference Engine / Reasoning Framework: this framework is responsible for
obtaining candidate services to be used for the deployment, recommending available
design patterns and retrieving the necessary options for the deployment configuration.

● Performance Evaluation: this component test tool collects performance evaluation
data from the execution of designated workloads on top of the available services and
infrastructures.

● Global Continuum Placement: decision making component that makes decisions based
on various aspects of the platform and application execution to select the right compute
resources for the placement of the different tasks of the application.

● Distributed Memory Service: backend service to allow sharing of data between
functions invocations.

● Adaptive Platform Deployment, Operation and Orchestration (Orchestrator): the
component that allows the dynamic deployment, reconfiguration and adaptation of the
application in the global continuum edge-cloud.

We will finish this document with achievements and identified challenges for the final
integration of the project.

1.1. Objectives of the Deliverable

The main objective of this deliverable is to describe the work done until M30, which includes the
reasoning behind the design and development of the final prototype of the WP4 toolkit. This
document describes WP4 components, covering both functional and design aspects, including
technical and implementation decisions. This includes the corresponding information and
control flows between components of this WP4, and the boundaries with WP3 and WP5
components.

This deliverable is the current understanding and development of the components of WP4.
While the communication between components is custom for this project, the use of open
standards such as JSON would allow to leverage each of the component functionalities in a
different scenario and the potential for independently developed products is not to be
disregarded.

1.2. Insights from other Tasks and Deliverables

This deliverable follows the global architecture defined in D2.5. “Physics Reference Architecture
Specification V2” as a guide to introduce the functional and technical description of the
components belonging to the WP4 toolkit.

We also use the requirements defined in D2.3. “State Of The Art Analysis And Requirements V2”
to define and prioritize the prototype of the WP4 toolkit.

At the same time this deliverable was written, other two interrelated technical deliverables were
working in progress (D3.2. Functional And Semantic Continuum Services Design Framework Sci.
Report And Prototype Description V2 and D5.2. Extended Infrastructure Services With

D4.2 – Cloud Platform Services for a Global Space-Time Continuum Interplay
Scientific Report and Prototype Description V2

Page | 15



H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

Adaptable Algorithms Scientific Report And Prototype Description V2) that were synchronized
with this deliverable to make PHYSICS an integrated system

1.3. Structure

We have divided the deliverable into one chapter per component of this WP4 (Table 1). Every
chapter/component will have a functional and a technical section to provide a complete
overview of the functionalities of the components, and it will cover the design and
implementation details.

Table 1: Structure of the document

Chapter Description

Chapter 1. Introduction
Short introduction to this deliverable, objectives and
scope.

Chapter 2. Reasoning Framework for
Semantic Matching and Runtime
Adaptation

Functional and technical description of the Inference
Engine component.

Chapter 3. Cloud Services and Edge
Devices Performance Evaluation

Functional and technical description of the
Benchmarking component.

Chapter 4. Global Continuum
PatternsPlacement

Functional and technical description of the
ContinuumPlacement component.

Chapter 5. Distributed In-memory State
Services for Data Interplay

Functional and technical description of the Distributed
In memory State (DMS) component.

Chapter 6. Adaptive Platform
Deployment, Operation & Orchestration

Functional and technical description of the
deployment Orchestrator component.

Chapter 7. Integration with Physics
platform

Installation and usage of the components within the
Physics infrastructure.

Chapter 8. Conclusion
The results of the work described in the deliverable
and the next steps and challenges of these
components.
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2. REASONING FRAMEWORK FOR SEMANTIC MATCHING AND RUNTIME ADAPTATION

2.1. Functional description

2.1.1 Main objective and functionalities

The Reasoning Framework for Semantic Matching and Runtime Adaptation of T4.1,
abbreviated Reasoning Framework, provides a central registry/datastore with the appropriate
APIs for storing and retrieving applications and resources metadata within the concept of
graphs [1]. In the context of PHYSICS platform graphs are divided into the following four types
illustrated in Figure 2:

1. Application graph (created by the Application Semantics component, see D3.1):
Describes a given application that can consist of functions, flows, sub-flows, patterns and
services.

2. Resource graph (created by the Resource Semantics component, see D5.1): Describes
given computational resources such as public clouds and clusters that can consist of
compute nodes, storage services, edge devices, etc.

3. Global graph (created by the Reasoning Framework): Includes a given application graph
with its nodes connected with the nodes of the available resource graphs that could
deploy each node of the application graph.

4. Deployment graph (created by the Global Continuum Patterns Placement, see section 4):
Includes a given application graph with its nodes connected with the optimal nodes
from the available resource graphs that will be used to deploy each node of the
application graph.

Figure 2: Overview of Graphs used in PHYSICS platform

In this way, this component also performs semantic reasoning on the input metadata to infer
relationships between application and resource graphs. As a result, the Reasoning Framework
creates a global graph by filtering out the available compute resources that can serve the input
application. It is noted that each component of an application includes functions, flows and
services that could be deployed on a different computing node according to its requirements
provided by WP3 as annotations such as CPU, RAM, GPU, location, and latency.
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Furthermore, to enhance the placement of functions, pertinent performance data is integrated
into the Reasoning Framework. This data falls into three categories:

1. Data derived from benchmarks executed during cluster onboarding time, as outlined in
D5.2.

2. Function-specific benchmarks provided by T4.2 and WP3 performance pipelines.

3. Forecasted runtime metrics, which are estimated during the application's runtime,
especially when there is a deterioration in the deployed function's performance,
facilitating on-the-fly updates to the global graph.

Thus, the main functionalities of this component are the following:

● Repository for application and computational resources metadata.
● API for registering, querying and updating resource and application graphs.
● Semantic matching between application requirements and available resources (e.g., K8s

clusters) to deploy the given application.
● Intermediate component between WP3, WP4 and WP5.
● Facilitates the runtime adaptation by updating the performance metrics.

2.1.2 Relationship with other components

As mentioned above, the Reasoning Framework could be perceived as an interface between
the different layers of the PHYSICS platform serving also as a central repository for application
and resource metadata. Hence, it interacts with various components that either provide or
request data (see Figure 3).

As far as the input data is concerned, it should be structured into data models according to the
Linked Data principles [2] before entering the Reasoning Framework. This will allow
interoperability between the different components of the platform, seamless data sharing and
reasoning/inference on the data.

To that end, the PHYSICS ontology is being developed to describe the different types of utilized
data and their relationships. This data could be divided into application and resource metadata.
The former generated in WP3 is processed by the Application Semantics component to be
transformed according to the ontology descriptions and annotations. Accordingly, resource
metadata available from WP4 and WP5 is injected into the Resource Semantics component,
which is responsible for “translating” the different resource data to the common language
defined by the ontology. Thus, the Application (Resource) Semantics component creates an
individual application (Resource) graph for each new application (Resource) registered on the
platform that can be imported into the Reasoning Framework and stored in its quad-store.

The Reasoning Framework, on the other hand, outputs data to other components based on their
requirements. Specifically, when an application needs to be deployed, its global graph (i.e., the
application graph connected with the relevant resource nodes) created by the reasoner of T4.1
is passed to Global Continuum Patterns Placement (T4.3) for further optimization. In
addition, WP3 may retrieve and/or update an application graph from the Reasoning Framework
during the application design leveraging the provided API. Furthermore, the Design
environment (T3.1) queries the Reasoning Framework’s graph datastore to retrieve stored
reusable patterns and flows to be recommended to the developer.
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Additionally, this component is integrated with the Runtime Adaptation Forecaster and the
Cluster Availability Monitor, both developed in the context of T4.1 during the 2nd period of
the project. The former, triggered by an alarm service of T4.5 (section 6.1.4), predicts the
clusters’ performance based on recent OpenWhisk metrics and dictates the Reasoning
Framework to redeploy the WP4 pipeline using the forecasted data. The Cluster Availability
Monitor continuously checks the health of OpenWhisk in each registered cluster and updates
accordingly the availability scores of each cluster that are stored in the reasoning framework
(see also D6.2).

Figure 3: Relationship with other components

Finally, several other query endpoints available through this Framework facilitate PHYSICS
components’ needs. For instance, it allows updating specific resource data such as cluster
scoring and sizing information, and retrieving cluster node data or application annotations and
characteristics.

2.1.3 Requirements matrix

With relation to the expressed requirements in D2.2 and the functionalities described in the
introduction of this chapter; this component is involved in the following:

● Req-4.1-Inputs
○ Domain coverage by ontology. The ontology should be able to describe the

characteristics, properties and annotations of the input application and resource
data.

● Req-4.1-Reasoning
○ Required time for reasoning (Number of SPARQL queries, query mean response

time)
● Req-4.1-Adaptation
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○ Given the performance evaluation of the deployed applications, the Reasoning
Framework should update accordingly during runtime the global graph.

2.2. Technical description

2.2.1 Baseline technologies and dependencies

The Reasoning Framework component is a microservice incorporating the functionalities
described in subsection 2.1.1 based on the Flask Web framework [3], which features a
lightweight and modular design enabling fast development without compromising performance
[4]. This service relies on AllegroGraph3, a horizontally Distributed, multi-model (document and
graph), entity-event knowledge graph (KG) technology that enables the extraction of
sophisticated decision insights and predictive analytics from highly complex, distributed data
that cannot be answered with conventional databases. AllegroGraph provides an architecture
through the REST protocol, while there are APIs for various programming languages including
Python [5]. This facilitates the enhancement of analytical models, which are typically served by
Python-based applications, with features retrieved from the KB. Furthermore, a crucial
dependency of the Reasoning Framework is the PHYSICS ontology based on its classes,
attributes, annotations, and properties, the Reasoning Framework becomes functional.

2.2.2 Component internal architecture

Reasoning Framework's internal architecture along with the technologies mentioned above are
illustrated in Figure 4. The component is responsible for exposing specific REST endpoints so
that other platform components (i) ingest application and resource data, (ii) retrieve required
information and (iii) infer insights from the AllegroGraph for optimizing application design and
deployment in terms of cost, latency, performance and more. Specifically, the design
environment posts the application graph to the Flask service that forwards it to the KB. In a
similar way, utilizing the resource semantics component presented in [6], each cluster registered
in the platform sends its description in the Reasoning Framework. Depending on the type of the
input data, Flask guides AllegroGraph to create further relationships at both individual and
default graph level. As further analyzed in the next subsection, this facilitates the timely retrieval
of specific data needed by the platform as well as provides inference on the possible function
allocations.

The overall architecture follows the microservices approach as both components (i.e., KG and
Reasoning Framework) are containerized (using Docker) and integrated as a single service
allowing additional services to be added without affecting the existing component.

3 https://allegrograph.com/products/allegrograph/
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Figure 4: Reasoning Framework architecture

In the scope of Runtime Adaptation, an additional Flask Service, named Forecaster was
developed and integrated that uses recent metrics to predict the expected function latency
across each cluster. It computes the percentage of requests to be routed to each cluster,
optimizing for either latency (i.e., sum of wait and execution time) or cost (i.e., execution time as
the main billing factor of the FaaS model [7]).

The Forecaster is structured as a REST API developed using Flask with Gunicorn serving as the
WSGI server [8]. Additionally, it features integration with a message broker, such as RabbitMQ,
which enables event-driven triggering. This API consists of a single endpoint, which, when
triggered asynchronous or by messages from the message broker, initiates the process of data
retrieval from the OpenWhisk metrics API4 of each registered cluster. Data retrieval is performed
in parallel through multi-threading, covering the recent 15-minute period, considering that FaaS
platforms typically retain containers alive for 10 to 15 minutes. Forecaster's internal
architecture and components are illustrated in Figure 5.

Figure 5: Forecaster's internal Architecture and Components

The initial step in the processing phase is data preprocessing, where the data are streamlined to
a usable format. This involves retaining only relevant fields such as activationId, name, start,

4 https://github.com/apache/openwhisk/blob/master/docs/metrics.md

D4.2 – Cloud Platform Services for a Global Space-Time Continuum Interplay
Scientific Report and Prototype Description V2

Page | 21



H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

end, waitTime, duration, and memory. Subsequently, the data are aggregated with a frequency of
one minute, followed by inferring the required details, including the number of activations per
minute.

After the preprocessing, each function's data are fed into an exponential smoothing model [9],
employing separate model instances for duration and waitTime metrics, with a smoothing level
set to 0.5. This model predicts the execution and wait time for each function executed in every
cluster within the last 15 minutes.

To estimate performance, the predicted duration and wait time values are summed, resulting in
a performance score (predicted total latency) measured in milliseconds for each cluster. When
estimating cost, the prediction involves considering the function execution time, mean number
of invocations and the memory used by each function, with the score being expressed in dollars.

Following this, the absolute scores are converted to relative scores. This is achieved by dividing
the inverted metric of the current cluster by the sum of the inverted metrics across all clusters
as shown in the below equation. The result is then multiplied by 100 to obtain a percentage
value, facilitating a direct comparison of relative scores between different clusters.

In the equation above, relative_scores[c][m] calculates the relative score for a given cluster c and
metric m. This is achieved by dividing the inverted metric of the current cluster by the sum of
the inverted metrics across all clusters, denoted as c' in the set of all clusters C. The result is then
multiplied by 100 to obtain a percentage value, facilitating a direct comparison of relative scores
between different clusters.

2.2.3 Interfaces and Integrations

As mentioned in the previous subsections, the Reasoning Framework’s API provides various
REST endpoints to interact with other platform components. To that end, the component will be
compatible with the OpenAPI Specification (OAS) standard [10] ensuring seamless integration
and ease of use. The specifications used in a sample of the developed REST API are given in the
Code 1:
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Code 1: Reasoning Framework API specifications

In a similar manner, upon an alarm from the Adaptive Platform component (see subsection
6.1.4), the Forecaster predicts the performance score per cluster of a given application/function;
updates the cluster’s performance score in the Reasoning Framework; and re-triggers the
deployment pipeline of WP4 via proper requests to the Reasoning Framework.

2.2.4 Data Model

Given that the Reasoning Framework deals with linked-data and semantic queries, internally, it
utilizes the RDF graph model [11]. An RDF graph model is composed of nodes and arcs. An RDF
graph notation or a statement is represented by a set of triples, each containing a node for the
subject, a node for the object, and an arc for the predicate. A node may be left blank, a literal
and/or be identified by a Uniform Resource Identifier (URI). An arc may also be identified by a
URI. A literal for a node may be of two types: plain (untyped) and typed. A plain literal has a
lexical form and optionally a language tag. A typed literal is made up of a string with a URI that
identifies a particular data type [12].

Furthermore, since Reasoning Framework interacts with several platform services, data is
exchanged leveraging JSON schema. For instance, Code 2 illustrates part of the data sent to the
Optimizer (T4.3) when an application is deployed.
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Code 2: Cluster data sent to the Placement Optimizer

2.3. Demonstration or Experimentation outcomes

2.3.1 Reasoning Framework Latency

After ingesting data into the Reasoning Framework, these can be processed as graphs. With
SPARQL queries to the KG, the required information, such for example the workflows included in
an application or the sizing of each cluster, are made available as graph patterns [11]. However,
some of these data require multiple queries to be retrieved and this results in increased
processing time for the Reasoning Framework to respond to requests. For this purpose, specific
relationships between the nodes of each input graph are implemented in the form of INSERT
queries. Hence, all required information per the provided endpoint can be instantly retrieved
with a SELECT query.

As an example, Figure 6 illustrates part of the available information of a target EKS cluster
hosted in AWS before the INSERT query, where needed information (e.g., ram, cpu, architecture)
for functions' allocations are part of each cluster node description. However, Reasoning
Framework needs to aggregate such data to filter the clusters that do not meet application
requirements. Such aggregations require multiple and complex queries as well as
transformations performed at the Fask service. On the other hand, after the INSERT operation
(see Figure 7), performed during cluster registration in the platform, all the required data (e.g.,
cpu cores and ram) are available at cluster level and can be retrieved with a SELECT query.
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Figure 6: Resource Graph without INSERT queries

Figure 7: Resource Graph after updating it with INSERT queries

Furthermore, although AllegroGraph's built-in reasoner automatically infers some types of
relationships between the nodes of the ingested graphs, they do not suffice to assign
connections between application and resource graphs. To this end, several rules have been
implemented to automate this process and create connections in the form of edges that link each
flow with candidate target clusters. These rules enable the Reasoning Framework to infer triples
of the form ?flow :allocatable ?cluster by comparing the requirements of the input application
graph with the characteristics of the available resources. The latter allows retrieving all the
information required to deploy an application with a simple SPARQL query that can be executed
promptly. Figure 8 depicts part of a deployment graph where the flows of the given application
have been connected to the target cluster, as indicated by the "Allocatable" edges of the graph.
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Figure 8: Deployment Graph: The edges "Allocatable" indicate the graph nodes of type "Flow" that could
be hosted at the cluster with id "5653...72d".

In Table 2 can be observed the mean response time per request for the most used endpoints of
the Reasoning Framework (Table 3). According to these experimental results, the optimized
setup (leveraging semantic rules) requires more time for storing the input resource and
application data by 45.59% and 15.57%, respectively. This is expected behavior since, during
data ingestion, we perform additional operations to the AllegroGraph. On the other hand, query
answering latency was significantly reduced for all the “GET” endpoints when utilizing KG’s
capabilities.

Table 2: Reasoning Framework API Description

ID Method Path/URI Description

EP1 POST /cluster Store a new cluster

EP2 GET /cluster Specs of stored clusters

EP3 POST /app Store a new app 

EP4 GET /app Descriptions of all stored apps

EP5 GET /app/run/<app_id> Workflow allocations and manifest
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Table 3: Reasoning Framework's Response Latency

ID Baseline (ms) Optimised (ms) Change (%)

EP1 68.99 100.45 45.59

EP2 28.32 6.58 -76.76

EP3 155.06 179.20 15.57

EP4 26.81 21.74 -18.91

EP5 166.42 110.71 -33.48

It is noted that platform components will mainly call Reasoning Framework for requesting data
(i.e., GET), while the posting of information happens in sparse intervals. For instance, cluster
registration on the platform typically happens once and can be updated at some point in time if
the cluster size is altered. On the other hand, requests for cluster specifications occur at each
application deployment. Hence, the latency of the GET endpoints is of importance and can be
further reduced by implementing additional rules following the requested data.

2.3.2 Runtime Adaptation

Towards evaluating the Forecaster component for runtime adaptation, OW Monitor and Router
patterns developed in the scope of WP3 were employed in building an adaptive routing service
to dynamically route function requests in hybrid environments, optimizing for function latency.
The Monitor, Forecaster, and Router operate in tandem, continuously adapting to the
environment's dynamic nature. The architecture of this setup is depicted in Figure 9. The
project’s testbeds (i.e., AWS and AZURE OpenWhisk clusters) were used for serving the
evaluation experiments.

Figure 9: Architecture of RuntimeAdaption Evaluation setup

Moreover, the evaluation process utilized two Python-native functions with differing
computational demands: a function to calculate Fibonacci numbers and another to generate a
large list. The Fibonacci function is tasked with determining the n-th number in the sequence,
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while the List function generates a list with a length equal to the given n. The functions operate
with default input parameters: n=40 for the Fibonacci function and a list length of 10 million.

The experimental setup is devised to scrutinize both the performance and cost-efficiency of the
forecaster and the provided adaptability at runtime. The setups are detailed as follows:

Performance-based Routing

1. Deployment of the Fibonacci function with an initial routing strategy favoring AWS
(100-0) coupled with a 10-minute monitoring window interval, polled every 30 seconds.

2. A baseline experiment deploying the Fibonacci function with a static 50-50 routing
strategy.

3. A setup involving both the Fibonacci and List functions, initiated with a 100-0 routing
strategy and a 10-minute monitoring window interval.

4. Establishing a baseline with both functions and a fixed 50-50 routing strategy.

Cost-based Routing

1. An evaluation of the cost implications utilizing both functions, a 100-0 initial routing
strategy, and a 10-minute monitoring window interval. The cost was calculated based on
the following rates: for AWS, $0.0000166667 per GB-second and $0.2 per 1M requests;
for Azure, $0.000016 per GB-second and $0.2 per 1M requests, based on available rates
of the Amazon Lambda5 and Azure Functions6 (pay-as-you-go) services respectively. The
results of this approach were juxtaposed against the fifth setup in the
performance-based routing.

Alarms from the monitor to the forecaster towards re-estimating the routing strategy are
triggered when the overall waitTime in a cluster exceeds 3 seconds. Throughout all
experimental scenarios, we maintained a consistent request rate of 10 invocations per minute
for every function, to facilitate a controlled evaluation of the system's capabilities.

2.3.2.1. Average Latencies Analysis

The experimental results, illustrated in Figure 10, elucidate the performance metrics accrued
from different routing strategies implemented during the testing phase involving Fibonacci and
combined (Fibonacci and List) functions. It is noticeable from the outcomes that the scenarios
utilizing both functions generally exhibit lower average latencies compared to those relying
solely on the Fibonacci function. This phenomenon is attributed to the significantly lower
execution latency of the List function, thereby positively influencing the average latency values
in the combined setup.

6 https://azure.microsoft.com/en-us/pricing/details/functions/

5 https://aws.amazon.com/lambda/pricing/
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Figure 10: Mean Response and Execution Latency between different experiments

Focusing initially on the Fibonacci function deployment, we observe the performance-based
adaptive strategy, commencing with a 100-0 routing, encountering elevated latencies initially,
with average response latency and execution time noted at 75396 ms and 57973 ms,
respectively. Meanwhile, the static strategy, operating on a 50-50 routing configuration,
showcased lower initial latencies, albeit without the benefits of adaptive optimization (Figure 11
and Figure 12).

Figure 11: Wait and response latency with Fibonacci function and performance adaptation

D4.2 – Cloud Platform Services for a Global Space-Time Continuum Interplay
Scientific Report and Prototype Description V2

Page | 29



H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

Figure 12: Wait and response latency with Fibonacci function and 50-50 routing policy

Extending the deployment to include both the Fibonacci and List functions, the
performance-based adaptive strategy persisted in demonstrating higher introductory latencies
(36825 ms response latency and 27910 ms execution time). Yet, it exhibited notable
performance improvements upon reaching convergence with 36162 ms and 27179 ms in
respective categories (i.e., 9% lower latency compared to static routing.

2.3.2.2. Variance Analysis

The standard deviation (STD) provides insights into the variability of the performance metrics,
which, in the context of latency, can be critical for applications demanding consistency.
Furthermore, as mentioned in [12], the stability in execution times is critical given the nature of
the FaaS cost model depending on execution time. The results, depicted in Figure 13, furnish
insights into the standard deviation of the response latency across different setups.
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Figure 13: Standard Deviation of Response Latency between different experiments

For the Fibonacci function deployment:

● The adaptive strategy exhibited high variability initially with an STD of 43494 ms for
response latency. However, this drastically reduced after convergence to 8989 ms.

● The static strategy, in this scenario, noted around 30% higher variability in latency
compared to the converged version of the first setup.

For the combined Fibonacci and List functions deployment:

● The adaptive strategy had an STD of 9176 ms (response latency) which upon
convergence, this value reduced slightly to 8388 ms.

● The static strategy, in this scenario, noted around 45% higher variability in latency
compared to the converged version of the performance-optimized adaptive setup.

2.3.2.3. Cost Analysis

Table 4 illustrates the cost analysis for each experimental setup, denoting both the initial and
converged costs. The costs are presented in terms of the mean cost per minute, which is
calculated based on the average execution time and the number of requests processed each
minute in each cluster for functions' memory of 512Mb.

Table 4: Cost per Experiment

Experimental Setup Cost Cost-Converged

Fibonacci & List, Performance Opt 2.12 2.05

Fibonacci & List, Cost Opt 2.81 1.86

Fibonacci & List, 50-50 2.25 2.25
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The results affirm that the adaptive system, particularly in the cost-optimized setup, achieves
the most cost-effective operation, reducing the mean cost per minute substantially (up to 17%)
post-convergence. This aspect accentuates the adaptive system's capacity to enhance
performance and ensure a cost-efficient operational framework.

Having evaluated the performance across different configurations, a couple of key insights
emerge. It is noticeable that the adaptive strategies, whether prioritizing performance or
cost-efficiency, tend to offer advantages over a static approach, highlighting their flexibility.

Upon convergence, the adaptive strategies demonstrate notably reduced latencies and costs,
albeit at the expense of higher initial latencies. However, starting from a 50-50 routing would
allow the system to converge faster, eliminating the initial performance/cost variances.

Furthermore, the deviation in latencies, as analyzed, points to a greater consistency achieved
post-convergence, especially in the performance-optimized setups. While the adaptive setups
exhibit pronounced fluctuations initially, indicative of the system's efforts to find an improved
state, the post-convergence period witnesses a stabilization, thereby underscoring the adaptive
system’s efficacy in mitigating inconsistencies during runtime.

In light of the cost analysis, it is apparent that adaptive strategies steer towards enhanced
performance metrics and drive down the costs significantly when compared to a rigid 50-50
strategy, thereby illustrating a dual advantage.

Conclusively, the results underscore the potential of adaptive strategies in orchestrating a
system that is not only agile and responsive but also cost-efficient, paving the way for runtime
adaptation in multi-cluster FaaS deployments that harmonize performance optimization with
economic viability.
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3. CLOUD SERVICES AND EDGE DEVICES PERFORMANCE EVALUATION

3.1. Functional description

3.1.1 Main objective and functionalities

The Performance Evaluation Framework (PEF) of T4.2 aims to offer functionalities to investigate
performance issues in the context of the PHYSICS platform. As an example, it can be used to
evaluate diverse locations or modes for the execution of a function in the context of a FaaS
platform. To this end it incorporates tools that include load injectors, automating their
launching, configuration, monitoring, result retrieval and presentation of the acquired tests, as
well as performs several performance analyses in relation to the way to deploy and orchestrate
functions. It also provides support services for the other processes of the PHYSICS platform to
support performance, like in the case of the Performance Pipeline.

Another set of functionalities has been considered and related to the need for other components
like patterns to be configured and operated during runtime. As mentioned in D3.2, patterns are
ready-made, reusable flows offered to the developer that aim to address a specific problem in a
parametric manner. However, the parameters used to instantiate it may significantly affect a
pattern’s benefit. To this end this component will be used to investigate performance issues
when applying a pattern, as well as relevant trade-offs of their parameter setting. In this case,
either the typical launching of an experiment may be performed via the REST API of the tool, or
a relevant performance model may be created following the measurement process, that will also
be able to interpolate for cases that have not been benchmarked.

Therefore, the overall functionality of this component includes:

● The ability to launch a given test towards the FaaS platform in consideration to evaluate
the effect on a given workload (user function or benchmarking function from a typical
benchmark) or a given execution mode (as the ones defined in WP3). To this end,
collaboration and support towards the other components of the PHYSICS platform (e.g.
from the Design Environment Performance Pipeline described in D3.2) needs to be
provided

● Provide custom loads or clients needed in a FaaS environment based on the specifics of
this environment management and operation processes, adapting to the peculiarities of
the environment. This includes for example different technologies of load injectors
(blocking or non-blocking) as well as adapted parametric client implementations needed
for specific experiments

● Give the ability to create arbitrary performance models that may aid in the selection,
operation and runtime management of the system or the application.

● Offer the ability to other components to retrieve the performance measurements and/or
query during runtime.

The overall use case diagram of the PEF appears in Figures 14, 15 and 16.
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Figure 14: PEF Run Test Use Case diagram

Figure 15: PEF Evaluate Performance Use Case diagram
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Figure 16: Pattern Modelling using PEF Use Case

Therefore, the PEF can be used as the main testing platform for load generation, given that all of
its operations are offered via REST API calls and thus can be added to any arbitrary
measurement and evaluation process.

3.1.2 Relationship with other components

As indicated in D2.5, the acquired evaluation information from the previous steps can be
provided via REST APIs to several components (such as the Semantic Extractor of WP3 for
enriching the application graph with function benchmark information or T5.1 services for a
macroscopic, historical view of a cluster performance) as well as provide relevant statistical
performance data towards T4.3 to be used in the global optimization process (as a resource
capability identification and investigation of the performance effects of various cloud-edge
interplay scenarios). PEF results have also been integrated with the Design Environment of
WP3, therefore, it can be used by the developer to gain insights or by the other system
components to evaluate the effect of strategies and management practices.

3.1.3 Requirements matrix

With relation to the expressed requirements in D2.3 and the functionalities described in the
introduction of this chapter; this component is involved in the following:

● Req-4.2-FaaSBenchmarking
○ undertake the full lifecycle of benchmark execution (i.e. launching of the

benchmark orchestration of its operation, gathering of results) in a
Benchmarking as a Service style

● Req-4.2-CostAssociation
○ associate performance metrics attained through the benchmarking executions

with the relevant cost models available in the FaaS domain
● Req-4.2-MeasurementPropagation

○ availability of results or predictions through a REST API
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3.2. Technical description

3.2.1 Baseline technologies and dependencies

Experimentation for modeling cloud applications and service performance is time consuming.
Especially when the generated load needs to scale, manual operations are needed for
configuring distributed client resources, orchestrating test execution and gathering results. The
main baseline technology initially used in the PEF was the Flexibench (or Application
Dimensioning Workbench [13]) tool that we have developed in the context of the H2020
BigDataStack project [14]. Flexibench configured, spawned and managed virtualized container
clusters serving the load injection process, in a parameterized, on-demand manner. It exploits
adapted images of mainstream injection clients (Jmeter7) on container platforms. Given the
discrete parameterization of each virtual cluster, isolation and separate test-level control, as well
as REST based interfaces, benchmarking as a service is accomplished, reducing the knowledge
barrier for application engineers.

However, during the second period of the project, it became apparent that having a separate
managed cluster just for the load injection process was neither practical nor easily integrated
with the remaining platform, given the focus on FaaS technologies. For this reason, a
reengineering of PEF was performed, with the aim to offer as many functionalities as possible
through functions that are easily deployed and executed within the context of the platform or
can participate in project-wide functionalities such as the Performance Pipeline described in
D3.2. This was also dictated by the asynchronous nature of FaaS APIs, which creates
complications for synchronous, blocking clients like Jmeter.

The parts from Flexibench that were kept were only the model creation process as well as
specific Jmeter clients that were used for parts of the experimentation where tighter control is
needed (e.g. for the cold/warm/hot measurements or the multitenancy considerations in the
collocation experiments of D5.2). The modeling process [15] aims to integrate the data
acquisition with model creation and is based on a Genetic Algorithm optimized ANN generation
that can create models as universal approximators. The models are stored locally and can be
retrieved and queried during an online model inference process. Once a model is created, a
separate function container can be easily created if we want to decouple the model querying
process from the main service and achieve greater scales that are only limited by the size of the
available FaaS cluster.

The PEF framework is based on the following baseline tools:

● Node-RED as the main development tool, for both the main service and the created
functions

● Containers, as a means of packaging the created functions
● GNU Octave as the main model creation environment

Through this re-engineering of PEF, in the context of the PHYSICS project, the Performance
Evaluation Framework has achieved:

● Easier deployment of the main component service, as well as the supporting functions

7 https://jmeter.apache.org/usermanual/component_reference.html
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● Extension of the result acquisition API, to cover for the project needs and relevant query
results

● Creation of FaaS-specific load generators, both in terms of the measured quantities of the
benchmarking process as well as the execution of the load generators themselves as
functions, thus achieving scale that is only limited by the size of the available FaaS
cluster

● Extension of the scope of PEF to offer functions for clustering relevant function profiling
results to categories and classifications based on the latter

● Creation of specialized and parametric workload setups that are tailored to the FaaS
concepts and execution models (e.g., cold and warm executions)

● Alteration of the performance model inference process, which has been extended to be
performed through a FaaS execution model

● Application of the measurement and modeling processes to a wide set of performance
issues regarding patterns, modes of execution, modes of orchestration etc.

● Integration with the PHYSICS platform components and processes

3.2.2 Component internal architecture

The overview of the PEF has been extensively updated in the second period of the project and its
final form appears in Figure 17. Initially, the API layer is responsible for receiving the various
requests, which can be categorized into four main operations (excluding variations of the API
calls for specific purposes)

● Launch a specific test, defining options such as the target function, the desired set rate,
test input, number of function clients, etc.

● Push results that are acquired from the execution of one of the provided functions (Load
Generation, Classifier, Clustering). There is no direct storing from the created functions
to the Performance DB to reduce the configurability needed for the functions and enable
the developers to manipulate the sequence of the calls more freely (e.g. filter out from
the results any null or otherwise erroneous values that are detected). Thus the
Performance DB includes data from all the relevant entities handled by PEF (more
information is included in Section 3.2.6. on the PEF Data Model.

● Retrieve results that have been pushed in previous executions, based on a variety of
criteria (e.g. function name, location, etc.)

● Create a defined performance model, indicating experiment series names from which
the baseline data will be extracted for model training.

These interfaces are exploited for example in the context of the deployment process, in which
the Semantic Extractor from WP3 queries PEF in order to populate the app graph with the
benchmarks and profiles of the included functions in the graph. Furthermore, they are exploited
in the context of the performance pipeline, which orchestrates the execution of the various
functionalities provided by the PEF (more information can be found in the according Deliverable
D3.2). One interesting aspect of PEF is also the ability to incorporate WP3 subflows that have
been created and can be used both at the application level as well at the platform level. Such
examples can be considered the Request Aggregator, which is a service offered by PEF and has
been implemented for usage by the eHealth Use Case, or other functionalities like the
OpenWhisk monitor and Router subflows that have been used in the context of the
experimentation described in Section 2.3.2. Given that many outcomes of PEF like the Load
Generator Flow have been created as independent Node-RED flows, they can be used either
within the context of PEF or from any external typical Node-RED environment, a feature that
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significantly decouples the dependencies in the component as well as increases the usability of
the various artifacts.

Figure 17: Performance Evaluation Framework component internal architecture

3.2.3 Interfaces, adaptations and integrations

3.2.3.1. PEF APIs

The PEF functionalities are provided in the following tables. Initially, in Table 5, the high level
operations and functions are portrayed, while in Table 6, we include the detailed methods
against the Performance DB data that are made available.

Table 5: API operations for PEF process execution

Method Path/URI Description

POST /launchTest Submit a test to be executed through PEF. A test
may have multiple inner combinations (different
inputs) or iterations

POST ow-endpoint/
loadgen

Triggering the load generation function directly
on OpenWhisk.

POST ow-endpoint/
create-clusters

Trigger the cluster creation function directly on
OpenWhisk
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POST ow-endpoint/
classifier

Trigger the classification function, providing the
cluster centers and this function’s profile inputs
directly on OpenWhisk

Table 6: PEF DB API operations for test results, storage acquisition and filtering

Method Path/URI Description
POST /loadgendata Save load generator’s output data

GET /loadgendata Retrieving the load generator’s data

GET /loadgendata/:flow/:branch Retrieving the load generator’s data of a specific
flow in a given branch

POST /data Save the Prometheus trace data (average values)
from the target function execution

GET /data Get all trace data. To be used by the cluster
creation process

POST /clusters Used by the Clustering process to store the
clustering centroids

GET /clusters Get the most recent clustering centroids. Used for
retrieving the clusters as inputs to the Classifier
function

GET /clusters/:endpoint Get the most recent clustering centroids for a
given location. Used for retrieving the clusters as
inputs to the Classifier function

GET /clustersall Get all the clusters saved on a database. Used to
analyze the evolution of the centroids across time,
as the DB gets more populated with profiles

POST /profile Used to store the classification for a given
function

GET /profile Get all relevant profiles from PEF

GET /profile/:
actionName

Get classification data for a function that are
stored into PEF. It returns the most recent
classification for the function version that is
defined in the input, grouped by available
locations

GET /profile/:
actionName/:location

Get classification data for a function that is stored
into PE. It returns the most recent classification
for this function for the defined location in the
input

GET /flowprofile/:flowName/:branch Get classification data for a flow name that is
stored into PEF. It returns the most recent
classification for this flow, grouped by available
locations. The difference with the similar
/profile/:actionName call is that there is no need
to include the concrete actionName (which is
subject to versioning within the PHYSICS
platform e.g.
HelloFunctionV2_george_8d3d8d55-90ef-4a17-b
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668-30bcfcb797f1.json) but the user can directly
use the flow name used within their Node-RED
environment (e.g. HelloFunctionV2)

3.2.3.2. Adaptation to FaaS based execution for Model Querying process

The model query mode described in the previous section was originally implemented as a REST
service that raised one container per request in the context of BigDataStack [14]. Although this
gives significant packaging improvements compared to a typical threaded web service, the
performance degradation due to the extensive use of separate containers per request is
significant and has been documented in the relevant application of the Batch Request
Aggregator pattern [16] that was described in D3.1, since the latter was applied to this as a test
service.

Applying the Batch request aggregator has helped improve the performance footprint, however
in the case of adaptation we considered it is important to check also the “FaaSification” of this
process, i.e. transforming the model querying process to a function execution. For adapting the
respective implementation, the baseline-modeling image, consisting primarily of the GNU Octave
environment and relevant scripts for interacting with the model creation and querying process,
was enriched with the Node-RED runtime. In the initial version, the startup scripts of the image
acquired the arguments for execution (model ID and needed estimation inputs) through
relevant environment variables that were passed to the initializing container from the
Flexibench environment through the typical Docker Service API.

In this version, the adaptation needs to be altered (Figure 18) and a supporting Node-RED flow
(Figure 19) needs to be created, taking advantage of the OpenWhisk (OW) skeleton pattern
described in D3.1, to pass the arguments as OpenWhisk function arguments and adapting the
relevant script inputs. Now the arguments are passed as command line arguments to the script
following an adaptation in the Node-RED flow, after obtaining them through the OpenWhisk
argument interface (body of the POST /run call). This is needed for functional correctness, to
cover also for the cases of warm container reuse, as mentioned in the Context Reuse issue
described in D3.1. In this manner, each new request is based on the updated arguments that
arrive in the new message towards OW invocation.

Figure 18: Stack layers needed for the adaptation of the modeling image for function execution
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Figure 19: Node-RED wrapper flow for adapting the model inference process to a serverless execution

The relevant Dockerfile is needed for the creation of the baseline function image (Figure 20)
appears in the following snapshot as an example.

Figure 20: Dockerfile needed for the creation of the baseline function image

After the creation and pushing of this image to a registry, the image needs to be registered with
OW with the following command (Code 3):

Code 3: Registering the image with OW using the create/update command

wsk action create/update action_name --docker account_name/image_name

The example image has been uploaded on the Docker registry [17].

3.2.3.3. Integration of performance models in patterns- the example of the Batch Request
Aggregator

The issue of performance management in cloud environments has been extensively analyzed in
recent years. Approaches around auto-scaling, through direct Proportional Integral Derivative
(PID) controllers [18], ANN based application prediction models [19], feedback loop-based
Quality of Service (QoS) prediction through optimization techniques such as Particle Swarm
Optimization [20] focus on increasing application related resources to enhance Key Performance
Indicators (KPIs). Increasing resources is of course a valid choice, however it is associated with
extended costs. Other works examine interference caused by concurrency, either at the Virtual
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Machine (VM) [21] or the container level [22] (including intra or inter container overheads) as
well as the introduction of microVMs [23]. Alternative approaches try strategies such as
dependency packages aware affinity scheduling [24] or library sharing [25]. Approaches such as
the Request Aggregator pattern described in D3.1 target primarily at better utilizing existing
resources in order to improve application performance, without having to increase them.

As mentioned in D3.1, the Batch Request Aggregator pattern is an approach that assembles
incoming requests, merges them and forwards them as one array request to the backend. This
affects the number of containers used to serve the request, thus alleviating the back-end stress.
How the batch is released is determined by the release logic. Simple timeout strategies can be
applied or static settings of batch sizes. However, it is evident that the frequency of request
arrivals plays a vital role in this decision. For example, if requests are sparse, having a large
batch size will imply that the first requests need to wait for a considerable time until the batch is
complete, resulting in higher waiting times and overall response time. On the other hand, if
requests are very frequent, having a small batch size will lead to higher container numbers and
back-end contention. Thus, one needs to regulate the parameters of the pattern based on the
current conditions of execution to optimize the overall result. To provide such a regulation, the
model creation process of the PEF was used for creating a relevant model, as shown in Figure 21.
This takes as input the measured current request frequency (provided by the pattern) and the
set batch size to predict the response time. Based on a set of multiple predictions, the model can
determine the best configuration of the batch size. The target service for regulating was another
instance of the PEF running on a different node and used for model inference (query model
operation).

Figure 21: Model creation process of the PEF

The overall process appears in Figure 22. PEF B is the target service to model, in front of which a
Batch Request Aggregator is applied. PEF A performs the tests needed to collect the dataset for
training. PEF A is also used to create a model for PEF B querying process and deploys the model
so that the Batch Request Aggregator can query it during runtime.
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Figure 22: PEF overall process

The analysis of the data acquired from the various test executions that result in the dataset
creation is included in D3.1 to demonstrate the effect of the Batch Request Aggregator on
different static conditions. Model evaluation and runtime use are included in this chapter's
Experimentation section.

3.2.4 Function Design Approach Details

3.2.4.1. Load generator Function/Flow

To adapt the PEF to the testbed as well as enhance the inclusion of set rate clients, the tool was
extended to include load generators not based on Jmeter. Jmeter is a mature load generation
tool which however has one major drawback. It is based on synchronous calls per thread, which
means that the clients can not sustain a specific set rate unless the server also supports the
specific rate. Thus, Jmeter clients are more directed towards simulating users but not specific
requests per second. Furthermore, the peculiarities of the FaaS environment, including for
example strict timeouts in blocking call invocation delays, means that synchronous calls need to
be converted after a while to polling calls for the outcome of the request.

In order to avoid these situations and better adapt to the FaaS system result retrieval, a new load
generator was created, based on Node-RED (Figure 23). The latter can either be used directly
inside any Node-RED environment, running as a flow whenever a relevant benchmarking
process is needed or can be wrapped as a function and executed on an OpenWhisk backend
(Figure 24). In the former case, Node-RED is limited by a max message throughput of
approximately 300 messages/sec. The adaptation to a function execution thus enables the
increased scalability of the load generation process.
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Figure 23: PHYSICS Load Generator Subflow Implementation

Figure 24: PHYSICS Load Generator Subflow wrapped around an OpenWhisk Interface

Input Specification for the Load Generator

The load generator requires an input JSON that specifies the main options of the execution,
which appear in Figure 25.
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Figure 25: Input Specification for the Load Generator

The most important parameters include:

● Test duration: wall clock duration of the test as set by the user
● Delay: the inter-request delay. This controls the produced message rate
● Total clients used: how many function clients are expected to be used in the test, and

what is the id (clientNumber) of this client
● Target endpoint: against which the load generation will be performed, as well as the

HTTP method and payload to used
● Status: endpoint from which the results for the target endpoint will be received
● Load generation endpoint: where is the load generator function located (it may be

different from the target endpoint OpenWhisk function)
● Nodetype: whether this execution is inside the Node-RED environment or executed as a

function. If the latter, the process of function chaining will be applied (see next sections)
● Other info: A generic “other info” field that can be used to add any arbitrary information

(e.g. some parameter of the target function that may affect its runtime or some metadata
that the user wants to add)

● ParentSampleTime: The timestamp of starting the process (just before the call is made)
as a reference point for the measurement points (see next section).

Measurement Points Analysis

In order to support a wide range of metrics and statistics, numerous measurement points have
been included in the process or are extracted from the baseline OpenWhisk reports of an action
invocation. With the help of these checkpoints, various conclusions can be extracted, either in
relation to PEF operation, or the client operation or the target system conditions. An overview of
the respective measurement collection points is presented in Figure 26.
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Figure 26:Set rate system measurements point analysis

The extracted output metrics are obtained from the OpenWhisk activation API as well as
internal load generator sampling points. The most important of these include:

● Average user-side delay: total response time from the client call to the end response
● Wait time in OpenWhisk: time the request is placed in the queue until a relevant function

container pod is available
● Initialization time: time needed to raise a function container in the case one is not

already available (cold start)
● Function execution duration: the time it takes to execute a function
● Launch Generator latency: the delay between the start of the experiment and the time at

which the load generator function begins to execute
● Start Latency: delay between an invocation launched by the load generator and the

actual startup of the function execution
● Network Latency: it is calculated by subtracting the wait and init times from the start

latency
● Success percentage: percentage of calls that successfully finished
● Number of cold starts experienced in the run

In the case of multiple load generation functions being launched, the user can ensure that all of
them were indeed concurrently active in the experiment (e.g. not some of them waiting for a
container slot in OpenWhisk) through checking the actual start time of each function. These
diverse metrics provide valuable insight into both the function execution and the load
generation processes.

Given that these results are typically used to generate e.g. performance models or function
runtime predictors, further functional details are logged in order to assist in the dataset
extraction for the training of these models. Such details include:

● Function name as well as memory used
● Type of node used for load generation (FaaS or local in NR)
● Target and achieved set rate for each client
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● Total number of clients (if multiple load generator functions are used)
● Total samples accumulated per client including the raw data from these requests
● The main inputs for the test such as duration, the “other info”, the payload of the target

function invocation since this might also include some workload parameters for the
target function. These are included so that they are logged together with the results of
the execution

An example output of the results of the load generator is presented in Figure 27.

Figure 27: Load generator Output Result of a Benchmark Run

Function Chain Pattern Approach For Load Generation

A challenge that arises when packaging all these processes as functions is the inherent
limitations of FaaS, such as the maximum runtime a function can live. Typically FaaS systems
limit that running time to e.g. 15 minutes. Thus to bypass this limitation, appropriate strategies
need to be identified and employed. Among the most popular solutions is the Function Chain
pattern [26]. In the case of our load generator, we employed this specific pattern, as a developer
might specify a test duration that exceeds the maximum runtime of a function. The application
of the Function Chain pattern is presented in Figures 28 and 29.

In this case, it is crucial that each function instance in the chain is cognizant of its own lifespan
as well as the total duration of the experiment. If a function instance is nearing its end of life, it
needs to initiate the successor instance and log the activation id of the successor in its results.
This enables the load generation process to continue monitoring the successor until the total
test duration is completed. Additionally, it needs to log the partial test data up to that point. In
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the final function instance, the cumulative results of the test are calculated and stored as the
result of the activation.

Figure 28: Function Chain Pattern Logic

Figure 29: Load Generator Function Chain Inner Structure

PEF FaaS LoadGen Adapter

A top level coordination flow (Figure 30) is also needed (Set Rate Adapter), in order to regulate
the overall process (i.e. trigger the messages that trigger the flow generation, gather the results
and store them for later analysis) in the context of PEF. This is an alternative way of launching a
test, managed by PEF, complementary to the usage of the load generator either as a Node-RED
subflow in any Node-RED environment, or directly through invoking the according to
OpenWhisk function.

Figure 30: PEF FaaS Load Generator Adapter Flow
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3.2.4.2. Clustering function

The clustering function is based on the implementation of the well known k-means clustering
method (more details on this can be found in D5.2). In this deliverable, we describe the way the
function was implemented. The implementation is based on the Node-RED flow that appears in
Figure 31.

Figure 31: Node-RED flow

Clustering Flow/Function implementation in Node-RED

This wraps the k-means clustering operation as a service. As such it can be executed inside any
Node-RED environment in a service manner. It also implements the OpenWhisk API
specification so that it can be executed directly as a custom docker action of OpenWhisk. The
inputs include arrays of objects and their values and the output returns clusters with three
centroids for any given input, using the k-means implementation provided by the clusters npm
library. Specific attention has been given to its interface so that all needed information is fed
into the input. This means that clustering deployment and usage are entirely decoupled from
any supporting framework, DB and service, simplifying its deployment. It does not need to be
configured, for example, with the location or credentials of the REST API that includes the traces
since all raw data can be an input argument. Since it is used in this manner, it is easy in the
future to be replaced by any other desired machine learning method. The input and output
specifications are presented in Figure 32.
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Figure 32: Input (Left) and Output (Right) JSON specification for the Clustering Function

In the input JSON, the user indicates an array of “name” variables for the various features upon
performing the clustering upon. There is no limit for the amount of feature objects the data
array can have. The “value” field for each feature indicates the available data points. Lastly, the
“mode” option has two options: “multiple” and “single”. The “multiple” option will create
separate clusters for each feature object entry (e.g. “cpu”, “memory”) and the “single” option will
generate a single cluster that includes all features in the same clustering process (i.e. the
clustering vector will include columns from both the “cpu” and “memory” objects). The primary
use in PHYSICS is in the multiple mode, in order to have more discrete profiling information as
mentioned in D5.2.

Clustering Function Triggering Cron Job

The creation of the clusters is performed by the PEF in a cron job manner with the aid of the
flow presented in Figure 33. The flow is responsible for querying the performance DB in order
to collect all available profile data up to this point in time. Then it calls the deployed Clustering
Function in order to calculate the centroids and finally it stores the result in the performance
DB.
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Figure 33: Profiling Clusters Creation Cron Job

3.2.4.3. Classification Flow/Function implementation in Node-RED

The classification flow/function is again implemented in Node-RED through the following flow
in Figure 34.

Figure 34: Classification Node-RED flow

This algorithm applies Euclidean distance and compares the distance between the three
centroids given from the clustering process (Figure 35b) and the target function profile traces
(Figure 35a) obtained during its execution. Both of these fields are provided in the input JSON,
so that this flow can be easily replaced without dependencies from other classification
algorithms. Like the clustering flow mentioned above, it's possible to run this flow either as a
node red flow service or as an OpenWhisk function.
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Figure 35: Example inputs to the Classification function a) profile trace for given function b) current
clustering centroids per resource

An example output of this function is depicted in Figure 36.

Figure 36: Example output of the Classifier Function

3.2.5 Specific workload parameters and experiments consideration

3.2.5.1. Specific blocking client design for serverless systems

Measurement experiments need always to be handled with specific care in order to ensure
result validity and elimination of factors that may influence the results. While this is a challenge
for all types of systems, in FaaS platforms it becomes even more dangerous due to a number of
characteristics of the latter and especially the fact that the particular systems tend to hide
several details around their management and execution models to abstract these from the user.
This however creates an extra set of challenges for the system and performance engineer to
detect the type of parameters that may affect the performance. In the following paragraphs,
many issues are highlighted, to alert the performance engineer before an experiment execution,
as well as handle a number of them in the context of the PEF (e.g., through designing specific
workload structures to mitigate them, including them in future performance models, etc.).

Cold/Warm/Hot Executions

Due to typical resource management practices in FaaS platforms, such as proactive launching of
containers (pre-warm) for various runtimes, an invoked function can be executed in three
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different manners latency-wise, also depending on which container is used to execute the
function. Furthermore, used containers linger in the system in a paused status for a while after
the function has executed, typically for around 10-12 minutes, to be available for subsequent
function invocations. The variations in the execution of functions are therefore as follows
(Figure 37):

● Cold start: No pre-warm container is available for this runtime, container needs to be
created from scratch

● Warm start: Pre-warm Container is available for this runtime, function needs to be
loaded from the platform DB

● Hot start: Paused Container is available for this runtime and function has already been
loaded in this container instance

In the literature, other terms are also used, for example, the categorization may be
cold/pre-warm/warm, but in effect, it refers to the same conditions of execution.

Figure 37: Cold/Warm/Hot containers variations of executions

To ensure easy repeatability and adaptation of the client, three types of clients have been
created by Jmeter that help ensure the validity of the measurement process. To enable usability
and easy configuration, the overall setup is performed following user-defined variables. Each
parameter is defined in a central location (User Defined Variables tab) and its use throughout
the Jmeter script is based on referencing the according variable (Figure 38).

Figure 38: Jmeter user interface
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The parameters to be defined in the user interface for the workload are:

● Experiment name: used to annotate output files and results
● Delay (milliseconds): should be higher than the FaaS platform paused hot container

duration
● Max_containers (used for cold cases): should be <= the max containers or concurrency

factor for a function. Used to dictate the max number of client threads
● Prewarm containers (for warm and hot cases): number of prewarm containers, used to

dictate the number of user threads.
● Repetitions: loops of the threads, however for each different setup the number of usable

samples has a respective rule (to be described in the following sections) serverIP and
port: details of the respective API endpoint of the FaaS platform for function invocation

● Timeout: max client wait time for response (blocking call)
● Path: path of the function to invoke (the full path is defined by

<serverIP>:<port>/<path>

In each case, the strategy followed by the respective platform, as well as the pause duration for
the container, need to be taken into consideration to ensure that the measurements are accurate
and no overlap between calls or scheduling of other types of container modes infiltrates the
process. For this reason, the following measurement methodology has been followed to avoid
potential caveats in sample retrieval

Cold cases

The cold cases are the most difficult to obtain. In this case, by cold we mean executions where
the container image layers are present on the node, but the relevant container needs to be
created from scratch. Initially, we need to launch bursts of concurrent requests so that they do
not find warm or hot containers. Looping around the bursts can give the number of data points
one needs. However, when launching concurrent threads, it was observed that requests had time
to find hot containers. This was due to the fact that the overall number of containers for a given
function may be throttled based on the configuration of the platform. Thus, when the max+1
request arrives, it does not spin a new container, but it waits until a previous one has been
released. This can be identified if one checks the number of paused containers after each burst,
which should be n-1 to account for the pre-warm container, where n the size of the burst.
Furthermore, due to differences in request arrival and potential processing time in the first
loops (mixed warm and cold starts), the later requests in the burst found containers that had
finished processing the first arriving requests (Figures 39-40). In order to cope with that, a
synchronizing timer needs to be applied at the end of each loop, so that all threads kickstart at
the same time in the next loop (Figure 41). Another point of attention is the need to use a
constant timer of over 12 minutes since this is the time limit the platform maintains the paused
hot containers.

Finally, the k smallest response times from each burst need to be removed at the end, where k is
the number of prewarm containers used since this refers to the warm container usage.
Alternatively, the pre-warm containers can also be deactivated before the measurement.
However, this is not always possible, e.g. in an online platform, it means that we need to stop
OpenWhisk, change the settings and relaunch. Therefore, this option is not available for testing
production deployments that cannot be stopped.

In this case, the usable samples are {repetitions}*({max_containers}-prewarmcontainers).
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Figure 39: Mixed executions that can defect the measurement process and mitigation without the usage of
a synchronizing barrier at the end of each loop

Figure 40: Potential mixed executions that can defect the measurement process and mitigation through
the usage of a synchronizing barrier at the end of each loop

Figure 41: Example of synchronization solving, and problem inserted by maximum allowed containers

Warm cases

In the warm case, the number of requests per measurement loop needs to be the equal to the
number of pre-warm containers set for a given runtime in the platform. This is to ensure that no
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cold starts will infiltrate the measurements if requests in a batch are higher than the available
pre-warm containers. For safety, one can use a single user thread (assuming that the platform
has at least one instance of a pre-warm container for the specific runtime) in order to avoid
synchronization issues between minor thread delays from requests in the same burst (e.g., due
to random network delays) that may lead to finding hot containers from just previously
executed functions (as described in the cold case section). Alternatively, a synchronizing timer
can be used, as in the cold case scenario. Furthermore, between each measurement loop, the
client needs to wait for the interval in which used containers are in the pause mode (e.g. 10-12
minutes). This will ensure their elimination before the next request loop arrives, eliminating any
hot executions infiltrating the warm case.

Therefore, the only difference from the previous case is the different delay user defined variable
in the workload file (900000 milliseconds or 15 minutes) and a higher duration of experiment
execution to retrieve the required data points. Usable samples in this case are
{repetitions}*{prewarm_containers}.

Hot cases

The hot case is easier to measure, given that each execution can be fired immediately after the
previous one has finished. Therefore, 1 client thread is needed that loops across n times of
execution depending on the needed data points. Given that the container is continuously used,
almost all cases of execution will fall in the hot category, apart from the first that will be in the
warm state. The only point of attention in this case is not to send a new request before the
previous one has finished, which would lead to a new cold container being created. Thus, the
delay between calls should be set to a value that is expected to be higher than the function
execution time. Even this delay can be avoided given that Jmeter threads are blocking threads,
meaning that the n+1 request of the user thread is not launched until the response to the nth
request is obtained.

Usable samples in this case are {repetitions}*{prewarm_containers} -{prewarm_containers}. The
first {prewarm_containers} samples need to be removed since these relate to warm cases. For
better result validity, in order to avoid interference from multiple concurrent containers, it
would be advised to set the number of prewarm containers to 1, if one wants to measure the
baseline times without any overhead inclusion.

An indicative usage of the three loads is given in Section 3.3.2.

3.2.5.2. Serverless System Parameters for consideration

Another set of parameters that may affect the measurements can be configured in the
OpenWhisk environment. The most important of these options are described below. These
options are ones that can affect an experimentation process.

Global and local limits per action invocation

The OpenWhisk environment has several high-level limits applied to each function, indicated in
the config file options below.
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Code 4: Configuration file

config {

controller-instances = 1

limits-actions-sequence-maxLength = 50

limits-triggers-fires-perMinute = 60

limits-actions-invokes-perMinute = 60

limits-actions-invokes-concurrent = 30

}

These options regulate for example the maximum invocation of functions per minute (60) as
well as the maximum number of concurrent containers running (30). Thus, if an experiment
targets more than these limits it will not be able to obtain them unless a different setting is
applied.

A few other local limits (per function) exist, primarily the memory and timeout interval for an
action invocation. More information about the OpenWhisk limits can be found here3.

Number of containers limited by container pool memory

One significant aspect that regulates how many containers can be raised by OpenWhisk is the
memory available for the container pool. Even though the same parameter (max number of
containers) is regulated by the global concurrent action invocation limit, there is another cut-off
point that is based on the available memory assigned to the container pool. This is an option
again regulated at the application.conf file, as the option excerpt below demonstrates (Code 5).
Based on this, the max number of containers is defined by the memory size of the container
pool, divided by the memory needed by each container we need to raise (which in turn depends
on the function memory size required).

Code 5: Available memory

container-pool {

user-memory:8192 m

...

}

It needs to be stressed that a launched OpenWhisk instance can include a baseline conf file that
is overridden by an updated one in parts of the options. In the updated one, the keyword
“include” at the beginning of the extra application.conf file can be used to import default
parameters from the baseline version, whereas only the options to be overridden may be
included in the extra conf file and passed to the OpenWhisk startup via the -c option.

Number of prewarm containers

The number of prewarm containers launched by the OpenWhisk environment is configured per
type of runtime registered with the environment. There are two ways of configuring this
number, either statically or dynamically based on the observed frequency of requests. This
configuration takes place in the runtimes.json file of the OpenWhisk setup4. The configuration is
based on a JSON construct named stemCells, appended in each runtime description. A static
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configuration of 2 pre-warm containers appears in the following code example (Code 6),
assuming the maximum number of containers is not cut off by the container pool memory
mentioned in the previous paragraph.

Code 6: Configuration

"stemCells": [

{

"initialCount": 2,

"memory": "256 MB"

}

]

A dynamic configuration can be set through the following stemCells structure:

Code 7: Dynamic configuration

"stemCells": [

{

"initialCount": 2,

"memory": "256 MB",

"reactive": {

"minCount": 1,

"maxCount": 4,

"ttl": "2 minutes",

"threshold": 2,

"increment": 1

}

]

In this case, if some containers experience a cold start, then the number of pre-warm containers
is given by the formula:

# of prewarm containers to be created = # of cold starts/threshold * increment

limited by the min and max count parameters. The created containers will have a TTL defined by
the respective parameter. if the traffic reduces, then the number of containers will eventually
converge to the min count parameter.

This information is critical for example when one uses the cold/warm/hot workload files,
described in the beginning of this section, since as it was described, the accurate operation of
these depends on the setting of the number of pre-warm containers. Therefore, in such an
experimentation phase, one needs to ensure that the number of pre-warm containers follows a
static configuration, as well as their created number is not constrained by the other parameter
that may influence the container launching (container pool memory size).

3.2.6 Data Model

For the main functions presented above, the relevant inputs and outputs of them have already
been described. In this section, we describe the overall entities that exist:

D4.2 – Cloud Platform Services for a Global Space-Time Continuum Interplay
Scientific Report and Prototype Description V2

Page | 58



H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

Table 7: PEF component main entities data model

Entity Description Component or
service owner

Load Test
Data

A defined load test performed by the user. Includes
information on the timestamp the test was created, the flow
name from which the function originates, the branch from
which the function originates, the location where the
function was executed and the output of the load test
(already described in the Measurements Analysis section)

PEF

Trace Data The entity includes information on an acquired function
trace. As such it includes fields for the Activation Id (of the
traced function), the function input payload, the function
name (and the flow from which this function originated), the
OpenWhisk location of execution, the branch name that
owns the flow and a field for each of the resources in the
trace (cpu, memory, network in/out, filesystem read/write)

PEF

Resource One of the available resources for which information comes
in the trace data (cpu, memory, network in/out, filesystem
read/write)

PEF

Profile
Data

The resulting classification for a given function. It includes an
auto-increment id, the function, flow and branch names as
well as the classified category (one of low/medium/high) for
each resource (cpu, memory, network in/out, filesystem
read/write)

PEF

Resource
Cluster
Centroids

This includes the data from the run clustering processes.
Each entry includes an auto-increment id plus the finally
created centroids (low/medium/high) per resource (cpu,
memory, network in/out, filesystem read/write) for this run

PEF

Model A model created from the available results of a test series.

3.3. Demonstration or Experimentation outcomes

3.3.1 Batch Request Aggregator Performance Model

ANN model accuracy

In D3.1, an extensive experimentation process was performed in static configurations to detect
how the Request Aggregator pattern affects the system in cases of low and high traffic and how
it affects the response time based on the set batch size. The results from these runs were used to
train the ANN model predictor, described in the previous sections, for getting the expected
average response delay (output) for different frequencies (input 1) and different batch sizes
applied (input 2). ANNs were chosen since they represent black-box universal approximators
and can be applied based on an available dataset, without further knowledge of the internals of
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the system. In contrast, other approaches such as PID controllers require a more tailored
approach to determine the relevant metrics of the system as well as a controlled entity, and a
calibration step.

The ANN model structure was optimized based on a genetic algorithm to determine the main
model structural characteristics (number of layers, type of neurons per layer and number of
neurons for hidden layers)[15] , which is also the main algorithm implemented as a model
creator in PEF. The network type is based on back-propagation, and feed forward architecture
and the resulting model was selected from a pool of approximately 450 candidate networks that
portrayed an intermediate validation error of less than 20%, based on its performance on an
intermediate test set. The finally selected network consisted of 5 layers (3 hidden). The first four
were configured with the tansig transfer function while the output layer with the purelin
function of Octave.

After the selection of the best model, a further acceptance test was performed to simulate
runtime usage. From the available 30k experimental values, ~7k of them were reserved for this
purpose. These values were not utilized in whatever manner during the training or optimization
process of the model design. The Mean Absolute Percentage Error of 11.73% was achieved
(Figure 42). The surface plot of the model appears in Figure 43, in the model normalized range.

Figure 42: Model Error in final validation cases
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Figure 43: Surface Plot of Model Predictor in the normalized range (Input1: Frequency, Input2: Batch Size,
Output: Response Time)

Dynamic Adaptation based on the ANN model

To test the model’s response during runtime as well as the PEF’s ability to respond in a
service-oriented manner, and especially in bursts of load, an experiment was performed with
varying loads including sudden peaks (Figure 44). This was performed to also observe the effect
of the delay in getting the prediction response and how the system gets affected by it in actual
conditions, despite the good accuracy of the model in the static validation. To decouple this
delay from the conditions in the system, the pattern adaptation model was running on a
separate node to ensure a timely reaction to sudden peaks of load.

The model was queried at a regular interval (every 10 seconds) based on the current conditions
of execution (frequency). Given that the model takes approximately 10 seconds to respond, this
results in a decision update for the batch size every 20 seconds. Predictions were obtained for
different batch sizes (ranging from 1 to 70 with a step of 10). The one achieving the lowest
predicted response time was selected and used to configure the pattern. Given that there is a
direct relation between frequency and anticipated batch completion, one can also utilize this
information to configure the timeout interval.

The results are portrayed in Figure 45 from the client side (for each individual request sample)
and Figure 46, Figure 47 and Figure 48 from inside the system, by taking samples every 1
second for processed frequency, active container numbers and batch size (set and measured).
From the figures it can be seen that when the increase is gradual (e.g. from 0.2 messages/sec to
4) the system has the time to adapt. Although there is an initial increase in response times, this
is fixed by the increased batch size. A further increase from 4 to 8 messages per second (around
sample 2000 of Figure 45) does not influence the system, given that the batch size is already
high. In this period, we also observe a further decrease in response times, as would be
anticipated by the average times reported in D3.1 for the static batch size measurements.

When the load peak is more sudden (from 0.2 to 20 messages/sec), the delay in adaptation leads
to a very high response time (in essence reaching the 120000 milliseconds timeout) due to the
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high number of accumulated messages and according to containers. However, one major benefit
of the pattern in this case is the fact that the system does not stall, it only experiences a
temporary denial of service. This could be handled either by larger timeout times or by applying
in combination with this pattern the Circuit Breaker pattern [27] to refrain the client from
generating more requests temporarily.

Another interesting conclusion is that there are sudden peaks in container numbers in the
transition time from high to low frequency, not justified by the amount of traffic at that time
(tailing of container numbers in Figure 47 following the drop of the peak around sample 400.
This indicates that there are many lingering requests, already measured in the frequency, in
Node.js queues of the PEF implementation, that start to request resources. However, when the
frequency is detected as reduced, the system returns to the 1 batch size, making these lingering
requests raise one container each. This is an indication that a potentially improved predictor for
the ANN would be the number of active containers and not the request frequency. It is also an
indication that in other types of adapters (e.g. PID controllers), the past values element (i.e.
Integral factor) should be strengthened to achieve a graceful, gradual reduction in batch set
sizes.

Figure 44: Client side request generation frequency measured per sample
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Figure 45: Client side Response Times per sample

Figure 46: System side measured frequency per 1 second interval
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Figure 47: Active (running) containers in the system

Figure 48: Batch Size Setting by ANN model and according to system side application of the setting

FaaS Cost Models association with Request Aggregation Pattern

FaaS cost models charge customers based on performance metrics such as execution time,
memory or number of invocations [28]. This implies that there is a combined need as well as the
incentive to tackle the performance-cost tradeoff, especially for runtime management [29] [30].
The Request Aggregator pattern reduces the number of invocations, as well as the execution
time (given the lower need for environment initialization), and this is expected to aid in
minimizing cost aspects. Other works that can be combined include the investigation of
trade-offs after which a switch to serverless mode is beneficial for the customer [31]. Predicting
accurately costs [32] can also be used in combination with this approach. This can be helpful in
cases where one needs to regulate/minimize cost directly and not for example based on
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frequency, if performance is considered less important. In this case, a series of measurements
were performed with the use of the Request Aggregator to investigate what is the overall
execution time for a prediction request with multiple input lines, compared to running the
model for only one input row for estimation.

The performed requests include an interval of 15 seconds between them, to investigate the
baseline execution time when only one container is active in the system. Input size variations
included 1, 100 and 450 input rows for which predictions were needed, simulating a relevant
batch size applied by the RA pattern. Calls to the service were performed for a duration of 10
minutes per case. The results appear in the following table and are associated with the
estimated costs. The estimation is based on several assumptions. All calls are considered as
cold-start ones and also include the time to raise the container (which is not billed in actual FaaS
offerings). However, they are intended as a rough overview of potential benefits. As a baseline,
the cost model of AWS Lambda (US East-Ohio) [7] is used. The used memory was allowed to use
the overall memory available (10GB). Thus, the price of 0.0000001667 dollars per 1 msec of
runtime was used and multiplied by the runtime duration, while the cost per input row also
appears in Table 8. This depicts a significant difference, which is also evident when taking under
consideration the other billing factor (number of requests set at 0.2$ per 1 million of requests)
that is also affected by the reduced overall number of calls needed for one to obtain 1 million
predictions, if they apply the RA pattern.

Table 8: Cost Estimation of GB-second based on AWS Lambda pricing model if multiple rows are
aggregated following the Request Aggregator pattern

Input Rows
Average Execution

Delay (msec)
Estimated GB-Second
Cost Per Input Row

Cost of Requests for
1M predictions

1 10051.25 0.001675 0.2

100 10082.62 0.000016807 0.002

450 10228.29 0.000003789 0.000444

3.3.2 Cold vs Warm vs Hot Executions

The goal of this experiment is to highlight and measure performance differences between the
three stages of execution in typical FaaS environments, as well as to establish repeatable
methodologies for acquiring measurements and testing the defined typical workloads created in
the context of PHYSICS. The platform of execution was the OpenWhisk standalone version,
running in a VM with 4 cores and 8GB of RAM. The cold/warm/hot typical Jmeter workloads,
described earlier, were used against a target hello world node.js function, obtaining the results
of Figure 49 and Figure 50.
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Figure 49: Cold/Warm/Hot Jmeter workloads response time of “Hello World” node.js function execution
time

Figure 50: Cold/Warm/Hot Jmeter workloads standard deviation of “Hello World” node.js function
execution time

From this it can be seen that a ratio of the three modes is the following:

● Cold/Warm= 5.5x slower
● Cold/Hot=10x slower
● Warm/Hot= 1.8x slower

3.3.3 Node-RED versus Node.js runtimes for Hello world single function application

One of the execution modes as mentioned in D3.1 includes the ability to define a Node-RED flow
that will be wrapped and executed as a function in OpenWhisk, either in a native Node.js or a
Node-RED runtime (Node-RED flow to function pattern). The OpenWhisk specification indicates
that any docker image can be included as a function provided that it has a REST interface with
two endpoints (a POST /init and a POST /run). The /init method is used to initialize the
environment of the function (if needed) while the /run is used for the actual execution of the
function and for passing any input arguments. A relevant testing subflow (Figure 51) has been
created with a “Hello world” simple function that includes the two methods if one wants to
follow the Node-RED function execution mode. One question is how different in terms of
performance the execution of a Node-RED function is, compared to the execution based on the
typical, built-in nodeJS runtime. A similar hello world implementation was created and
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registered for the typical lightweight Node.js runtime of OpenWhisk. The OpenWhisk setup
included a single node with 8 cores and 16 GB of RAM, given that we were primarily interested
in the baseline times of one function execution (delay in terms of orchestration overheads will
be investigated in the next section for larger workflows).

Figure 51: Node-RED workflow of “Hello World” Node.js function (for Node-RED runtime)

Afterwards, 100 test runs were conducted on each target function, to measure the cold start
times (need to spawn a new container) and the hot ones (reuse of an existing container). The
results appear in Figure 52.

Figure 52: Node-RED execution times of “Hello World” Node.js function (with Node-RED runtime)

As expected, the cold start time for the Node-RED runtime is considerably higher (with an
average of 7.6 seconds compared to 2.5 seconds), given that it is based on a larger container
with more dependencies, as well as the fact that the Node-RED environment has a more
heavyweight start-up time during function execution. In the case of the PHYSICS platform, this is
expected to be alleviated also by the container scheduler used in WP5, that chooses nodes based
on the existence of respective container layers. In the hot execution case, the two execution
modes are very similar, with Node-RED having a slight advantage (227 against 252 milliseconds)
as well as a smaller deviation. Addressing the larger cold start times could also be performed by
utilizing the Function Warmer pattern [26] or by extending the number of prewarm containers
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mentioned in Section 3.2. It is necessary to stress that this primarily observes the performance
difference between the two modes. A developer might opt for the Node-RED case for other
reasons as well (e.g. easier development and function management). However, they need to be
aware of the performance trade-off that needs to be made for cold cases. With relation to the
usage of the Tabula Rasa context purge pattern defined in D3.1, this has been measured to have
an average of 265 milliseconds, thus adding an approximate extra 38 milliseconds of delay
compared to the opportunistic Node-RED runtime case.

3.3.4 Node-RED flow orchestration to OW function orchestration delays comparison

The aim of this experiment is to investigate the trade-off between two modes of function
sequences (Figure 53). The first mode is Function sequence of nativeOpenWhisk runtime
functions: this targets at workflows that are defined as function sequences directly in
OpenWhisk (e.g., in the Node.js runtime), utilizing registered (to OpenWhisk) Node.js functions
as their main building block. The second mode is Function sequence in Node-RED, executed as a
docker action in OpenWhisk. The main difference in this case is that all the function workflow is
created in Node-RED and deployed within a custom docker image (invoked as a function) that
contains the Node-RED environment. Given that there is a significant delay in the start-up of the
Node-RED environment (as measured in the previous section), the purpose is to investigate
what (and if there) is the benefit of one mode versus the other compared to the number and
duration of the functions that consist of the sequence. The motivation behind this approach is
the fact that it is expected that inter-function communication (ifc) times in the sequence might
differ between the two cases of execution, which might create a margin of exploitation of one
mode over the other. This is reasonable to assume for two reasons:

● In a native OW sequence, the invocation from one function to another needs to pass
through the respective OW mechanism and the new action invocation to be queued
waiting for execution. On the other hand, in the Node-RED Action Image, the invocation
is passed through the Node-RED runtime directly

● The Node-RED case will always be a hot execution (at least for the functions in the
sequence after the first one), given that all functions execute in the same container. On
the other hand, in the case of multiple and different function executions, the OW runtime
may be forced to cold starts for the different function invocations

Figure 53: Node.js OpenWhisk function flow execution (many containers) vs. Node-RED (same container)
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To implement the experiment, the following actions were performed:

● An artificial delay function has been created as a native Javascript function that can
accept as parameter the milliseconds of delay to apply. This function is registered as a
Node.js function type in OpenWhisk.

● A similar function flow is created for Node-RED (Figure 54). The flow is adapted in the
Node-RED OW Skeleton described in D3.1. The core flow handles a control loop where
delay and iteration numbers are dynamically passed on as input variables. The function
node in the middle subflow extracts parameters from the incoming message and passes
them through the message.delay and message.iterations fields. The follow-up node is a
Node-RED built-in delay node that overrides the internal delay of the node with the
assigned msg.delay we get from the call on the previous function node. Then there is a
loop to check whether the iterations are finished, in order to simulate multiple functions
in a sequence. If so then there is an http response, if not then the flow returns to the
delay node and then to the iteration check. The third row is a manual timestamp test
with a custom input to check if our main delay flow responds correctly and can be used
inside the Node-RED environment for testing.

● Sequences of varying numbers of functions (e.g., 1, 5, 10, 15, 20, 25), set up as
OpenWhisk function sequences for the Node.js delay function. The name of the sequence
is parametric (in terms of the sequence name) so that all types of sequences can be
invoked by a parametric Jmeter load client. Actions were exposed as web actions.

● A docker image with the Node-RED delay flow was created and registered as an
OpenWhisk Docker Action (again as a web action)

● Jmeter clients that invoke both actions (OpenWhisk sequence with delay input
parameter and Node-RED action with delay and delay loops parameters) and compare
the results. Loops to implement multiple parameter values are applied in the Jmeter files
to measure all the needed combinations.

Figure 54: Artificial Delay flow to mimic dynamic sequence numbers in Node-RED

Experiment Results

After the result gathering, we compared the execution times of the two modes of execution by
designing Result Graphs for each mode (Mode comparison image in Figure 55). We clearly
observed that for one warm function execution the execution time is approximately the same for
the two modes, which is the same conclusion derived in the standalone hello world functions of
the previous section. However, the more functions that are being included and executed (as a
sequence) the more the mean average tends to be lower for the Node-RED case. Given that the
inner delay of each function in the sequence is the same, the main source of differentiation is the
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inter-function communication delay (Figure 56). Consequently, the delay difference between the
two modes gets progressively higher for larger sequences. We conducted the experiment with 1,
5, 10, 15, 20 and 25-function sequences with 40 samples for each of the two modes respectively
on warm containers, for 1000 milliseconds of artificial delay per function. From the total times,
the ifc measure can be extracted (Figure 57). So, for example in the Node-RED mode case, on 15
Functions we get 15148 average execution time. From this value we extract the static delay of
each function (15*1000) and the remaining part is divided by the number of functions used in
the specific case (15). This indicates the average time spent between function calls in each mode.
The results appear in the IFC graph below. The fact that Node-RED ifc times per function appear
higher in lower function numbers and then start to get lower can be attributed to the fact that
any initialization times such as initial hot container reuse delays, are divided between the
number of functions. Thus, when function numbers are low, the effect of this initial delay
(happening once in the Node-RED mode but multiple times in the OW case) is higher and
diminishes as the number of functions grows, since it is averaged on them.

Figure 55: Difference in Orchestration Times between OW and Node-RED compared to the function
numbers

Figure 56: Interfunction Delay Measurement
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Figure 57: IFC mode comparison

From the previous graph, it is evident that we can use the average time for the OW case, given
that this is independent of the number of functions used. However, for the Node-RED case, as
mentioned above, the initialization time, happening once, significantly affects the average
produced. To have a more accurate approach, we need to estimate the ifc time from the acquired
measurements.

Estimation of the parameters for ifc

As a next step we defined an analytical function to detect the dependence of total flow delay
time on intermediate average delays and inter-function communication:

T = Tinit + n*delay + n*ifc

where:

● Tinit is any initial environment or other initialization time happening once
● delay is the preset delay of each function in the sequence,
● n is the number of functions (in sequence)
● ifc is the inter-function communication, the delay needed to go from one function to the

next. It is kept as n and not (n-1) that are the number of links in an n-sequence since we
consider that in this way the ifc can model any repetitive actions needed in each step,
including the first step. For example, these could be container hot init times for the OW
case that are needed in each function invocation. In the case of Node-RED it would
include only the time needed in Node-RED to pass from one function to the next

From the experiments we have the total delays T, the delay of each function is set and known as
well as the n used in each case. Given that we have measurements for different values of n we
can apply a simple regression to estimate the parameters Tinit and ifc. The Pearson correlation
coefficient for the dataset is 0.9105, indicating a strong linear relationship. Therefore, the
previous equation can be transformed to:
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T-n*delay=n*ifc+Tinit or y=a*x+b

where x=n and the coefficients are the ifc (a) and Tinit (b). The curve fit can be optimized via a
typical method such as the ols [33] function of GNU Octave, giving the values of 128.36 for Tinit
and 1.69 for the ifc (in the millisecond range) for the Node-RED case. When comparing the
predicted outputs to the measured ones, the MAPE of the comparison gives a 0.07% value,
indicating a good match.

Similarly, for the OW mode, we have a reverse effect, the Tinit is set at 2.11 and the ifc at 118.84.
The latter was expected since the individual values are very similar and close to the average
value of the ifc graph and indicates the fact that we need further initialization in each step.

The above times can be off-set by the estimated difference in the cold case, which can be
subtracted from the measurements of the previous section, i.e., for the Node-RED case the
difference between a cold and a hot start is 7.6-0.227= 7.373 seconds, and for the OW case
2.5-0.252=2.248 seconds. These times can be added as penalties in the final function (Table 9).

Table 9: Function sequence hot/cold execution times with the different runtime modes

Mode Hot Function Sequence Execution (msec) Cold Penalty (msec)

OW native case T = 2.11 + n*delay + n*118.84 +2248

NR function case T=128.36+n*delay+n*1.69 +7373

From these functions we can easily create parameterized plots to observe how the estimated
total execution differs for different function numbers and delays (Figure 58), including or not
the cold penalty. In the hot case the Node-RED mode is better in all cases, while in the cold case
it starts being better than the OW native after approximately 40 functions. Indicatively, in some
cases (e.g., OW 100 msec delay) the orchestration delay per function is higher than the actual
computation needed inside the function (100 msec), leading to overheads of over 50%.

Figure 58: Hot Function sequence execution
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Figure 59: Function estimated total execution for different function numbers and delays

The orchestration overheads are extracted and presented in Figure 60, by extracting the n*delay
factor from the function. In this case the overhead does not depend on the inner delay of each
function, so we can better observe the pure total overhead in terms of time for the orchestration,
as it evolves for a growing number of functions in the sequence.  The borderline value of 40
functions in the cold start case is considerably high given the current landscape of FaaS
applications, however this low function usage per application might also be limited by the
capabilities of the available design and development environments of current FaaS platforms. In
any case, the developers should make an informed decision on which mode to use, also
considering the trade-offs of easier design and adaptation in Node-RED at the expense of cold
start performance, the ability to create more complex workflows (as analyzed in D3.1) and
based also on whether cold starts are expected to be frequently encountered. This can be also
coupled or affect relevant decisions on the platform configuration layer, indicating the need for a
higher number of pre-warm containers used for the Node-RED runtime based on the anticipated
traffic.

Figure 60: Orchestration Overheads
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In the future, the artificial delay included in the delay flow can be replaced by the benchmark
average delay values that are acquired through the FunctionBench execution on candidate types
of resources. Furthermore, potential validation for cases that have not been included in the
estimation process will be investigated. However it needs to be stressed that this approach is not
used for predicting the execution time, since the latter may be affected by other parameters (e.g.
multitenant executions on the same node, number of prewarm containers existing and
concurrent invocations, queuing times in OW due to high traffic, etc.) but it can be used to
investigate the limits between modes of orchestration to use (based on native OW sequences or
Node-RED orchestrated ones), based on the number of functions in a workflow and an estimated
average delay of them. A more detailed model could be pursued (example in Figure 61), created
in a similar fashion as the RA model.

Figure 61: Proposal ANN model in a similar fashion as the RA model

3.3.5 Execution Model transformation for model querying results

As mentioned in Section 3.2, one of the differences of the current version of PEF is the
transformation to a serverless model querying process. To measure the impact of this, a series of
executions was performed for 150 runs at a frequency of 1 request per second to match the
measurements of the original service implementation [16]. The results appear in Figure 62. It is
indicative that due to the reuse of the already spawned containers, a typical feature of
OpenWhisk, a 20x benefit in terms of execution time is gained for the response time of the FaaS
service, when compared to the original service version that spawned a new container for each
request.
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Figure 62: PEF transformation to serverless model measurement impact

3.3.6. Benchmarking of ehealth across different clusters

In this section, we present the outcomes of an extensive experimentation process conducted
with three different FaaS systems, aiming to benchmark the performance of the eHealth
application across various clusters with different configurations. A FaaS system (in this case
OpenWhisk) typically relies on the queue based load leveling pattern with competing worker
consumers [34], as depicted in Figure 63.

Figure 63: Overview of a FaaS System Architecture

Incoming requests are queued so that they do not create congestion on the back-end, while
worker nodes consume them (at their own pace) on a First Come First Serve (FCFS) basis.
Through this architecture, back-ends are relieved from bursty traffic and automatic load
balancing is achieved, while scalability can be regulated by adding or removing worker instances
based on auto scaling approaches (e.g. like the ones mentioned in D3.2). Wait time is the time
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spent in the queue, initialization time is the time it takes to raise a container and execution time
is the actual processing duration inside the function container.

This generic FaaS architecture introduces a system uniformity since all registered functions
follow the same execution model. Thus, generic modeling mechanisms, such as queuing models
[35] can be used for predicting a system's performance in relation to factors, such as response
time, wait time in the system, concurrent clients in the system, etc., while needing generic inputs
that can be easily obtained (e.g. incoming request rate, function duration, etc.). Thus, they
alleviate the burden of gathering sufficiently large and diverse datasets needed for training black
box methods like ANNs, while they can easily produce simulated results to help drive decision
making (e.g. on the size of the used cluster).

The primary goal of this analysis is to gain insights from the data initially acquired during the
extensive experimentation process documented in [12], comparing performance across the
three different FaaS systems. The aim of the process is to calculate example needed parameters
for modeling approaches, validate potential assumptions required by different modeling
methodologies as well as highlight some interesting phenomena that occur during the specific
system operation. Additionally, understanding the performance of each location within a
multi-cloud-edge setup can contribute to higher-level scheduling mechanisms, enabling the
optimal distribution of incoming requests based on specific constraints. Effective resource
allocation and scheduling play vital roles in ensuring overall performance and cost-effectiveness
in such environments [36], [37], [38], [39], especially when balancing local resource contention
in small clusters and latency-increasing execution in larger ones.

3.3.6.1. Experimental Setup and Data Presentation

Experiment Setup Description

In the experimental setup, data is collected from three diverse cloud/edge locations (Harokopio
University, AWS Sweden and Azure Netherlands), each with unique characteristics. In each case,
one VM node was used (with different characteristics in terms of CPU and memory) inside
which OpenWhisk was deployed. The function invocation rates employed were 12, 30, and 60
messages per minute, while the test function memory was set to 256 MB, 512 MB, and 1024 MB.
Through this feature, we are also able to regulate the maximum number of containers that can
be launched to serve incoming function requests. This number is the ratio between the node
memory available to the OpenWhisk process and the function memory used in each run. Hence,
it needs to be viewed as the maximum number of available worker servers (or the c parameter
in e.g. an M/M/c queuing model). The test function itself was the ehealth function presented in
[12] and consists of a tensorflow-based AI model for inferring a patient's state.

Load generation is performed through the PHYSICS Load Generator, including the need to get
the result through asynchronous calls, meaning that the client cannot block waiting for the
request, but needs to poll afterward to get the result. This is the typical way through which
OpenWhisk serves the results of an executed function. Furthermore, the client can log different
timestamps in the process, like initial client sample time, and total response time, as well as
process FaaS results in order to export provided statistics, such as wait time in the FaaS system,
initialization time for the function container and pure function execution time (or service time).

The relevant information on the experimental setup appears in Table 10.
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Table 10: eHealth Experiment Configurations

Testbed Test Function Memory (MB)

Testbed
Set Rate

(msg/min)

Node
Memory

(GB)
Cores 256 512 1024

MaxWorker Containers

HUA 12, 30, 60 8 4 32 16 8

AWS 12, 30, 60 8 4 32 16 8

AZURE 12, 30, 60 1.5 8 6 3 1

In order to eliminate any interference from initial cold starts on the results, a pre-warming run
was conducted for each case. This step was necessary due to the inclusion of container
initialization time in the function execution duration in OpenWhisk, despite being reported
separately. Once the warm containers were available following the pre-warm run, data collection
took place during the main run for a duration of 600 seconds for each case. A total of 4890
samples were collected throughout the process and published in[12].

The performance degradation from the concurrent containers in the node can have extreme
effects. This could be reduced from one point of view (CPU sharing time) if strict scheduling
strategies (like real time scheduling) and CPU quotas are used. However, even in this case,
studies [21] have shown that still degradation can be extremely significant. For reducing the
back-end stress and user costs, dynamic batching approaches ( [40], [16]) have also proven to be
very effective.

Raw Data Collection Presentation

The outcomes of the experimental analysis are presented, with a primary focus on the aspect of
time from the start of each experiment. Through a series of various scenarios, the influence of
different variables including function memory, set rates and cluster type, on the overall system
performance. By examining these graphs, and visualizations, valuable insights into the behavior
of the eHealth application are gained across diverse clusters and configurations while trends,
patterns, and correlations can be identified, helping to understand how different variables affect
system performance.

One of the key aspects of the analysis is observing how the system performance evolves over
time during the experiment. This temporal perspective allows us to identify any potential
trends, patterns or correlations that emerge as the experiment progresses.

HUA Testbed Results

By examining the first series on the HUA testbed (Figure 64), it is evident that in the low rate
case (i.e. 12 msg/min) the system is very stable, having a small wait time that is mainly

D4.2 – Cloud Platform Services for a Global Space-Time Continuum Interplay
Scientific Report and Prototype Description V2

Page | 77



H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

functional (e.g. waiting for the incoming request to be forwarded across the various
sub-components of the FaaS architecture).

(a) setRate12_memory256 (b) setRate12_memory512 (c ) setRate12_memory1024

(a) setRate30_memory256 (b) setRate30_memory512 (c ) setRate30_memory1024

(a) setRate60_memory256 (b) setRate60_memory512 (c ) setRate60_memory1024

Figure 64: Performance plot of ehealthHUA

The amount of memory does not affect the function performance in this case, since in all 3
memory variations the execution time is very similar (6.5 seconds), indicating that the minimum
memory amount applied is enough. If we apply Little’s law in this case, with an incoming rate of
1 request per 5 seconds and a response time 6.5 seconds, we get an average of 1.3 customers in
the system. This means that on average 2 max containers are needed for serving the functions in
these scenarios and they run concurrently for about 30 percent of their time. A similar case
applies for the medium rate, although in this case we have 1 request per 2 seconds and a slightly
increased execution time of 7 seconds leading to about 3.5 customers in the system and, thus, 4
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max concurrent containers. However, in the case of the high rate (subfigures g-i), the system
becomes unstable as is evident by the constantly rising wait time, although there are in principle
32,16 and 8 workers (max container slots) and this should be enough to accommodate the
increased traffic (e.g. based on typical M/M/C formulas).

However there is a significant difference in the case of FaaS compared to the application of
queuing models in other domains (e.g. a supermarket or a calling center model).

As seen in Figure 63, a FaaS worker node internally divides its computational capacity into
smaller slots (or container slots). Thus, a number of function containers can be squeezed into
the same worker node depending on memory availability. This means that the overall resources
of the node are now shared by the concurrent processes which leads to significant degradation
in the function execution performance, due to direct (cpu time) or indirect (cache
contamination) resource sharing.

In most cases queuing model approaches assume that the service rate of the system is not
dependent on the system state (in this case the number of concurrently served
customers/containers in the system) but on a distribution that relates primarily to differences
in the function execution itself. In a supermarket analogy, one customer may require more time
to be served compared to another (because they have a larger cart) but the time it takes to be
served does not depend on the number of tellers in the supermarket. In reality, what happens is
that the serving time (function execution duration) will also depend on the amount of tellers in
the system (because they waste time chatting to each other for example).

To quantify this increase, one can observe Figure 64(g-i), in which the system is operating using
the max available containers. In the case of Fig. 63(g) the function execution duration increased
from 6.5 seconds to ~ 70 seconds. In the case of Figure 64(h), we have 16 max containers (and a
service time of ~35 seconds) while, in Figure 64(i), we have 8 max containers and a service
time of ~12 seconds. So it seems to be following a rather linear reduction based on the
percentage of cpu core time assigned to each container, once the container numbers exceed the
amount of available cores (4 in the case of the HUA testbed). This is reasonable since after
passing the ratio of 1 container per core the core time is split between the competing containers.

This leads us to a chicken and egg problem when trying to apply queuing models in such
environments. How can we estimate how many customers in the system exist at any given time,
given that this depends on the service rate, and on the other hand, how can we estimate the
service rate when it depends on the customers in the system. An iterative approach could be
potentially followed, based on split time windows in order also to adapt to incoming traffic
variations, in which either the execution duration or the customers in the system are monitored
and from this parameter we can estimate the remaining ones.

AWS Testbed Results

For the AWS case (Figures 65(a)-(f)), we can observe similar behavior, with two exceptions.
Specifically, the 256 MB function memory consistently leads to failures in the AWS testbed due
to function memory being too low. The reason, compared to the HUA testbed, is that in this case
we are using Kubernetes container management system, which kills the container even if a slight
memory violation occurs. On the HUA testbed, we use the Docker Engine, which is not that strict.
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(a) setRate12_mem512 (b) setRate30_mem512 (c) setRate60_mem512

(a) setRate12_mem512 (b) setRate30_mem512 (c) setRate60_mem512

Figure 65: Performance plots of ehealthAWS

Probability of Failures Due to Image Pulling Bottlenecks

During the benchmarking process, anomalies were observed in AWS high request rate scenarios
in Figures 65(f) -(g). While the system appears to be stable (in the sense that it has an increased
but manageable service time), there are a number of spikes in waiting time, as well as an
increased number of failures in the requests. In order to further investigate this phenomenon,
we broke down the responses into successful and unsuccessful ones, appearing in Fig.66.

Figure 66: Behavior of the ehealthAWS with setRate=60 and memory=512
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After examination, it was determined that these failures were due to numerous concurrent
requests for pulling and launching the function container image and can be attributed to the
image registry and the respective storage system. A relevant ErrImagePull event was generated
due to this spike in image pulling, which was caused by the spike in cold starts. Cold starts are
treated in literature significantly, however what this analysis shows is that they also need to be
linked not only with extended initialization times but also with higher probabilities of failure.
Thus, it should be added as a stage in a kind of Markov chain analysis.

Azure Testbed Results

The benchmarking results from the Azure testbet are presented in Figure 67. In the low request
rate case, the system demonstrates stability and performs slightly better compared to the AWS
testbed, given that the VM is based on a slightly more advanced cpu. Several comparisons can be
made between the two environments. Comparing between the rate 30-512 MB cases, it can be
noted that the AWS execution time is raised to 3.5 seconds. On the other hand, the Azure case is
more stable around 2.5 seconds (as the baseline value in the low rate scenario). In the 30-1024
MB case, AWS still maintains the 3.5 seconds execution and Azure the 2.5 one, however since
Azure has the restriction of only 1 worker, requests are queued given that they arrive at a rate of
1 every 2 seconds. The key takeaway from these testbed results is that, if we want to maintain a
very stable execution time, then we need to do it at the expense of higher waiting time.

Figure 67: Performance plots of ehealthAZURE

Comparing the performance of eHealth applications in the Azure testbed with the previous AWS
and HUA testbeds reveals distinct characteristics in terms of execution time, waiting time, and
queuing behavior. Each testbed demonstrates unique strengths and limitations based on its
underlying infrastructure and resource allocation. Understanding these variations can lead to
decisions about resource provisioning and allocation strategies based on the provider's goals.
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Cut-off points and Load Generation Analysis

From the AWS and Azure cases, some peculiarities were observed in the exported graphs. For
example, in the case of Azure (Fig. 67 (c)-(e)-(f)), the queue seems to be constantly rising, until a
point in which it becomes stable. Given that the arrival rate is higher than the departure rate
from all servers, this queuing time should be constantly rising. Initially it was considered that it
might be a problem with the load generator. FaaS platforms typically do not allow blocking calls
for a delay larger than a specific limit, thus async invocations should be performed and the

result acquired through a polling process. Thus, a high number of actively monitored functions
could put a large strain on the load generator, not enabling it to meet the desired rate.
Furthermore, the load generator is built in such a way that it logs only the requests from which a
result was obtained from the FaaS platform.

In order to evaluate the performance of the load generator, each request timestamp was logged
on the client side and compared to the target rate. No deviation was found on that side,
following the desired request rate. Then, we plotted the received requests in the three scenarios
that appear in Figures 68-70.

The samples are sorted based on the timestamp of the initial request (x-axis) and the time
difference between sample n and (n-1) (y-axis). Hence, a consistent request/response rate
should be observed, similar to the cases of Figure 68, thus a straight line indicating the set rate
in requests per minute.

Figure 68: Inter-arrival time (seconds) between processed request samples in ehealthHUA

The aforementioned case in the HUA testbed appears to be working as expected. The fact that
we have fewer samples in the HUA case in the 60 rate scenario can be explained due to the high
execution time in this case. The load generator waits for the 600 seconds of each experiment
duration and then proceeds to calculate the samples that arrived up to then. Thus, samples that
arrive after that mark are neglected, hence the low sample count collection in the high rate/high
delay case.

However, in the cases of Amazon (Figure 69) and especially Azure (Figure 70), the samples in
the high rate case (and in some cases in the medium rate towards the end) do not follow the
specified rate. Furthermore, this difference appears to be very specific, i.e. instead of having
samples every 1 second we get a specific sequence like 1,4,1,3,1, etc.
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Figure 69: Inter-arrival time (seconds) between processed request samples in ehealthAWS

This was due to the fact that in FaaS platforms there are two cut-off points that can be set. One
cut-off point is at the overall level, indicating that the platform should reject invocations higher
than e.g. 60 per minute. Another cut-off point is the fact that one can determine the maximum
number of concurrent, active invocations. It is due to this limit that this queue leveling should
be attributed. Once this limit is reached, the platform rejects the next request until one of the
previous ones has been finished and that is why the interarrival times of processed requests are
always at a multiple of 1. In the case of HUA this limit was set much higher (400 invocations per
minute) than the AWS and Azure cases in which the specific cut-off point was set to 60
invocations per minute, hence the difference in the processed request sample plots.

Figure 70: Inter-arrival time (seconds) between processed request samples in ehealthAzure

These details were gathered and calculated in Tables 11-13 for the three cases respectively.
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Table 11: Effective Rate and Request Acceptance Probability for test name = ehealthHUA

Table 12: Effective Rate and Request Acceptance Probability for test name = ehealthAWS

Target Rate (request/sec) Memory (MB) Actual Samples
Expected
Samples

Effective rate
Probability of
accepted requests

0.2 (12 request/min) 512 114 114 0.199 0.999

0.2 (12 request/min) 1024 114 114 0.199 1

0.5 (30 request/min) 512 288 288 0.499 1

0.5 (30 request/min) 1024 288 288 0.499 1

1 (60 request/min) 512 358 558 0.641 0.641

1 (60 request/min) 1024 183 539 0.339 0.339

Table 13: Effective Rate and Request Acceptance Probability for test name =ehealthAZURE

Target Rate (request/sec)
Memory (MB) Actual Samples

Expected
Samples

Effective rate
Probability of
accepted requests

0.2 (12 request/min) 512 114 114 0.199 1

0.2 (12 request/min) 1024 114 114 0.199 1

0.5 (30 request/min) 512 288 288 0.499 1

0.5 (30 request/min) 1024 252 288 0.499 0.976

1 (60 request/min) 512 497 558 0.8902 0.8902

1 (60 request/min) 1024 253 516 0.4901 0.4901
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Target Rate (request/sec) Memory (MB) Actual Samples
Expected
Samples

Effective rate
Probability of
accepted requests

0.2 (12 request/min) 256 114 114 0.199 1

0.2 (12 request/min) 512 114 114 0.199 1

0.2 (12 request/min) 1024 114 114 0.199 1

0.5 (30 request/min) 256 288 288 0.499 1

0.5 (30 request/min) 512 288 288 0.499 1

0.5 (30 request/min) 1024 288 288 0.499 1

1 (60 request/min) 256 232 232 0.999 1

1 (60 request/min) 512 260 260 0.999 1

1 (60 request/min) 1024 300 301 0.995 0.995
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What is most interesting in this case is to calculate from the total experiment duration which
was the acquired samples compared to the formally foreseen ones. This can help us determine
the effective rate of requests, i.e. the actual part of the arrival rate that indeed enters the system.
Furthermore, the probability of a request for a given scenario to enter the system is important.
For example, in cases where we need to foresee such a state (such as in Markov chains), as well
as the probability of transitioning to that state.

The difference for higher rejection in the case of AWS compared to Azure may be attributed to
the fact that AWS due to the concurrency overheads and the higher number of allowed
containers has a higher execution time, thus the rate with which requests leave the system is
lower. This leads to more requests being rejected due to the waiting queue being full.

Cost Model Consideration for Trade-off between Waiting and Execution Time

Waiting and Execution Time Trade-offs

The distribution of function execution time data for each testbed, as presented in Figures 71-73,
provides valuable insights into the performance characteristics and potential container
overheads or resource sharing penalties. This is influenced by various factors, including the
management and execution of containers, as well as the system configuration and design
choices.

This analysis allows us to observe the stability of the executions, as well as use them as potential
future inputs into identifying the distribution types to be used in modeling approaches. It can
also give insights into the split of the total response time between waiting and execution, based
on the cluster setup.

Figure 71: Distribution of Execution Time for Memory 256
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(a) ehealthHUA (b) ehealthAWS (c) ehealthAZURE

Figure 72: Distribution of Execution for Memory 512 across Clusters

(a) ehealthHUA (b) ehealthAWS (c)
ehealthAZURE

Figure 73: Distribution of Execution for Memory 1024 across Clusters

As an example, if we investigate the graphs of the rate 60-memory 512 case in the AWS testbed
(Figure 72(b)), we can observe that it portrays a rather increased execution time, as well as
deviation, given that the distribution spans across a large interval (2500-20000 milliseconds).
This is reasonable since in this case we can expect that a significantly high number of containers
is concurrently active. On the other hand, the Azure rate 60-memory 512 case (max 3
concurrent containers) (Figure 64(c)) is very much concentrated around a small interval
(2500-2900 milliseconds). On the waiting time aspect, things are quite the opposite, with AWS
portraying the majority of delays up to 20000 milliseconds while Azure over 20000
milliseconds. This is reasonable since with fewer container slots, requests need to be queued to
find one available.

Figure 74: Distribution of Waiting Time for Memory 256
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(a) ehealthHUA (b) ehealthAWS (c ) ehealthAZURE

Figure 75: Distribution of Waiting Time for Memory 512

a) ehealthHUA (b) ehealthAWS (c ) ehealthAZURE

Figure 76: Distribution of Waiting Time for Memory 1024

Cost Model Consideration for Waiting Time vs Execution Time

The cost model for FaaS is typically determined based on the execution time of a given function
and the amount of memory it allocates for its container [7]. However, in the context of
overloaded clusters, this model may be violated. Under increased load, customers may end up
paying more for a degraded service quality due to the concurrency overheads. To prevent such
violations, it is necessary to configure the system in a way that prioritizes maintaining a stable
execution time, even at the expense of higher waiting time, as seen in the previous section. This
ensures that customers are not penalized both with higher costs and a suboptimal user
experience.

In order to compare the scenarios and to check how different configurations and loads affect the
experienced QoS, Table 14 was created. In this, we consider as baseline the HUA low rate
scenario. Then, we calculate the percent differences ((T-Tbaseline)/Tbaseline) of each according
to the time of the other scenarios. Hence, several insights can be extracted that can aid in two
directions. On one hand, to compare the different available clusters in case of routing requests
between them. On the other hand, they can be used to compare configurations and baseline
abilities of each cluster.
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Table 14: Comparison of Testbed Data for Various Test Configurations with baseline HUA32, AWS16,
AZURE4

Testbed Set Rate (msg/min)

Testbed Max
Worker

12 30 60

Containers
Execution

Time
Waiting

Time
Total
Time

Execution
Time

Waiting
Time

Total
Time

Execution
Time

Waiting
Time

Total
Time

HUA

32 0.00% 0.00% 0.00% 8.87% 14.77% 9.03% 1008.89% 69946.56% 2868.85%

16 -0.50% 8.63% -0.26% 7.87% 25.16% 8.34% 394.67% 78205.41% 2494.02%

8 -2.35% 8.12% -2.07% 8.78% 32.83% 9.43% 103.48% 73593.77% 2086.26%

AWS
16 -56.45% -74.02% -56.93% -45.45% -92.54% -46.72% 122.24% 10746.06% 408.88%

8 -55.38% -73.08% -55.86% -44.47% -78.12% -45.37% -0.25% 6486.98% 174.77%

AZURE
4 -61.30% -94.44% -62.20% -59.50% -96.01% -60.49% -57.79% 13275.80% 301.95%

2 -60.07% -95.31% -61.02% -59.94% 19964.47% 480.32% -59.93% 31940.89% 803.46%

For example, the main concurrency problems start from a ratio of containers/cores > 1.
However, in the case of the AWS 60 rate for 8 max containers (double the number of the
available cores on the node), although we get almost double the execution time compared to the
AWS low rate case, the achieved execution time is almost identical to the baseline HUA scenario
that is used as the reference. This gives us an overall good trade-off between execution and wait
time, indicated by the fact that this setup has the lowest degradation in the total response time
(174%) of the high rate case.

On the other hand, if we want to keep a very consistent execution time, then configurations, such
as the Azure testbed, can be used. In these setups, the ratio of 1 container per core is not
violated, thus indicating a stable improvement of around 60% compared to the baseline HUA
execution. However, the user should also be willing to trade this stability with a higher wait and
total time.

Dynamic Resource Allocation and Auto-Scaling Strategies for Performance Optimization
in FaaS Platforms

Auto-scaling techniques have been widely studied to manage dynamic container allocation in
Kubernetes. Threshold-based auto-scaling techniques have been used to adjust container
numbers based on thresholds of CPU or Memory usage rates [41]. Feedback control methods,
such as linear-performance-model-based fixed gain [42] [43], adaptive [44], or multi-model
switching feedback control methods [45], have been widely used in application resource
auto-scaling [46]. Such methods should be applied in order to regulate the maximum container
slots dynamically so that the function execution time (or its distribution) is relatively similar
over time, given the availability of relevant monitoring data [12].

However, in the case of FaaS platforms, and given the availability of monitoring information
across system stages, e.g. wait time, initialization time, execution time, etc., more fine grained
elasticity may be applied. For example, if monitoring indicates a rise in execution time, this
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might mean reducing the memory setting in order to reduce the number of concurrent
containers, so that more requests are queued rather than executed directly to avoid concurrency
overheads. If, on the other hand, we have such a configuration and we observe high waiting
times, it is an indication that further compute nodes should be added to the Kubernetes cluster
in a horizontal scaling manner or the used nodes can be increased mainly from a number of
available processors point of view in a vertical scaling manner (an according strategy is defined
in D3.2 regarding the autoscalers approach).

Transient Phenomena Stabilization

In many cases, knowing the time it takes for the system to stabilize can be beneficial. For
example, in some modeling cases such as PID (Proportional– Integral– Derivative)
controller-based regulation of resources [47], a temporarily increased derivative of the
execution times may lead to corrective actions such as cluster resizing. In some cases however,
we may first need to see the steady state before actually deciding on the corrective action since
the steady state may still be within the set goals of the system. In that case we could avoid
oscillation of the system metrics caused by premature corrective actions. Thus such information
that can be extracted for example from Figure 64 (g) (the time it takes to reach a more steady
condition in the execution time) can aid in adding such safeguards by adding a relevant lag in the
autoscaling mechanisms.

Average Times Investigation

Average Total User Side Delay Investigation

The total user side delay (Figure 77) is measured as the response times of the function
invocations from the client generator. As such it includes all intermediate times. From that it can
be observed that for the middle memory scenario, the 3 available container slots (1.5 GB
Container Memory/512MB function memory=3 slots) in the Azure testbed are sufficient in
order to keep wait time relatively short, even in the high rate case. Thus the benefit of the other
factors (reduced latency and execution time) prevails. In the high function memory scenario, the
slots are half due to the doubling of the function memory, and now the wait time is considerable
in the medium and high rate scenarios. Thus in this case the execution on AWS is better.

Figure 77: Average Total User Side Response Time
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AverageWaiting time investigation

The waiting time is reported by OpenWhisk and retrieved by the Load Generator. The average
for each scenario is plotted in Figure 78, which shows the effect of the parameter of the
Container Pool Memory can be observed. Although the Azure VM is larger (32 GB RAM and 8
cores), using a low value (2 GB) for this parameter limits the available container slots. As a
result, queuing times are higher at the high rate (60msg/min) compared to the AWS case, even
though the latter is smaller (4 cores and 16GB of RAM). The AWS testbed can handle more
concurrent requests by using 8 GB of Container Pool Memory. The Azure cluster starts having
wait delays from the medium rate.

Figure 78: Average Waiting Time for Function Invocation

Note that the number of setup parameters that can affect performance is significant and can
have a large effect on the cluster. In this case, when combined with the concurrent container
analysis, interesting trade-offs can be explored. Higher numbers of available container slots
reduce wait time but increase execution duration due to concurrency.

This is reminiscent of the context switching problem in typical web servers where thread limits
need to be set. For cluster sizing, more nodes with less memory per node could help reduce wait
time while not skyrocketing interference effects. From an energy perspective, this would help
the specific execution to consume less energy if the overall response time is the same, but in one
case it consists more of waiting time than execution.

3.3.7. Split Join Pattern Performance Experimentation

3.3.7.1 Scope of Split-Join Performance Experimentation

The current study aims to explore the various performance trade-offs when using the Split-Join
pattern. While splitting a computational job into smaller parts is mostly beneficial, this also
depends on the size of that job as well as the abilities of the available resources. Too much
splitting may result in overheads (during startup, execution, etc.) that will negate the benefits of
parallelization. Thus a relevant balance needs to be applied, that will determine the amount of
parallelism that can be used. Through acquiring a relevant dataset, an informed decision can be
made on what should be the split size or in the future it can be used to train relevant predictive
models.
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3.3.7.2. Input Parameters

The experiment under investigation involves a variety of inputs due to its singularity and
specificity. Initially, the primary input factor, the target function, is an AI model inference one
(the same that was presented in Section 3.2.3 and is the backbone of the PEF modeling
mechanism). The study aims to examine the execution times of this when a Split and Join is
intervened in order to parallelize the number of predictions needed (one row equals one
prediction but the function may get an array of inputs upon which an equal number of
predictions need to be made). Thus different function inputs are tried out, together with
different split sizes, based on which the function input will be split. So for example, if the
incoming request needs 100 predictions, and the split size is set to 10, this will result in 100/10
parallel function calls being made. One specific aspect of configuration is also how many
maximum containers are allowed by the specific OpenWhisk setup. As mentioned in Section
3.2.5, the container pool memory option dictates that maximum amount, which when reached,
will cause any subsequent requests to be queued and thus accumulate wait time in the system.
The overall ranges for the experimentation appear in Table 15, resulting in approximately 600
different setups. Each setup is repeated 11 times in order to get an average for each case. The
first execution is always deleted in order to remove any cold start phenomena.

Table 15: Input Ranges for the Split-Join Experiment

Parameter Range Step

Input Size 100-10100 500

Split Size 20-100 20

#Max Containers 2-32 6

3.3.7.2. Output parameters

For the outputs we monitored a wide variety of outputs, including timestamps from before and
after the Split-Join operations, Start time and End time for each function execution, initialization
and wait Time for each fragment to acquire a container. Aside from time related aspects, we
additionally monitored the repetition number for each case (ID) and the Status of each
activation as well as the flag associated with that.

3.3.7.3. Data Acquisition Process Automation

Given the abundance of setups that need to be measured, an automation flow was created in
Node-RED (Figure 79). The flow starts by preparing the function input and the split size dictated
by this iteration, feeding it to the Split Join node. The latter breaks it down according to HTTP
requests towards the target OpenWhisk function. The input arrays are divided based on their
predetermined Split Size, and then they are reconciled (once all individual functions have
finished) to provide the output of this custom node. The final part of the flow (post-custom
Split-Join node) is dedicated to data acquisition, where metrics are stored in a CSV-formatted
file. One critical consideration from the asynchronous nature of Node-RED is that we need to
check the progress of each iteration, without proceeding to the next before the previous is
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complete. For this reason a mutex-like operation is implemented in order to ensure this isolation
between iterations.

Figure 79: Split Join Experiment Automation Flow

3.3.7.4. Experimental Results

In our study, we utilized the dataset that was extracted to conduct a graph analysis of the
experiment, with a specific focus on Performance and Cost for the main cases (low, medium and
max numbers of containers). To establish a Cost-Performance model, we considered the crucial
factors of Cost calculation, Response Time, and Input Size, particularly for varying Split Sizes.
The Cost equation used in our analysis is derived from the AWS Lambda Pricing model,
specifically for the East Ohio Pricing region and is defined as follows:

Cost = 0.0000000021*2*(average duration in milliseconds)*(container number) +
((0.20 $ per million requests) * container number)

where Container Number = Input Size / Split Size

The results appear in the following figures, for 2, 8 and 32 containers from a response time and
cost perspective.
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Figure 80: Average Response Time and Cost compared to Input Size for 2 Max Containers
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Figure 81: Average Response Time and Cost compared to Input Size for 8 Max Containers
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Figure 82: Average Response Time and Cost compared to Input Size for 32 Max Containers

3.3.7.5 Discussion on SJ experimentation results

From the analysis of the above graphs we can extract several useful conclusions that can help the
developer to dictate the split size of the SJ pattern. There is a clear pattern that a high split size
benefits performance (in the form of the total response time needed), especially as the number
of inputs grows. By changing the max containers allowed as well as the ratio of input/split size,
we can also observe trade-offs between the wait time and the execution time, the main elements
from which the total response time comprises. In terms of the max containers allowed, we can
see the benefit from trading wait time (in the case of 2 max containers with a total response
from 50 to 150 seconds in the highest input case) with execution time with concurrent requests
(in the case of 8 and 32 max containers with ranges from 20-70 and 20-55 seconds
respectively).
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However this comes also at an increased cost, since the concurrency overheads mean that a
higher duration of execution is needed (although the total response time is smaller due to the
lower wait time), raising the cost from 0.0012 in the 2 max containers (for the higher split size)
to 0.0019 and 0.0068 $ for 8 and 32 max containers respectively. Specifically in the cases for 8
and 32 max containers, the latter seems to have a greater performance benefit, in contrast with
the 8 max container case where the cost is strictly less but performance significantly worse.

By comparing the different split sizes for the same max containers, we can conclude that in all
cases of the highest inputs the effect seems similar, i.e. the total response time is approximately
3 times lower when selecting a high split size. In the context of cost analysis, it is crucial to
consider the relation between the maximum number of containers and the associated cost,
while selecting a high split size can lead to higher cost outputs but with a lower reduction rate at
each max container case. This can be attributed to the fact that the cost calculation equation
relies on the “number of active containers “ value, which in high split cases is greater, meaning
we have less waiting time.
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4. GLOBAL CONTINUUM PATTERNS PLACEMENT

This section focuses on the description of the global continuum placement component and
related tools that provide the intelligent scheduling of applications upon a highly distributed
computing infrastructure. The specific component proposes adapted task placement
mechanisms to perform the resource allocation and deployment schema for each application
selecting resources across a distributed environment composed of different types of platforms
in an optimal and timely manner. It plays the role of a meta-scheduler of application workflows
across the global continuum, which can be composed of independent, self-managed clusters of
different types such as public clouds, on-premises and edge systems. Each application is
considered to be structured as a workflow of independent tasks which have their own resources
and constraints requirements while each of them may have the need and ability to be deployed
upon a different platform from the other.

The remainder of this section describes the design specification of the component and its
related tools which is followed by the implementation and integration highlights which go
deeper into the architecture and the implementation of the particular component. Then we
provide various experimentation and evaluation outcomes related to the usage and execution of
the component and finally we discuss the next steps providing details about the current and
future work.

4.1. Functional description

The Global Continuum Placement component makes the scheduling decision for the different
workflows to be deployed upon the PHYSICS platform. To finalize the schedule of a workflow all
its tasks must be matched to their destined resources to be executed upon. This is done by
considering their needs in resources as described during the application design in conjunction
with the resource availability and possible optimization insights. In particular, as shown in
Figure 83 the component gets the following inputs:

● The application graph where the workflow’s needs for resources and constraints are
given per task while various information such as objectives are given per workflow.
These details are passed from the Design Environment.

● The resource characteristics and availability for each cluster participating in the global
continuum. The Reasoning Framework gives these details.

● The possible execution optimizations insights to take into account as given by the
Performance Evaluation Framework.

Using the above inputs, the component needs to perform the decision making of which
resources to use for each task of the workflow in a timely and optimal manner. So, as we can see
in Figure 83 the output of the component is: 

● The placement schema to be used as initial deployment or adaptation for an already
existing execution. This schema is given to the platform orchestrator which then
forwards it using the adequate form to the Open Cluster Management which eventually
passes the information to the local cluster’s schedulers managed by the coordinated
work of OpenWhisk-Kubernetes. This is described in detail in the deliverable 5.2.

Internally the Global Continuum Placement has to provide the adapted heuristics in order to
perform optimal and rapid scheduling decisions. An important parameter of the application
graph to be used to optimize the execution of a workflow is the list of objectives. Through this
parameter, the user can define which metrics are important for the particular workflow such as
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performance, cost, availability or energy improvements. Hence, a workflow can select one or
multiple objectives and the component will try to give a solution to the particular problem. For
that, we are designing the component in such a way as to enable capabilities for multi-objective
scheduling by exploring different types of algorithms.

Figure 83: Global Continuum Placement high-level view

The study of complex scheduling algorithms in such a distributed environment needed
specialized tools for fast experimentation and evaluation of new algorithms under various
conditions. For that, an important part of the Global Continuum Placement list of side tools is the
Scheduling Simulator. This allowed us to rapidly evaluate different variations of new scheduling
algorithms and try to adequately adapt them to fit the needs of each particular context. A slight
modification of some parameters of an algorithm may play a significant role in the performance
of the scheduler for particular workloads and specific global continuums. The simulator helps us
trace the impact of various parameters on different metrics. Furthermore, the combination of an
experimental methodology based on simulation and real-scale evaluation, whenever possible,
allowed us to better understand the behavior of the placement algorithms under various
contexts while validating the effectiveness of the simulator. In particular, large-scale scalability
evaluation is not possible without a simulator but having confirmed that the simulator shows
correct results when comparing it with the real-scale experiments in smaller scales allows us to
trust the simulator results for the large-scale scalability experiments.
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4.2. Technical description

4.2.1. Generic component and first best fit algorithm with multi-objective capabilities

The Global Continuum Placement Component architecture is shown in Figure 84 and is
composed of the following principal parts: 

●  a subcomponent that will consume inputs such as the Workflows’ Characteristics and
Annotations along with the Clusters’ Static and Dynamic Status. 

● the scheduler core which will perform the matching of tasks with resources based on
different available algorithms; and 

● the output subcomponent which will push the scheduling decision. 

In parallel, two additional external subcomponents are provided: 

● the simulator which will allow us to perform fast experimentation and evaluation of the
different scheduling algorithms and 

● the tools for installation and Continuous Integration / Continuous Deployment

The communication with other software such as to pull and push the inputs and outputs related
to the component is performed through a REST-API. 

The implementation of the Global Continuum Placement component is done using Python
programming language. Furthermore, we make use of NIX functional package manager to
prepare the packaged containerized environment to perform the necessary CI/CD pipelines. The
whole software can be packaged and installed as a Docker container.

Figure 84: Global Continuum Placement component internal architecture

Based on the current architecture of Physics the Global Continuum Placement (GCP) component
does not have to make the final decision of the exact resources where the execution of a task
needs to take place. This is done by the local cluster Scheduling Algorithms which lies within the
combination of OpenWhisk-Kubernetes schedulers. Furthermore, it does not communicate
directly with the local schedulers to propose the deployment schema. It forwards the
deployment schema to the Orchestrator which will then communicate with each local-cluster
scheduler. It is also the Orchestrator that will manage any possible adaptations that may be
needed. For example, if a reconfiguration of the schedule is needed the Orchestrator will
demand to the Global Continuum Placement to perform a new schedule taking into account the
modifications. This is an important aspect of the internal architecture of GCP because we are not
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obliged to keep either an internal state of the status of the resources availability, nor how the
final deployment has been finally made. GCP can be a stateless service that can continuously get
different inputs and based on them perform an adapted scheduling decision. Of course, this may
change in the upcoming versions of this component, but the initial version is implemented as a
stateless service without an internal database. 

The principal part of the intelligence of the Global Continuum Placement Component lies within
the Scheduler Core. The Scheduler Core decomposes the collected inputs into meaningful
parameters that will take part in the scheduling decision.

In particular, in the first implementation of GCP we take into account the following parameters.
From the application perspective, we get the following:

● Type of clusters to be used such as Edge, Cloud, HPC, on premise. This is a task related
parameter and is handled as a constraint. Multiple values of sites are resolved with a
logical OR.

● Type of architecture such as x86_64 or ARM64. This is a task related parameter and is
handled as a constraint.

● Computing resources needs such as the number of CPUs, amount of memory, and
number of GPUs. This is a task related parameter.

● Type of execution objective such as Energy, Performance, and Availability along with a
particular value among “high”, “medium”, “low” to define the importance for each one of
them. This is a workflow related parameter. 

From the cluster site perspective, we create a platform map of our continuum where each
cluster provides the following parameters:

● Type of clusters such as Edge, Cloud, HPC, on premise. Only one is valid per cluster.
● Type of architecture such as x86_64 or ARM64. Only one is valid per cluster. This is

currently implemented per cluster site but will be modified in an upcoming version to
reflect different groups of the same cluster.

● Total Number of computing resources, amount of memory per node and total amount of
GPUs. This is the currently implemented list of resources, but it will be updated in future
versions to allow the declaration of additional resources such as Network, IO, etc.

● Objective scoring for all the available objectives. Currently, the following objectives are
implemented: Energy, Performance and Availability. The score is done by providing a
value from 0 to 100 for each objective. The availability here is directly related to the
uptime of each cluster. This is currently implemented per cluster, but it can be updated
to reflect groups of clusters in future versions. The scores are calculated by the
Reasoning Framework and may be combined with data coming from the Performance
Evaluation component. As an example of objective scores: A score of 90 in Performance,
30 in Energy and 60 in Availability means that the cluster has a particular focus on
Performance, provides a decent amount of Availability and is not very energy efficient. 

Based on the above details the scheduler core will offer different policies that will try to provide
solutions to the workflow-tasks VS. cluster-resources matching problem.

The scheduler resolves the problem for each task of the workflow in the following order:

1. Resolve the site constraints of the task by filtering out the sites that do not fit 

2. Resolve the architecture constraints of the task by filtering out the clusters that do not fit

3. Calculate the scores per objective for the workflow
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4. Sort out the (filtered-out) sites with the highest score first

5. Apply a particular policy to match the tasks to the available resources based on their
needs. Initially, the first policy that was implemented at this level was a FirstFit policy
which places the task on the first available resource that fulfills the constraints, has the
highest score in objectives and covers the resource needs.

The objective scoring heuristic is an interesting aspect of the scheduler which can seamlessly
allow us to explore single and multi-objective scheduling policies. As mentioned, we have
currently implemented only a simple FirstFit policy which is the fastest way to deal with
multiple objectives in a scheduling problem. Nevertheless, the FirstFit policy, besides the
advantage of being fast does not provide an optimal or near to optimal solution. However, this
particular objective scoring heuristic will allow us to study in a pragmatic way more complex
policies based on MINLP or genetic algorithms that consider multiple objectives while trying to
return optimal or sub-optimal results in a less timely manner.  

The integration with the different components that affect the decision making of the Global
Continuum Placement along with those that receive the final scheduling proposition is done
through a REST-API and specific JSON files that get augmented when passing from the different
components. For example, the Design Environment component compiles a particular JSON file
which provides the workflow-tasks needs in terms of objectives, resources and constraints. The
Performance Evaluation framework can provide some further annotations related to the
constraints or objectives of the workflows. In parallel, the Reasoning Framework will bring the
sites’ static resources characteristics, dynamic availabilities and scoring per objective in a
separate JSON file. Finally, exchanges between the Global Continuum Placement and the
Orchestrator will be done on the one side to allow the scheduling decision to be forwarded to
the local clusters schedulers but also to enable readaptations based on possible reconfigurations
as triggered by the Orchestrator. 

This integration with the different interconnecting components has been performed and the
necessary data are exchanged successfully to perform end-to-end executions.

The implementation of the installation and CI/CD tools have been also performed based on the
characteristics we mentioned initially but further changes may be done to adapt to the
particularities of PHYSICS installation procedures. 

4.2.2. Optimization algorithms

Inspired by the dual-approximation algorithm of Shmoys and Tardos [48], we have implemented
FOA (Function Orchestration Algorithm) a scheduling algorithm that enables the allocation of
batches of serverless functions on serverless-based heterogeneous edge-cloud platforms. FOA is
a multi-objective algorithm, specifically conceived for serverless based systems on the
edge-cloud continuum, minimizing both the makespan and the data movement (the sum of the
amount of data transferred to deploy containers and the amount of data transferred by
functions I/O). This section details this scheduling policy, its algorithm, and its two main
components: the linear program and the integral matching process. In addition, we detail the
container layer download optimization model used.

It works under the following assumptions:

a) functions depend on environments and all dependencies are known;
b) functions and environments are independent between themselves and known in

advance;
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c) their cost and processing time on each machine are known.

And it expects the following inputs:

1. environment execution time: the time to download and deploy functions environments
(containers), in seconds (s);

2. environment cost: the amount of downloaded data per environment, in megabytes (MB);
3. function execution time: the execution time of serverless functions, in seconds;
4. function cost: the amount of data transferred as functions' I/O, in megabytes.

Figure 85: FOA’s algorithm step by step

Figure 85 illustrates all steps performed by FOA. Step 1. Linear Program (detailed in Section
IV-B) uses function and environment data to produce a fractional function schedule (to get the
results fast enough). However, we need an integral solution for allocating functions in our
context. Then, step 2. Minimum Cost Integral Matching converts the fractional function schedule
into an integral function schedule. Finally, step 3. Container Layer Download Optimization (in
Section IV-C) models the sharing of container layers done by Docker in Kubernetes, for each
function that arrives in the machines. It reduces the amount of data downloaded and execution
time based on the cache state of the machines. Our algorithm optimizes the cost of the entire
workload, under a constraint on the makespan, of an arbitrary value T. To optimize the
makespan, we re-execute steps 1 and 2 of FOA up a given number of times until we reach the
expected precision, before starting step 3. These repetitions update the makespan constraint T
at each iteration by a binary search process. The first iteration of the algorithm provides a
solution with the best cost because the makespan constraint is fully relaxed. As far as the
makespan decreases through the binary search process, the cost increases. Empirically, eight
iterations are sufficient.

The details of the algorithm have been extensively explained along with the methodology and
experimental evaluations in an article [49] that has been submitted and published in
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CCGrid2023. Hence we omit these details here, but the reader may refer to this article for all the
information.

FOA has been implemented and validated under simulated experiments and it is currently being
integrated as a new algorithm within the main Global Continuum Placement component in the
PHYSICS testbed to be used by FaaS applications and the PHYSICS use cases.

Following the same path with the above scheduling algorithm we have also added one more
objective to be taken into account and this is the one of energy consumption named FOA-E. In
this context in the global continuum, we use a multi-objective scheduling policy to get the best
from the heterogeneous local clusters connected to the continuum to minimize the energy
consumption along with the makespan of the batches of serverless functions that arrive on the
platform. The algorithm has been developed and we are currently performing experimentations
to validate it, preparing a new publication to be submitted and integrating it in the PHYSICS
testbed.

4.3. Demonstration and experimentation

4.3.1 Demonstration of the implemented algorithm

The first version of the global continuum placement component allows us to experiment with
different workflows deployed upon various combinations of platforms. A simple example is
shown below. The following JSON file shows the way a hybrid distributed infrastructure
composed of 3 different sites with different hardware characteristics, possible architectures and
objectives scores, can be described:

Code 8: Code snippet showing platform information.

{

"platform": {

"cluster1": {

"type": "Edge",

"resources": {"nb_cpu": 4, "nb_gpu": 0, "memory_in_MB": 1024},

"architecture": "x86_64",

"objective_scores": {"Energy": 60, "Availability": 5, "Performance": 25}

},

"cluster2": {

"type": "Edge",

"resources": {"nb_cpu": 2, "nb_gpu": 1, "memory_in_MB": 4096},

"architecture": "arm64",

"objective_scores": {"Energy": 100, "Availability": 30, "Performance": 50}

},

"cluster3": {

"type": "HPC",

"resources": {"nb_cpu": 1000, "nb_gpu": 50, "memory_in_MB": 16e6},

"objective_scores": {"Energy": 10, "Availability": 80, "Performance": 100}

}

}}

Once we have described our infrastructure with the above json file we can register this platform
description using a REST API:
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Code 9: Code snippet to register the platform information using an API call

curl -X POST -H "Content-Type: application/json" -d @test-platform.json

http://127.0.0.1:8080/init

Then we can create a workflow to be launched for execution using the following json file
test-workload.json which describes a workflow composed of 4 tasks based on particular
dependencies among them, with different demands in resources and constraints and with
specific workflow objectives.

Code 10: Code snippet showing demands and constraints per task

{

"id": "19fe4293742e0b2c",

"displayName": "Full example",

"type": "Flow",

"executorMode": "NativeSequence",

"native": true,

"objectives": {

"Energy": "high",

"Availability": "low"

},

"flows": [

{

"flowID": "flow1",

"functions": [

{

"id": "function1",

"sequence": 1,

"allocations": [

"cluster3"

]

},

{

"id": "function2",

"sequence": 2,

"annotations": {

"cores": "2"

}

},

{

"id": "function3",

"sequence": 3,

"annotations": {

"cores": "2"

}

},

{

"id": "function4",

"sequence": 4,

"annotations": {

"cores": "2",

"architecture": "arm64"

}

},
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{

"id": "function5",

"sequence": 5,

"annotations": {

"cores": 2,

"memory": 1000

}

}

]

},

{

"flowID": "flow2",

"executorMode": "NoderedFunction",

"annotations": {"core": 1, "memory": 1000},

"functions": [

{

"id": "excluded-func",

"annotations": { }

}

]

}

]

}

Then, we can ask the scheduler to perform the placement of the workflow upon the defined
global continuum registered previously. For that, we can use the following REST API:

Code 11: Code snippet to realize the placement by the global continuum engine.

curl -H "Content-Type: application/json" -d @test-workload.json

http://127.0.0.1:8080/schedule

and we will get the following result using the default FirstFit scheduler:

Code 12: Code snippet with output of the result from the locations.

[

{

"flowID": "1234",

"allocations": [

{"cluster": "cluster3", "resource_id": "function1"},

{"cluster": "cluster1", "resource_id": "function2"},

{"cluster": "cluster1", "resource_id": "function3"},

{"cluster": "cluster2", "resource_id": "function4"},

{"cluster": "cluster3", "resource_id": "function5"}

]

},

{

"flowID": "flow2",

"allocations": [

{"cluster": "cluster1", "resource_id": "flow2"}]

}

]
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Here is the explanation of these decisions:

● function1 has an explicit cluster constraint for the cluster3 so it is allocated there.
● function2 only requires 2 CPU and all clusters have at least 2 CPU. The architecture

constraint is not defined but by default it is x86_64, so only the cluster 1 and 3 can fit the
constraint. The scheduler then takes into account the objectives and favors the Energy
and the Availability so it chooses the cluster1.

● function3 has the same constraints as function2 so it goes on the same cluster, the
cluster1 because it still has 2 CPU available.

● function4 goes on cluster2 because it requires an arm64 architecture and only
cluster2 is providing it.

● function5 has only resources constraint and should go to the cluster1 regarding the
objectives but it does not have enough resources. It is finally allocated to cluster3
which is the only one that fits the constraints and has available resources.

● flow1: because it is a NoderedFunction, this flow is scheduled at the flow level. It is
scheduled on the cluster1 because it has enough resources.

This also works at the flow level with the same annotations.

As described in the previous section the scheduling is done task by task in the dependency order
of the workflow. For each task we apply filters to remove sites that do not fit the site and
architecture constraints. Then, we apply a scoring function based on the objective scores of the
sites and the objective levels of the workflow. Finally, we use a first fit policy on the sorted by
highest score and allocate to the first site in the list that has enough resources.

4.3.2. Simulation-based experimentation and evaluation of the optimized
multi-objective algorithms

We evaluate FOA by comparing it with a baseline policy inspired by the Kubernetes scheduling
policy. More specifically, we compare it with the image locality plugin. To conduct such
experiments, we performed simulations on top of Batsim/Simgrid simulation tools.

We present in this section how we model our workloads, platforms, and the baseline policy. We
also detail the simulated environment that makes possible the study of these scheduling
policies, and the grid of experiments conducted.

We perform bare-metal executions of functions that we adapted from the FunctionBench
benchmark, such as matrix multiplication, linpack, chameleon, modeling training, and image and
video processing.

We evaluate 9 functions with different inputs. In total, we have 19 combinations of functions and
inputs. Each function requires a different container, being 9 in total. The container sizes vary
from 170 to 2560 MB. All of them are available on a public repository on DockerHub. We
deployed the serverless platform OpenWhisk on top of GRID5000 and execute our functions
there.

For each function executed, we obtain its execution time and resource usage measurements
(CPU, memory, bandwidth, etc.). We also instrument the functions to extract the time consumed
by different phases of serverless functions such as download and deployment of containers,
functions execution, I/O transferring, container deletion, etc. At last, we perform a calibration
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phase to estimate the number of floating-point operations (flops) necessary to execute each
function, which allows Batsim and Simgrid to accurately perform the simulations.

Our workload model is based on such executions of serverless functions on serverless-based
heterogeneous edge-cloud platforms. For each function, we translate the data retrieved from the
bare-metal executions to the Batsim/Simgrid requirements and format. We use random seeds to
randomly select different combinations of functions and inputs for each workload created. In
addition, for each function and its required container, we retrieved the container layers'
composition. Such a description was also attached to the workloads to reproduce the layers'
sharing behavior during our simulations.

FOAs linear program resulted in fractional solutions optimizing cost and makespan. Minimizing
the cost is simple by allocating all tasks of the same environment to a single fast machine. But,
this solution does not minimize the makespan. Hence, optimizing cost and makespan is a
compromise.

Figure 86 illustrates this compromise through FOA's binary search process for all combinations
of workload size and platform size. The heterogeneity level is not distinguished because the
three levels show similar behaviors. The x-axis is the makespan (in minutes), and the y-axis is
the cost (the amount of downloaded data in GB). The colors represent the iterations of FOA's
binary search process.

Figure 86: FOA’s linear program trade-off between makespan (x-axis) and amount of downloaded data
(y-axis). The color of the points represents the iteration-id of the linear program binary search. Each one

is one solution of the linear program.
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The first iteration computes the smallest cost and hence the highest relevant makespan. As far
as we constrain the makespan over the iterations, the cost increases. We highlight that

I. the 3rd iteration looks to be a good trade-off between both objectives,
II. the Pareto's shape is quite smooth in relevant scenarios for us.

In addition, we remark that (a) not all instances found a solution of cost with small values for
makespan, and (b) since we need to re-execute the linear program at each iteration, the
processing time to produce a final solution is cumulative. % and as we increase the constraint of
makespan at each iteration, the processing time of the linear program increases as well; so
increasing the number of iterations, increases the overall computation of the solutions. We call
the time that a scheduling policy takes to decide the allocation of the functions as processing
time. FOA is based on a linear program with several constraints, which is expensive in terms of
processing time. Unlike our approach, the Imagelocality baseline has a greedy algorithm and
does not have a global view of the platform during the scheduling phase. Hence, Iimagelocality
produces a non-optimal allocation decision within a second while FOA reaches a better solution
within minutes. Our scheduling policy takes a median of 2.69 minutes to produce a decision,
while our baseline performed in the median of 0.6 seconds. However, FOA's decision considered
the eight repetitions of its binary search process. Each repetition performs with a median of 0.34
minutes. Considering that, and as mentioned above, our results show that three repetitions are
enough for good results, then FOA may produce them with a median of 1.02 minutes. It is still
not as fast asImagelocality, but it is reasonable to evaluate the gap between both scheduling
policies.

We also remark that in our experiments, we use an open-source solver, CBC, through a library to
compute our linear program. Using a commercial solver would reduce the processing time but
also would hinder the system administration simplicity of our computations. Various other
experiments have been performed and can be found in the related publication [49].

We conclude that even with light levels of heterogeneity, the gains of FOA are important in
serverless computing at the edge-cloud continuum, and we believe that with a more accurate
model of heterogeneity, these gains may increase. By reducing the amount of data transferred to
download containers, we minimize cold start delays through faster container deployments. In
addition, it also speeds up the functions' execution time. We emphasize that the results are even
better in the scenarios important for us, where there are not many functions per machine. Thus,
efficient scheduling policies for serverless computing at the edge-cloud continuum require
better management of the heterogeneity to drastically improve the amount of data downloaded
and the system utilization.

4.4. Discussion

The Global Continuum Placement component has been implemented as a PHYSICS component
and this section provides a thorough description of its principal functions, its design
specification, its implementation and integration highlights along with various validation and
experimentation results. We have performed a tight integration with the different components
that GCP exchanges information with and we are still considering adaptations to better fit the
needs of these tight integrations.  

Furthermore, we have studied, implemented and evaluated the FOA multi-objective algorithm
based on Linear Programming which has been the center of one publication in the international
peer-reviewed conference CCGrid2023. The algorithm developed in this article is currently
being enhanced to enable the usage of one more objective, that of energy consumption (FOA-E)
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and we are planning to finalize one more publication describing our achievements regarding
these aspects as well, very shortly, before the end of the PHYSICS project.

Some other ongoing work is related to the integration and deployment of the FOA
multi-objective algorithm in the GCP component which is currently being finalized, along with
some specific integration improvements which are currently taking place. In particular, the
consideration of tasks’ profiles based on previous executions as forwarded by the Performance
Evaluation Framework is an interesting and important optimization to include that will help
select more adapted resources for the optimal placement of each particular task.
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5. DISTRIBUTED IN-MEMORY STATE SERVICES FOR DATA INTERPLAY

This section presents the Distributed In-Memory State Service (DMS) component developed
under the task T4.4, Distributed In-memory State Services for Data Interplay, its internal
architecture, the status at month 30 of the PHYSICS project. Finally, a performance evaluation of
the final version of the DMS is described.

5.1. Functional Description

Functions in the FaaS paradigm are stateless. Functions can receive parameters but the size of
the parameters is limited. For instance, the maximum size of the parameters per function in
OpenWhisk is limited to 5MB. Many functions produce large results that are the input of other
functions. This is the case of analytics tasks that produce intermediate results that are consumed
by other tasks (for instance, in map-reduce processes). Mapping this type of application to the
FaaS model incurs a high overhead since any state that needs to be kept or shared with another
function must be stored in an external remote storage unit (Amazon S3, or database like Redis).
This incurs high overhead in terms of latency. The DMS component goal is to implement an
efficient in-memory data service for sharing large objects between functions.

5.1.1 Main Objective and Functionalities
The main objective of this DMS component is to provide an in-memory distributed data store for
sharing data between functions. The DMS should be able to scale up and down automatically
taking into account the amount of data to be shared among functions, saving platform usage
costs.

5.1.2 Relationship with Other Components
The DMS is an independent component that can be used in any FaaS framework. The DMS is
used by functions (defined in WP3) and deployed in a cluster (managed in WP5) where the
functions are executed. The DMS is used as a library in a function with both Python, Java and C++
interfaces.

5.1.3 Requirements Matrix
The DMS component is involved in meeting the following requirements defined in D2.3 – State of
the Art Analysis and Requirements Definition V2 delivered by month 21 of the project.

● Req-4.4-state: “The distributed management system must maintain the state between
function invocations.”

● Req-4.4-interplay: ”Enable numerous functionalities of interplay between the
in-memory state and the persistent storage layer.“

● Req-4.4-tradeOffs: ”Investigate trade-offs between consistency and performance.”
● Req-4.4-perf: “Dynamic caching mechanisms and persistent storage functionalities and

activation performance.”
● Req-4.4-access: “Different access patterns must be investigated and included such as

single client-multiple access, multiple client-single access, multiple client-multiple
access.“

● Req-4.4-elasticity: “Implement the distributed data management service elasticity for
both reducing and expanding the exploitation resource plane available by the
application.”

● Req-4.5-persStorage: “FaaS platform should provide persistent storage(Like AWS S3 or
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Minio) for applications that also supports notifications based on the content changes.”

5.2. Technical Description

The DMS component has been reimplemented since September 2022. The first version of this
component was based on Pocket8. This research prototype was based on Apache Crail9 project.
However, this project has not been maintained since July 2022. The new DMS service
implementation is now based on KeyDB10. KeyDB is a multithreaded fork of the in-memory
Redis11 database. KeyDB can run on several cores taking advantage of multi-core computers.
KeyDB provides persistence, replication and security.

The DMS provides a set of OpenWhisk actions (functions) for accessing the in-memory datastore
(KeyDB). The DMS is able to automatically scale up and down based on the load and access
patterns.

5.2.1 Interfaces and Integration

Application developers are provided with two functions for reading and writing data in the DMS.
The next example shows a sequence with two functions (actions in OpenWhisk) that use the
DMS.

The OpenWhisk function that writes data (Code 13) receives as parameter the information to be
stored as a string and a key to identify the item. Internally this function imports the KeyDB
library (line 1), establishes the connection with the DMS (line 8), and writes the key and the
value provided (line 9). Finally, the connection is closed and the host, port, db and key
parameters are returned so they can be used by other functions (line 11).

Code 13: functionWrite.py

1 from keydb import KeyDB

2 def main(event):

3 host = event['host']

4 port = event['port']

5 db = event['db']

6 key = event['key']

7 value = event['value']

8 db = KeyDB(host=host, port=port, password="", db=db)

9 db.set(key, value)

10 db.close()

11 return {"host": host, "port": port, "db": db, "key": key}

Another OpenWhisk function, functionRead.py (Code 14), is used for reading data from the DMS.
It receives as parameters the host, the port, the database id and the key to read the data from.
This function connects to the DMS (line 7), and reads the data (line 8), closes the connection to

11 https://redis.io/

10 https://docs.keydb.dev/

9 https://incubator.apache.org/projects/crail.html

8 https://pocketbase.io/
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the DMS and returns a JSON with the key and value (line 10).

Code 14: functionRead.py

1 from keydb import KeyDB

2 def main(event):

3 host = event['host']

4 port = event['port']

5 db = event['db']

6 key = event['key']

7 db = KeyDB(host=host, port=port, password="", db=db)

8 value = db.set(key, value)

9 db.close()

10 return {"key": key, "value": value}

The DMS can also be accessed directly using KeyDB client as well as Python, Java and C++
interfaces. Even if developers use the OpenWhisk functions for reading and writing from the
DMS they need to be aware of the limitations and parameters of the KeyDB interface. The main
methods of the Python interface are shown in Table 16. By default, users connect to database 0
unless a parameter is added(0-16). The close method closes the connection with the KeyDB
service.

The set(key, value) method stores the value in the database with the given key. The maximum
value size is 512MB. In order to store larger data, the recommended method is to split the data
into batches of 512MB and use consecutive keys; i.e.: f1-1, f1-2, f1-3,... The get(key) method is
used for retrieving the data associated with a given key. The same restriction applies to the set
method which writes data in KeyDB.

Table 16: DMS interface

Client API Function Description

KeyDB(host, port, password, DB) Open connection to KeyDB service. Password by default. Db
by default 0 (0-16)

close() Closes a connection

set(key, value) Writes data (value) at key

get(key) Reads the data stored at key

getset(key, value) Sets the value at key and returns the old value stored at key

append(key, value) If the key exists and the value is a string, the command
appends the value at the end of the string. Otherwise, it is
like a set.
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del(key) Delete the data and the key

keys(regex) Show all available keys that satisfy the regular expression
(regex)

5.2.2 Usage

The next example shows an OpenWhisk sequence with the two functions for reading and writing
data in the DMS. This example can be found in the distribution of the DMS in the
DMS-Sequence-Example folder. The first function in the sequence writes data using the DMS
function, and the second one reads the data using the corresponding function.

The sequence is created in OpenWhisk using the DMS Docker image. This process can be done
from the command line or using a manifest file. To simplify the presentation only the command
line is included here.

Command line:
Code 15: Functions and Sequence creation

$ wsk -i action create dms_action_write --docker

$DOCKER_REPOSITORY/dms-python-runtimeimage:latest --main write functionWrite.py

$ wsk -i action create dms_action_read --docker

$DOCKER_REPOSITORY/dms-python-runtimeimage:latest --main read functionRead.py

$ wsk -i action create dms_sequence_write_read --sequence dms_action_write,

dms_action_read

The result of executing the sequence shows the key and value written in the DMS:

Code 16: Sequence invocation results

DMS-Sequence-Example$ wsk -i action invoke dms_sequence_write_read -p host

'172.30.166.208' -p port 6379 -p key p4 -p db 0 -p value 'This is an example of

the usage of the DMS component' --result

{

"key": "p4",

"result": "This is an example of the usage of the DMS component"

}
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5.3. Experimentation Outcomes

Different DMS experimentations have been performed both deploying the DMS (KeyDB) as a
service and in a Kubernetes cluster in order to benchmark the performance of KeyDB in
different scenarios.

5.3.1 KeyDB as a Service

The main objective of this experiment is to validate the results of the evaluation carried out by
the KeyDB team [50] using different hardware. This evaluation compares the performance of
KeyDB with Redis using the Memtier12 benchmark provided by RedisLabs. Memtier is a
command line utility created for load generation and benchmarking key-value databases. They
used one m5.4xlarge ec2 instance (16 virtual CPUs and 64 GiBs RAM). Memtier benchmark was
configured with data sized from 8 bytes up to 16 KB. Redis was deployed using the default
configuration and KeyDB was configured with 7 server-threads and enabling
server-thread-affinity. The benchmark runs in the same node.

Their performance evaluation results [50] show that KeyDB is 5X faster than Redis, it performs
5 times more operations per second (ops/sec) than a single instance of Redis with nearly 5
times lower latency, as shown in Figure 87 and Figure 88.

Figure 87: KeyDB vs Redis Ops/Sec performance

12 https://github.com/RedisLabs/memtier_benchmark
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Figure 88: KeyDB vs Redis Latency performance

In our performance evaluation the data size varies from 8 bytes up to 500MB (32000 times
larger data size) and is deployed KeyDB using 1, 7 and 14 server threads enabling thread affinity,
to find out the best configuration regarding the server parallelism. The evaluation was carried
out on an AMD Ryzen 9 3950X 16-Core processor (32 virtual CPUs and 132 GB RAM) hosted at
UPM. As in the original performance evaluation Redis was deployed using the default
configuration.

The results are shown in Figure 89 and Figure90. The performance of Redis and KeyDB
configured with one server-thread is similar. The performance of KeyDB improves when using
multiple threads. The performance of KeyDB with 7 server threads is similar to the one already
published. The throughput increases up to 5 times with KeyDB and the latency is almost 5 times
lower.

The throughput of KeyDB with 14 server threads is not twice the one with 7 server threads.
The throughput increment is 23%. Analyzing the node resource consumption it was found that
the CPU usage was close to 78% in the evaluation with 14 threads and close to 43% with 7
threads. This was due to the fact that the Memtier benchmark was running on the same node
using 35% of the CPU with 14 threads and 19% with 7 threads .
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Figure 89: KeyDB and Redis performance evaluation (Ops/sec)

Figure 90: KeyDB and Redis performance evaluation (Latency)

Given a number of server-threads both the throughput and the latency remain quite stable
independently of the data size. In this case there is no network traffic since the benchmark and
the datastore run in the same node. Analyzing the results obtained with the different data sizes,
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both the operations per second and the latency results are similar with the different data sizes
due to the client, the Memtier benchmark was hosted in the same machine and there was no
network latency.

The same evaluation has been performed running the Memtier client from a different machine.
Both nodes have the same hardware configuration and are connected through a 1gbps ethernet
network. In this case, the data sizes are from 8 bytes up to 64 KB, with larger data sizes the
network is saturated, and the results are not valid. The KeyDB database has been deployed with
7 threads, which is the same configuration as the 7 threads evaluation from Figure 89 and Figure
90. Figure 91 shows the results obtained, the performance has been reduced from the 80
kops/sec obtained with the database and the client co-located to 6 kops/sec when both are in
different machines. As expected, latencies are higher when the client and the database are in
different machines, 2.5ms, and 2ms when they are together.

Figure 91: KeyDB evaluation with the client and the database in different nodes

5.3.2 DMS deployed in a Kubernetes cluster

The objective of this evaluation is to show the performance when the DMS is executed in a
Kubernetes cluster as functions do in PHYSICS using different configurations. We tested
different properties of KeyDB: persistence and replication. First of all, we compare the
performance of KeyDB with and without persistence. Then, we tested active replication with
persistence and persistence and no replication in three nodes.

5.3.2.1 Evaluation Setup

The evaluation was performed on a Kubernetes cluster with 6 Intel(R) Xeon(R) CPU E5-2620 v3
@ 2.40GHz Processor instances (24 virtual CPUs and 128GB memory), all of them connected
through a 56 gbps Infiniband network. The Kubernetes cluster was configured with a TCP/IP
emulation limiting the bandwidth to 13 gbps.

The client is a Python function deployed in OpenWhisk running on the same Kubernetes cluster
but, not co-located with the DMS. The data size varies from 1MB up to 100MB. The Python
function gets the value associated with a key and writes that value with a different key (Code
17). The function returns the time needed for opening a connection, reading (get), writing (set)
and closing the connection.
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Code 17: Python function

from keydb import KeyDB

from time import time

def main(event):

latencies = {}

timestamps = {}

timestamps["starting_time"] = time()

host = event['host']

port = event['port']

key = event['key']

metadata = event['metadata']

try:

start = time()

db = KeyDB(host=host, port=port, password="")

connection_time = time() - start

start = time()

value=db.get(key)

get_time=time() - start

start = time()

db.set(key+"-w", value)

set_time=time() - start

start = time()

db.close

connection_close_time = time() - start

latencies['set_connection'] = connection_time

latencies['set'] = set_time

latencies['get'] = get_time

latencies['close_connection'] = connection_close_time

timestamps["finishing_time"] = time()

return {"latencies": latencies, "timestamps": timestamps, "metadata": metadata}

except Exception as e:

return {"error": e.with_traceback}

5.3.2.2 Outcomes

First of all, the evaluation compares the latency of the read operation (get) with and without
persistence write operation (set) (Figures 92 and 93). There were 1,2 and 5 clients running
concurrently, invoking the function. The DMS offers the same persistence guarantees KeydDB
does. RDB persistence writes in a background process every 60 seconds if at least 1000 keys
have changed. AOF persistence writes to a file every time a set operation is executed.
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The DMS has been configured without persistence (green bars), with RDB persistence (orange
bars), AOF persistence (grey bars) and RDB+AOF persistence (blue bars). The figures show that
the impact on performance of using RDB persistence is around 20%, using AOF persistence is
around 55% and using RDB+AOF persistence is 58%.

Figure 92: Get latency with and without persistence in 1 node
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Figure 93: Set latency with and without persistence in 1 node

Figure 92 and Figure 93 show the latency of the get and set operations respectively with three
DMS servers. This evaluation compares the latency without replication, with master-replica
replication and with active replication, without persistence. Without replication, the data is
partitioned among the three nodes. With master-replica configuration, the data is partitioned
among the three nodes, each node is the master of its partitioned data and the other node is the
replica. For instance, in the cluster the data managed by the node #1 is replicated in node #2, the
data managed by node #2 is replicated in node #3 and the data served by node #3 is replicated
in node #1. And with active replication the three nodes process read and write operations to any
data item.

Figure 94 and Figure 95 show the latency of the get/set operation, respectively, when the data
size varies from 1MB up to 10 MB with different numbers of concurrent clients. There is an
overhead in both cases when there is replication.. This overhead can be high when the number
of concurrent clients and data size increase. This happens because write operations need to be
propagated to the replicas in the case of replication. When there is multi-master replication if
the master does not store the requested key an exception is thrown to the client with the
information about the master storing that key. The client then resubmits the request.
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Figure 94: Get latency without persistence, without replication, master-replica and active replication in 3
nodes

Figure 95: Set latency no persistence, no replication, master-replica and active replication in 3 nodes
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6. ADAPTIVE PLATFORM DEPLOYMENT, OPERATION & ORCHESTRATION

6.1. Functional description

The main objective of this component (Orchestrator) is to allow deployment, reconfiguration
and adaptation of the applications defined in the deployment graph that was created with the
toolkit of WP3, enhanced by the performance evaluator (Chapter 3) and transformed by the
reasoning framework (Chapter 2) and finally decorated with location information by the Global
Continuum using WP5 infrastructure information (Chapter 4). The Orchestrator will be in
charge of the lifecycle management of applications divided into workflows for functions. The
lifecycle management will implement initial deployment, update and reallocation of functions
according to requirements.

The functionalities to be implemented by this component are:

● Parsing and translation of the Deployment Graph into Kubernetes YAML.
○ Use of ManifestWork and Workflow CRD definition to parse the application

information.
○ Subdivide the app information into independent functions according to the

location proposed by T4.3 optimization.
● Update workflow with status and forward this information to the central cluster using

OCM feedback status custom definition.
○ Collect OpenWhisk communication information from the initial deployment to

update the application in two steps.
○ Update interconnections between workflows across clusters using OpenWhisk

default parameters that are included in the Workflow CRD definition.
● QoS enforcement by reading OpenWhisk Prometheus metrics and communicating issues

via RabbitMQ.
○ Collection of messages in relation to QoS issues and update workflow

information to use the fallback cluster location provided by T4.3.
● Communicate with the user concerning deployment status using RabbitMQ.

6.1.1. Background

6.1.1.1. Relationship with other components

As aforementioned, this component will get information from the Reasoning Framework and
Global Continuum Placement to deploy applications and functions in some target infrastructure
(cloud or edge). These two last components are part of the WP4 toolkit as the Orchestrator. The
Orchestrator will also need to interact with resource management controllers from WP5 toolkit
to be able to execute operations over the applications and functions deployed or to be deployed
in the infrastructures controlled by this WP5 toolkit.

6.1.1.2. Requirements matrix

With relation to the expressed requirements in D2.2 and the functionalities described in the
introduction of this chapter; this component is involved in the following requirements as it
forwards and translates information from other components into the workflow CRD that can be
leveraged by components in WP5:
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● Req-4.5-FaaSRuntimeAdaptation: “The selected FaaS platform needs to have means of
dynamically setting several parameters with relation to the operation of the platform”.

● Req-4.5-placementDecision: “Design and implement an automated placement decision
maker of virtual resources at the physical node level and reducing the noisy neighbor
effect.”

● Req-4.5-PersStorage: “FaaS platform should provide persistent storage (Like AWS S3 or
Minio) for applications that also supports notifications based on the content changes.”

● Req-4.5-CustomDockerImages: “FaaS platform could allow the execution of custom
docker images from developers, with a specific structure, as a function.”

● Req-4.5-FaaSandIaaSMonitoring: “The FaaS platform as well as the Container
Orchestration platform need to expose collected monitoring metrics from benchmark
functions execution.”

6.1.2. Multicluster platform

To allocate application functions in a multi cluster environment, we leverage the Open cluster
management (OCM) toolset that allows to set namespaces in a central cluster (OCM Hub cluster)
as placeholders of cluster definitions that will be collected by the satellite clusters of the Physics
platform (OCM Spoke clusters). OCM uses a CRD named ManifestWork13 to define those
resources that are to be deployed in a Spoke cluster. Therefore, the role of the Orchestrator is to
translate a JSON application definition which is received as Deployment Graph into the
ManifestWork format and place those in the correct namespace defined by the output of T4.3.

To make allocation and reconfiguration more flexible. The Applications, which may incorporate
many workflows/functions, are split into as many ManifestWorks as functions. This allows the
placement of different functions in a different cluster according to the requirements and
optimizations of an application.

6.1.3. Connecting applications across clusters

Due to the application deployment distribution across clusters, the connectivity between
functions of a specific application can be compromised. Using a mixed approach that leverages
the WP3 at the application level (D3.2) and the WP5 Workflow CRD (D5.2), the WP4 provides
the connectivity details required for the application to work by filling the OpenWhisk default
parameters field per function in a two-step deployment process. A set of IP, namespaces and
credentials are provided per action for the application running in OpenWhisk to make API calls
to the remote OpenWhisk cluster and connect the different processing functions. This provides
the flexibility to incorporate the information in complex applications and overcome the
limitations of OpenWhisk for sequential execution of functions as the internal NodeRed
application can incorporate the execution of functions into a custom and more complex logic.

6.1.4. Alarm component when cluster shows limitations

The idea of having a multicluster FaaS solution is to have the capability to migrate function
execution to a different cluster when the preferred cluster is struggling to provide the required

13 https://open-cluster-management.io/concepts/manifestwork/
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QoS. As part of this prototype, the idea is to respond to OpenWhisk metrics per function to
provide an example of execution redirection. With this in mind, the Orchestrator uses the output
of T4.3 with optimal cluster location and fallback per function to deploy them into the two
preferred clusters. The two-step deployment allows setting the default parameters for
interconnected functions using the preferred cluster. While this should be the default behavior,
an additional Alarm component deployed in each of the clusters is routinely monitoring the
Openwhisk metrics and providing an alarm when a specific QoS metric is compromised. When
this happens, the Orchestrator updates the default parameters of interconnected functions to
point to the secondary cluster and thus, minimizes the time in which the QoS is compromised
transparently for the final user of the platform. The use of Submariner (WP5) as a common
multicluster networking solution allows this to work without the need for public IPs or
additional networking infrastructure.

6.2. Technical description

6.2.1 Baseline technologies and dependencies

The following Table 17 shows the final baseline technologies used in this component. Some of
the previous tools have been discarded, we included Kubernetes as a broader compatibility for
Openshift and we eliminated the SLALite component. New components have also been added:

Table 17: Orchestrator component dependencies

Name Description License

Kubernetes Kubernetes is an open-source container orchestrator platform.
Kubernetes is maintained by the CNCF (Cloud Native
Computing Foundation).
https://kubernetes.io/

Apache
License 2.0

OCM
(WP5)

Open Cluster Management is a community-driven project
focused on multicluster and multicloud scenarios for
Kubernetes apps.
https://open-cluster-management.io/

Apache
License 2.0

OpenWhisk Apache OpenWhisk is an open source serverless platform to
execute functions triggered by events.
https://openwhisk.apache.org

Apache
License 2.0

Docker /
CRI-O /
Containerd

Runtime engine to execute containerized applications. Apache
License, 2.0

Prometheus Prometheus is an open-source monitoring system.
https://prometheus.io/

Apache
License 2.0

Submariner Submariner is a CNCF project that enables direct networking
between Pods and Services in different Kubernetes based
clusters, either on-premises or in the cloud.
https://submariner.io/

Apache
License 2.0
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RabbitMQ RabbitMQ is an open-source message broker that helps in
scaling applications by deploying a message queuing
mechanism in between them.
https://www.rabbitmq.com/

Mozilla Public
License 2.0

Golang Golang is an open-source, compiled, statically typed,
high-performing, readable, and efficient programming
language designed by Google, that allows programs to be
containerized into very small images, easy to manage and run
in the Edge and Cloud.
https://go.dev/

3-clause BSD +
patent grant

6.2.2 Component internal architecture

The internal conceptual architecture of this component is shown in Figure 96 and shows the
functionality described previously in section 6.1:

Figure 96: Diagram of WP4 components and Orchestration pipeline with runtime adaptation based on
OpenWhisk metrics collected in Prometheus.

Apart from the baseline technologies used by the Orchestrator, this component uses the
following applications (Table 18) developed during the project:
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Table 18: Components required for the Orchestrator once the Deployment graph has been received.

Name Description License
Dependen-

cies
Baseline
tools

Translator This component exposes an API to
receive JSON description of the
application (Deployment graph)

Apache
License
2.0

Open Cluster
Management

Golang,
Docker.

OpenWhisk-Proxy
(OW Proxy)

This component is a functions
orchestrator in the continuum
edge to cloud, which connects to
tools like OpenWhisk and other
FaaS.

Apache
License
2.0

Operator,
OpenWhisk

Golang,
Docker,
OpenWhisk

Workflow CRD
Operator
(developed as part of
WP5)

The Operator is the component
that connects to Kubernetes to be
aware of changes in the
applications manifests.

Apache
License
2.0

Operator,
Kubernetes,
OCM, OW
Proxy

Golang,
Docker,
Kubernetes

Monitoring Alerts
(Alarming
microservice)

The Monitoring Alerts system is
the component responsible for
checking that QoS definitions are
met by the applications/
infrastructures.

Apache
License
2.0

RabbitMQ,
Translator

Golang,
Prometheus,
RabbitMQ,
Docker

6.2.2.1 From JSON deployment graph to ManifestWork to workflow

JSON application graph to YAML workflow CRD

The following code snippets (Code 18) show how the JSON description of the application in the
Deployment Graph is transformed into a YAML ManifestWork that will incorporate all the
information from WP3 and WP4 into WP5 Workflow CRD.

Code 18: Code snippet with JSON Deployment Graph describing the application.

{

"application": {

"appName": "apptest1",

"app_id": "app-test",

"SoftwareImage": "",

"flows": [

{

"flowID": "cd8e6011e15212bc",

"flowName": "testing-artifact-image",

"native": false,

"type": "Flow",

"executorMode": "NoderedFunction",

"artifact": "registry.atosresearch.eu:18465/physicsgeorge185",

"allocations": [

"cluster0"

D4.2 – Cloud Platform Services for a Global Space-Time Continuum Interplay
Scientific Report and Prototype Description V2

Page | 126



H2020-ICT-40-2020 (RIA) PHYSICS - 101017047

],

"functions": [

{

"displayName": "Hello?",

"code": "function main(msg){\nmsg.payload=msg.payload+' hello';\nreturn

msg;}",

"type": "Function",

"id": "6234e8d5c6b86c8f",

"sequence": 1,

"allocations": [],

"annotations": {}

}

],

"annotations": {

"memory": "512",

"locality": "Cloud",

"timeout": "300000",

"goal": "performance"

},

"hasAction": []

}

],

"owner": "Carlos"

},

"platform": {

"cluster0": {

"id": "cluster0",

"name": "hub-as-spoke",

"type": "Cloud",

"total_resources": {

"nb_cpu": 28,

"nb_gpu": 0,

"memory_in_MB": 103981

},

"architecture": "x86_64",

"objective_scores": {

"Energy": 60,

"Performance": 70,

"Availability": 75

}

}

},

"allocations": [

{

"flowID": "cd8e6011e15212bc",

"allocations": [

{

"cluster": "cluster0",

"resource_id": "cd8e6011e15212bc"

}

]

}]}

The Translator corrects possible formatting issues that are not accepted by Kubernetes and
incorporates the required information for the Workflow CRD into a YAML formatted
Manifeswork (Code 19), ignoring redundant data.
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Code 19: Code Snippet with YAML ManifestWork that incorporates the Workflow CRD from the previous
Deployment Graph.

---

apiVersion: work.open-cluster-management.io/v1

kind: ManifestWork

metadata:

namespace: hub-as-spoke #azure2 #okdhub-cluster

name: apptest1-testing-artifact-image

spec:

workload:

manifests:

- apiVersion: wp5.physics-faas.eu/v1alpha1

kind: Workflow

id: cd8e6011e15212bc

metadata:

name: testing-artifact-image

namespace: default

annotations:

goal: "performance"

locality: "Cloud"

memory: "512"

timeout: "300000"

spec:

execution: NoderedFunction

listOfActions:

- id: cd8e6011e15212bc

native: false

platform: openwhisk # DEFAULT

type: Flow

actions:

- name: testing-artifact-image

defaultParams:

actionname-host: ip

actionname-namespace: guest

actionname-credentials: sjavbisebces

id: cd8e6011e15212bc

image: registry/image:label

runtime: blackbox

semantics:

memory: "io-intensive"

annotations:

goal: "performance"

locality: "Cloud"

memory: "512"

timeout: "300000"

manifestConfigs:

- resourceIdentifier:

group: wp5.physics-faas.eu

name: testing-artifact-image

namespace: default

resource: workflows

feedbackRules:

# - type: WellKnownStatus

- type: JSONPaths

jsonPaths:

- name: namespace
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path: '.status.actionStatus[0].actionNamespace'

- name: host

path: '.status.actionStatus[0].actionHost'

- name: credentials

path: '.status.actionStatus[0].actionCredentials'

Operator and OpenWhisk Proxy microservice

The Workflow CRD Operator component is a Kubernetes/OCM controller that is running on each
cluster of the PHYSICS platform, which is responsible for getting and applying the workflow
information contained in the ManifestWorks generated by the Translator. To do that, this
component listens first for the creation of new ManifestWorks or changes in them to process
then the actions derived from this information by connecting to the OW Proxy application.

The component responsible for applying these actions is the OpenWhisk Proxy (OW Proxy)
microservice. This component connects to the OpenWhisk API to deploy and manage workflow
functions in the corresponding nodes. It also exposes a REST API with all the operations needed
by the Operator to implement and execute the ManifestWorks workflows, including annotations
(e.g., memory, limits, etc.) defined in these ManifestWorks.

Although the OpenWhisk Proxy component is used in this project to connect to OpenWhisk, it
also uses a modular approach that makes possible an easy incorporation of other FaaS
technologies like Knative and Kubeless.

Feedback status and default parameters

Once the OpenWhisk receives the function and this gets deployed, the OpenWhisk Proxy
populates the Workflow CRD Status with the information required for the action invocation. The
action invocation information and credentials are then communicated to the Hub Cluster using
OCM feedback Status. Once in the Hub cluster, the Translator can collect this information and
feed the one required to those workflows in an application that may require it to connect the
overall application using OpenWhisk default parameters. This field has been provided in the
Workflow CRD in collaboration with WP5 to pass the information.

6.2.2.2 Monitoring-Alerts and ManifestWork updates

The Monitoring-Alerts component is a Golang application responsible for managing the QoS
objects used to monitor and check that applications and infrastructure metrics values
accomplish the QoS requirements defined by users. First, this tool is responsible for creating and
managing these QoS definitions. This also includes a REST API that can be accessed by other
components to do these operations. Then, this component periodically connects to Prometheus
to get the metrics defined in the QoS definitions in order to check that these metrics values meet
the QoS requirements. Finally, if this tool detects that some QoS does not meet the user
requirements, then it sends an alert message to the message broker (i.e., RabbitMQ).

The following snippet shows a QoS definition example in a JSON format (Code 20). This JSON
defines the Prometheus metrics that are going to be monitored and checked, and the values or
constraints for these metrics. If the values don’t match the defined constraint, then the
component sends a notification message to the message broker.
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Code 20: Code snippet showing QoS definition example

{

"id": "qosId1234",

"name": "openwhisk_action_waitTime_seconds_count_definition",

"state": "started",

"details": {

"name": "qos-definition-name",

"creation": "2023-06-06T00:00:00Z",

"guarantees": [{

"name": "openwhisk_action_waitTime_seconds_count",

"constraint": "[metric1/metric2] < XXX"

}]

}

}

This monitoring component manages and evaluates OpenWhisk metrics that are sent to
Prometheus. These metrics are used to measure the status of the actions deployed and running
by the orchestrator in the nodes.

OpenWhisk metrics in Prometheus metric collection

The QoS constraint used in the Monitoring Alarms component is the following:

Code 21: Code Snippet for Prometheus metric processing

openwhisk_action_waitTime_seconds_sum / openwhisk_action_waitTime_seconds_count < XXX

Prometheus gathers these metrics from OpenWhisk and makes them accessible from the API
used by tools like the Monitoring Alerts system.

Alarm queue in RabbitMQ

All the alarm notifications that are sent to the message broker have the following information:
the QoS definition identifiers, the metric value that generated the alarm, the datetime, and the
action identifier.

Code 22: Code snippet of the Alarm notification example

{

"QoS": "openwhisk_action_waitTime_seconds_count",

"QoSId": "d03",

"Result": [{

"key": "10.42.1.140:9095",

"action": "testing-artifact-image/testing-artifact-image",

"value": 11.639000000000001,

"datetime": "2023-08-23T12:04:49.713Z"

}

]

}

Update default parameters after alarm trigger

The trigger signals the Translator to update the Default parameters with the feedback status
values for the secondary location and allow this way a reconfiguration based on infrastructure
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load (Figure 97). Using the ID of the application and the function/workflow name, it can collect
this information from the secondary cluster and update all the default parameters that mention
that function name within the same application similar to how it updates the default parameters
in two-step deployment explained in the previous section 6.2.2.1 (Table 19).

Figure 97: Plan, Do, Check, Act cycle in the Orchestrator

Table 19: Update of fields for default parameters in the ManifestWork due to the reallocation of
interconnected functions.

YAML MANIFESTWORK BEFORE ALARM YAML MANIFESTWORK AFTER ALARM
(Updated default params)

actions:

- name: testing-artifact-image

defaultParams:

actionname-host: ip-first

actionname-namespace: guest

actionname-credentials: creds

actions:

- name: testing-artifact-image

defaultParams:

actionname-host: ip-fallback

actionname-namespace: guest

actionname-credentials: fallback-creds

6.2.3 Interfaces and integrations

The information from the Reasoning Framework for Semantic Matching and Runtime
Adaptation about resource management controllers’ endpoints and credentials, to be defined in
WP5, to be able to connect to the target controller to deploy the workload. The Global
Continuum Patterns Placement component starts the deployment of an application or a
standalone function in the selected target FaaS platform. The Orchestrator parses and translates
the Deployment Graph from the Continuum Placement to a deployment schema valid for the
underlying FaaS platform (OpenWhisk) and this is used by the WP5 operator and OpenWhisk
proxy to interact with the API of the target FaaS platform to deploy the workload. The
Orchestrator has to extract and translate not only the functions contained in the application but
also keep connection between the set of functions that form the application.
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There are API interfaces available to expose the basic functionalities of the Orchestrator to other
components. The operations in this API are REST API around the main entities of the component
(like functions and sequences). In a FaaS environment we have to separate the execution of a
function in two steps: initialization phase (deployment) and run phase (invocation). This is
necessary because the FaaS engine has to preconfigure the runtime environment to allow fast
execution of functions (function loading and preparation). The run phase receives the
parameters provided at the runtime and starts the function. This execution could be a warm
start (reusing runtime engines like docker containers) or a cold start for the first time. The
following table shows the API operations of the orchestrator components.

6.2.3.1. Translator single endpoint API

The Translator component offers one single operation which is responsible for creating the
ManifestWorks (Table 20).

Table 20: Translator unique POST endpoint that received the JSON deployment graph.

Method Path/URI Description

POST /api/v1/deploy
Creates a ManifestWork per function included in
the JSON description of the application
(deployment graph)

6.2.3.2. Monitoring-Alerts component API

This component offers a REST API that can be accessed by other PHYSICS components. These
are the methods exposed by this API (Table 21).

Table 21: Endpoints for the Alarm microservice API.

Method Path/URI Description

GET /api/v1/qos Returns the list of all QoS definitions

POST /api/v1/qos Creates a new QoS definition

GET /api/v1/qos/{id}
Returns the information about the QoS definition
identified by {id}

DELETE /api/v1/qos/{id} Deletes the QoS definition identified by {id}

6.2.3.3. OpenWhisk proxy API

This component is called by the Operator (WP5) component, and it exposes a REST API offering
the operations shown in Table 22.
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Table 22: Endpoints of the OpenWhisk proxy API.

Method Path/URI Description

GET /api/v1/function/{id}
Returns the information about a function
(packages+actions)

POST /api/v1/function
Creates and deploys a function (JSON
definition)

DELETE /api/v1/function/{id} Deletes a function

PUT /api/v1/function/{id} Updates a function

GET /api/v1/functions Returns the list of functions (packages+actions)

POST /api/v1/functions/deploy
Creates and deploys a function (Manifest/YAML
definition)

POST /api/v1/functions/run Runs the actions of the function

POST
/api/v1/functions/undepl
oy

Undeploy the function

6.3. Demonstration and experimentation

6.3.1. Scenario or experimentation description

The following demonstration scenario shows a complete deployment and adaptation flow
(Figure 98), which includes the deployment of a “deployment graph” in the Translator (1), and
the resulting interactions between this component, the Operator, the OW-Proxy and the
Monitoring Alertes needed to deploy, run (2,3) and update (4,5) functions in the selected testbed
node.
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Figure 98: Deployment flow

6.3.1.1- Translator - Deployment Graph

The process starts when the Translator receives a Deployment Graph (Code 23).

1. Send Deployment Graph JSON to Translator (POST /api/v1/deploy)

Code 23: Code snippet showing an example of a Deployment Graph

{ "application": {

"appName": "",

"app_id": "app-test-infra-atos",

"SoftwareImage": "",

"flows": [ {

"flowID": "f4a0fb9518d4df8d",

"flowName": "testing-artifact-image",

"native": false,

"type": "Flow",

"executorMode": "NoderedFunction",

"artifact": "registry.atosresearch.eu:18465/physicsgeorge185",

"allocations": [

"cluster0"],

"functions": [{

"displayName": "Hello?",

"code": "function main(msg){\nmsg.payload=msg.payload+'

hello';\nreturn msg;}",

"type": "Function",

"id": "6234e8d5c6b86c8f",

"sequence": 1,

"allocations": [],
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"annotations": {}}],

"annotations": {

"memory": "512",

"locality": "Cloud",

"timeout": "300000",

"goal": "performance"

},

"hasAction": []

}

],

"owner": "Carlos"

},

"platform": {

"cluster0": {

"id": "cluster0",

"name": "hub-as-spoke",

"type": "Cloud",

"total_resources": {

"nb_cpu": 28,

"nb_gpu": 0,

"memory_in_MB": 103981

},

"architecture": "x86_64",

"objective_scores": {

"Energy": 60,

"Performance": 70,

"Availability": 75

}

}

},

"allocations": [{

"flowID": "f4a0fb9518d4df8d",

"allocations": [{

"cluster": "cluster0",

"resource_id": "f4a0fb9518d4df8d"}]}]

}

2. When the Translator receives the Deployment Graph, it generates the corresponding
ManifestWorks with the Workflow CR object inside..

3. These ManifestWorks are sent to OCM.
4. OCM sends the ManifestWorks to the correspondent managed cluster (i.e., Kubernetes).

a. Create/Delete/Update CR entity (Workflow CRD)
b. Manifest is applied (Spec)

5. After ManifestWorks are sent to Kubernetes nodes via OCM, we can see them in the
managed cluster (Code 24).
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Code 24: Code snippet of the output of the ManifestWorks in the cluster

$ kubectl get manifestworks -A

NAMESPACE NAME AGE
hub-as-spoke chj2avbf753pdpdla6ug--testing-native-sequence 21s
hub-as-spoke chj2avbf753pdpdla6ug--testing-artifact-image 21s

6.3.1.2- Workflow CRD Operator

This component (from WP5, see D5.2) is continuously listening for changes in the Kubernetes
nodes. When the Operator detects a new Workflow CR object or an update in an existing one,
then it connects to OpenWhisk Proxy application to apply the needed changes:

1. The Operator checks for status changes and reconciles Spec and Status for Workflow
CRD

2. The Operator connects to OpenWhisk Proxy to (un)register the corresponding functions

6.3.1.3- OpenWhisk Proxy

This component exposes a REST API to allow other components to interact with FaaS tools like
OpenWhisk. In this case, after receiving instructions from the Operator it does the following:

1. OpenWhisk-Proxy connects to OpenWhisk API to deploy the functions
2. This component uses the OpenWhisk API to deploy, update and delete the actions when

required.

6.3.1.4- Monitoring Alerts

The Monitoring Alerts component is continuously checking the QoS constraints metrics defined
in the QoS definitions (see section 6.2.2.2 Monitoring-Alerts and ManifestWork updates). Thus,
the first thing that needs to be done is the definition of the QoS object with its metrics (Code 25).

1. Add a QoS object / definition (POST /api/v1/qos)
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Code 25: Code snippet of the QoS object/definition

{

"id": "d03",

"name": "openwhisk_action_waitTime_seconds_count_definition",

"state": "started",

"details": {

"id": "d03",

"type": "qos",

"name": "qos-definition-name",

"creation": "2023-06-06T00:00:00Z",

"guarantees": [{

"name": "openwhisk_action_waitTime_seconds_count",

"constraint":

"[openwhisk_action_waitTime_seconds_sum%2Fopenwhisk_action_waitTime_seconds_count] < 4"

} ] }

}

2. The Monitoring-Alerts retrieves the metrics values from Prometheus and evaluates the
QoS constraints defined in the QoS definitions.

3. In case the Monitoring-Alerts detects a violation, it sends a notification message to
RabbitMQ. These notifications include the identifier of the action (Code 26).

Code 26: Code snippet of the QoS violation notification

{
"QoS": "openwhisk_action_waitTime_seconds_count",
"QoSId": "d03",
"Result": [{

"key": "10.42.1.140:9095",
"action": "testing-artifact-image/testing-artifact-image",
"value": 11.639000000000001,
"datetime": "2023-08-23T12:04:49.713Z"

}
]

}

6.3.1.5- RabbitMQ violations - Translator

The last step includes the update of the function after an alert notification has been received.

1. RabbitMQ receives the alert notification.
2. The translator reads the alert notification
3. The translator checks for the application/workflow to update the dependent function

parameters for remote invocations to point to the fallback cluster of the failing workflow.
4. Translator notifies through rabbitmq of the changes to be processed in the user

interface.
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7. INTEGRATION WITH PHYSICS PLATFORM

Physics platform uses Jenkins pipelines to build images, test for features, push those into the
Harbour image repository as well as incorporate those images into the platform as functions or
as services. Due to the presence of this infrastructure required for other WP (see deliverable
D3.2), it has been decided to leverage the platform for other components that are integral parts
of the orchestration mechanisms (WP4). Therefore, the components from WP4 use the GitLab
code repository to feed code information into Jenkins and finally create images and push
commands into the Kubernetes cluster. A more detailed description of this process of
component installation and usage will be provided in the Physics handbook in deliverable D6.2
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8. CONCLUSIONS

This deliverable reports on the work done in WP4 in the totality of the PHYSICS project. It
describes the prototype per isolated component in this period that targets the objectives and
basic functionalities required from WP4 as described in the project architecture. An overview of
each of the components is provided as well as some of the important interconnections between
them. Some scenarios and experimentations per standalone component have been described in
this deliverable with some outcomes and conclusions. The WP3 output (application graph
semantic) is decorated in the WP4 pipeline to form a global Deployment graph with inputs from
WP3 and WP5 at different stages. The Deployment graph is the main resource to obtain a final
deployment in the target Kubernetes infrastructure. Instructions to download and configure the
independent components are provided in the D6.2. The open source code of the toolkit is
available in the official source code repository. Next efforts will be concentrated on the final
integration between the different WPs to obtain an interoperated toolkit for PHYSICS that uses
the advances developed in this WP4.
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