
OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

D3.2 – FUNCTIONAL AND SEMANTIC CONTINUUM

SERVICES DESIGN FRAMEWORK SCI. REPORT AND

PROTOTYPE DESCRIPTION

Lead Beneficiary HUA
Work Package Ref. WP3 – Functional and Semantic Continuum Services Design

Framework
Task Ref. Tasks 3.1, 3.2, 3.3, 3.4
Deliverable Title D3.2 – Functional and Semantic Continuum Services Design

Framework Sci. Report and Prototype Description
Due Date 2023-09-30
Delivered Date 2023-09-29
Revision Number 1.0
Dissemination Level Public (PU)
Type Report (R)
Document Status Release
Review Status Internally Reviewed and Quality Assurance Reviewed
Document Acceptance WP Leader Accepted and Coordinator Accepted
EC Project Officer Mr. Stefano Foglietta

Ref. Ares(2023)6610604 - 29/09/2023

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

CONTRIBUTING PARTNERS

Partner Acronym Role1

HUA Lead Beneficiary,
Contributor

GFT Contributor
HPE Contributor
InQ Contributor
RH Contributor
FTDS Contributor
ATOS Internal Reviewer
ISPRINT Internal Reviewer
INNOV Quality Assurance

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |2

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

REVISION HISTORY

Version Date Partner(s) Description

0.1 2023-07-15 HUA Initial ToC Version based on V1

0.2 2023-07-28 HUA Updated ToC Version, including new section headers where

appropriate

0.3 2023-08-10 HUA Inclusion of performance pipeline text

0.4 2023-8-31 InQ Inclusion of Gaming server inputs

0.41 2023-9-1 GFT, HUA,

HPE

Finalization of the DevOps pipelines and Design

Environment updates

0.42 2023-09-08 FTDS Optimization Digital Annealer Optimizer Pattern and new

chapter Advanced customization of Digital Annealer

0.43 2023-9-12 HUA Inclusion of new patterns text

0.44 2023-9-13 HUA Final updates in the Semantic Annotations section

0.45 2023-9-18 RHT, InQ Additions in Section 6, new patterns in Section 4

0.46 2023-9-20 HUA Final editing and reformatting

0.5 2023-9-21 iSPRINT,

FTDS

1st Version for Internal Review

2.0 2023-9-27 HUA Version for Quality Assurance

2.1 2023-9-28 INNOV QA performed

3.0 2023-9-29 HUA Version for Submission

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |3

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

LIST OF ABBREVIATIONS

Action Openwhisk terminology for function
AI Artificial Intelligence
ANN Artificial Neural Network
API Application Programming Interface
CI/CD Continuous Integration/Continuous Delivery
DAG Directed Acyclic Graph
DAU Digital Annealer Unit
DB Database
DevOps Development and Operations
ETL Extract Transform Load
FaaS Function as a Service
GCF Google Cloud Functions
HOBO Higher Order Binary Optimization
IaaS Infrastructure as a Service
IE Inference Engine, part of the Reasoning Framework
IoT Internet of Things
JS Javascript
JSON Javascript Object Notation
JSON-LD JSON Linked Data
KEDA Kubernetes Event Driven Autoscaler
K8s Kubernetes
LDAP Lightweight Directory Access Protocol
MPI Message Passing Interface
MVP Mean Viable Product
NPM Node Package Manager, repository of Node.js
OKD Origin Key Distribution

OW Openwhisk
OWL Ontology Web Language
PaaS Platform as a Service
QoS Quality of Service
QUBO Quadratic Unconstrained Binary Optimization
REST Representational State Transfer
SFG Serverless Function Generator
SPMD Single Program Multiple Data
UC Use Case
UI User Interface
UML Unified Modeling Language
URL Uniform Resource Locator
YAML Yet Another Modelling Language

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |4

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

EXECUTIVE SUMMARY

The aim of this deliverable is to present the complete PHYSICS Design and Development
Environment, the entry point to the PHYSICS platform that aims to overcome existing limitations of
FaaS platforms, especially in relation to application creation in a functional programming style. This
document has been built on top of the according V1 produced in M13, including the previous
content, updated where necessary, so that there is one overall document that describes the entire
WP3 outcomes at the end of the project. A summary of the changes made is included in the
Summary of Changes table, detailing which sections are identical or very similar to the V1 version
and which ones are new or have been heavily updated since V1.

The PHYSICS Design environment is based on the popular Node-RED function and workflow editor,
coupled with an internally developed backend system to adapt the described application to the FaaS
platform. It offers an extensive list of features such as the ability to use built-in and extended
Node-RED packaged nodes from external repositories, packaging all the necessary artefacts aiming
at the creation of the deployable function artefact to the FaaS platform. The developers may utilize
the presented environment to either create functions directly for execution, workflows for executing
functions, as well as workflows executed as functions, including the ability to dynamically alter the
location of these deployed functions. Any Node-RED flow can be deployed as a function, exploiting
the abundance of existing logic in Node-RED and the visual, user-friendly environment. Two ways of
including annotations (semantic nodes and in-code annotations) have been created, giving the
ability to the developer to pass directives and preferences down the management stacks, including
aspects of locality, affinity, sizing etc. The environment provides a set of built-in patterns and
subflows that can be dragged and dropped in the user created flows in order to easily augment the
application creation features with functionalities revolving around context management, FaaS
interfaces adaptation, ETL and parallelization processes, security and privacy, workflow primitives
etc.

The PHYSICS application concepts have been based on an Application side ontology, in order to
support the modelling of the application in the context of PHYSICS, as well as to include the relevant
defined annotation needs. The aim of this model is to be the basis of the application graph, that will
be forwarded to the platform (WP4) for reasoning on the application needs, placement and
operation constraints.

With relation to the elasticity logic, a design for bridging it to wider parameters such as cluster
management cooperation and the nature of FaaS systems has been sketched, aiming at integrating
the application side management with the overall behaviour of the platform and intended needs of
both developers and system administrators.

During the final period of the project, the PHYSICS Design Environment has been complemented
with a variety of new features, including:

● A centralised login mechanism, integrating with the project main login LDAP process that
gives access to the various subsystems (code repository, DE, image registry etc.)

● The ability to import existing images for the creation of a function, exploiting legacy or
otherwise created code that needs to be imported and executed as a function

● A cloud-based version of the DE, removing the need for developers to have their own local
containers, thus reducing the complexity of using the PHYSICS solution and migrating to a
complete SaaS solution

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |5

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● A subflow export functionality, that aims to automate the process of transforming created
subflows into npm packaged nodes, thus simplifying and automating the subflow
installation and usage process

● A newly introduced Performance Pipeline functionality, that aims to automate the process of
performance benchmarking of the created functions, as well as enabling resource usage
annotations for them, leading to optimised management of their execution in the
subsequent platform scheduling layers

● Newly introduced visualisations at the user interface, in order to present information on the
FaaS cluster status, as well as the results of the function performance analysis

● Finalisation of the PHYSICS Application model and according graph, aiming to include the
various different semantics needed by either the developer or the platform layers for
optimised management and operation, while enabling its usage at runtime through the
Semantic Extractor service

● New provided patterns and helper subflows that extend the currently available list of
PHYSICS-produced nodes and subflows available in the PHYSICS palette of the Node-RED
environment. The new advancements refer to enhanced monitoring, function result
acquisition, routing between alternative endpoints at the application level, automated object
files annotation, enhanced optimization capabilities for application level problems,
semaphore structures for application level synchronisation, dynamic orchestration patterns
for invoking dynamically placed functions

● A Gaming Server implementation, that aims to organise and gamify developer training on
the PHYSICS environment usage and function/workflow creation, based on guided flow
creation scenarios and automated ways of scoring and validating user progress in the
training process

● An updated approach on the usage of KEDA as the basis for autoscaling logic, adapted to the
specific needs of FaaS systems and applications

At the end of the project, we have reached a point in which the Design Environment offers a unique
set of features and has been significantly tested and improved, based on developer and use case
feedback. Experimentation has been performed in order to enhance the robustness of the
environment, indicate ranges of parameters or abilities, benefits, or potential drawbacks of the
provided functionalities. Examples of the usage (e.g. in the case of patterns) have been included in
order to aid developers in their uptake, as well as to facilitate investigation and experimentation on
their behaviour. Furthermore, patterns available from the first period of the project have been
enhanced. As an example the Openwhisk skeleton interface pattern has been updated in order to
support better function-level error logging, while the Split-Join Multiple has been enhanced in order
to cover for errors during the parallelization of a task. Inclusion of new features such as the
Performance Pipeline support enable project-wide goals regarding optimised placement and
operation across the continuum, tailored around the specific functions that are included in the
application graph and their computational nature.

The features offered enable the creation of FaaS based applications with limited time and
knowledge of the FaaS approach, while the environment has been designed and implemented with
the goal of being extensible and adaptable to potential new needs and desires from the users.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |6

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

SUMMARY OF CHANGES FROM D3.1

CHAPTER UPDATE SECTION(s)

1,2,3,4 Minor or no updates from V1 (relevant
sections can be skipped in the Y3
review)

Sections that can be
skipped: 1.1,1.2,1.3, 2.1,
2.2, 2.3,2.4, 3.1, 3.2, 3.3,
4.1-4.9

2 New features of the DE and new
development of the Performance
Pipeline Design and Rationale

2.5, 2.6

3 Updates in the semantic annotators
section, update of the PHYSICS
ontology and Semantic Extractor
implementation

3.4-3.7

4 Newly introduced patterns 4.3.2.Improved Logging,
4.10-4.15

5 New development (Gaming Server for
training)

5

6 Almost whole new section 6.1, 6.2, 6.3, 6.4

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |7

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

CONTENTS

Executive Summary 5

Summary of Changes from D3.1 7

Contents 8

LIST OF FIGURES 13

1. Introduction 20

1.1. Objectives of the Deliverable 20

1.2. Insights from other Tasks and Deliverables 22

1.2.1 Insights from the Use Case Applications 22

1.2.2 Insights from the main technical tasks 22

1.3. Structure 22

2. PHYSICS Design Environment Core 24

2.1. Introduction-Scope 24

2.2. Relation to project requirements 26

2.3. Application Creation Use Cases 27

2.4. Design Environment Overview 27

2.4.1. Custom Runtimes and Execution/Orchestration modes 29

2.5. Design Environment App 33

2.5.1. Component Design and Processes 33

2.5.2. Subcomponents Implementation 42

2.5.3. Local Design Environment Deployment 47

2.5.4. Cloud Design Environment Deployment 48

2.6. DevOps Subsystems Support in the DE 49

2.6.1. General DevOps process 49

2.6.2. Build Pipeline Design and Implementation (Local version) 50

2.6.5. Performance Pipeline Design 53

2.6.5.1. Performance Pipeline Motivation and Overview 53

2.6.5.2. Related Work 54

2.6.5.3. Performance Pipeline Design and Process 55

2.6.5.4. Finetuning the Load Generation Process for Profiling 57

2.6.5.5. Evaluation of the Two-Stage Load Generation process 58

2.6.5.6. Performance Pipeline Execution 59

2.6.5.7. End to End Performance Pipeline Delays 62

2.6.5.8. Performance Pipeline Outputs and Multi-cluster Support 62

3. Semantic Models for Application Characteristics Description 64

3.1. Introduction- Scope of the Application Characteristics Description 64

3.2. Relation to project requirements 65

3.3. Semantics Use Cases 66

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |8

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

3.3.1. Include Annotations UC 66

3.3.2. Create Semantic Graph 66

3.4. Annotation Mechanisms Incorporation 67

3.4.1. Function level annotations mechanism 67

3.4.2. Flow level annotations mechanism- Semantic nodes 69

3.5. PHYSICS Core Application Graph Description Ontology 74

3.5.1. Included concepts description and background 75

3.5.2. Useful external ontologies 76

3.5.3. Domain model 77

3.6. PHYSICS Application Extended Ontology 80

3.6.1. Included concepts description and background 80

3.6.2. Useful external ontologies 82

3.6.3. Domain model 84

3.7. Semantic Extractor Process and Implementation 87

4. Design Patterns 90

4.1. Introduction 90

4.2. Patterns usage and inclusion 91

4.2.1. Pattern Use Cases 91

4.2.2. Patterns Incorporation 92

4.3. Node-RED flow as function pattern (OWSkeleton) 93

4.3.1. Pattern template description 93

4.3.2. Pattern implementation details 95

4.3.3. Pattern examples of usage 98

4.3.4. Pattern necessary adaptations (application side) 99

4.3.5. Pattern variations 99

4.3.7. Pattern publication means 104

4.4. Split and Join Pattern 104

4.4.1. Pattern template description 104

4.4.2. Pattern implementation details 106

4.4.3. Pattern examples of usage through a function orchestrator 106

4.4.4. Pattern necessary adaptations 108

4.4.5. Pattern limitations 108

4.4.6. Pattern variations 109

4.4.7. Pattern experimentation outcomes 110

4.4.8. Pattern publication means 113

4.5. BranchJoin Pattern 114

4.5.1. Pattern template description 114

4.5.2. Pattern implementation details 115

4.5.3. Pattern examples of usage 116

4.5.4. Pattern necessary adaptations 117

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |9

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.5.5. Pattern limitations 117

4.5.6. Pattern publication means 118

4.6. Safe and Flexible Edge ETL Pattern 118

4.6.1. Pattern template description 118

4.6.2. Pattern implementation details 120

4.6.3. Pattern examples of usage 121

4.6.4. Pattern necessary adaptations 122

4.6.5. Pattern limitations 122

4.6.6. Pattern experimentation outcomes 123

4.6.7. Pattern variations 124

4.6.8. Pattern publication means 125

4.7. Batch Request Aggregator Pattern 125

4.7.1. Pattern template description 125

4.7.2. Pattern implementation details 126

4.7.3. Pattern examples of usage 129

4.7.4. Pattern necessary adaptations 131

4.7.5. Pattern limitations 131

4.7.6. Pattern variations 131

4.7.7. Pattern experimentation outcomes 132

4.7.8. Pattern publication means 136

4.8. Cryptography Pattern 136

4.8.1. Pattern template description 136

4.8.2. Pattern implementation details 137

4.8.3. Pattern examples of usage 138

4.8.4. Pattern necessary adaptations 138

4.8.5. Pattern limitations 138

4.8.6. Pattern variations: Encrypted Storage 138

4.8.7. Pattern publication means 139

4.9. Custom Anonymization Pattern 139

4.9.1. Pattern template description 139

4.9.2. Pattern implementation details 140

4.9.3. Pattern examples of usage 141

4.9.4. Pattern limitations 141

4.9.5. Pattern variations: Presidio anonymization pattern 141

4.9.10. Pattern publication means 142

4.10. Digital Annealer Quantum-Inspired Optimization Pattern 142

4.10.1. Pattern template description 142

4.10.2. Pattern implementation details 144

4.10.3. Pattern examples of usage 145

4.10.4. Pattern limitations 153

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |10

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.10.5. Pattern experimentation 153

4.10.6. Advanced customization of Digital Annealer Optimizer Pattern 154

4.11. Openwhisk Sliding Window Action Monitor 169

4.11.1. Pattern template description 169

4.11.2. Pattern implementation details 171

4.11.3. Pattern examples of usage 172

4.11.4. Pattern publication means 174

4.12. High Availability Routing Pattern 174

4.12.1. Pattern template description 174

4.12.2. Pattern implementation details 176

4.12.3. Pattern examples of usage 178

4.12.4. Pattern limitations 178

4.12.5. Pattern publication means 179

4.13. Semaphore Node Pattern 179

4.13.1. Pattern template description 179

4.13.2. Pattern implementation details 181

4.13.3. Pattern examples of usage 182

4.13.4. Pattern necessary adaptations 182

4.13.5. Pattern limitations 182

4.13.6. Pattern variations 183

4.13.7. Pattern publication means 183

4.12. Automated Object File Annotator Pattern 184

4.12.1. Pattern template description 184

4.12.2. Pattern implementation details 185

4.12.3. Pattern examples of usage 186

4.12.4. Pattern necessary adaptations 186

4.12.5. Pattern limitations 186

4.12.6. Pattern publication means 187

4.13. Dynamic Orchestrator Pattern Section 188

4.13.1. Pattern template description 188

4.13.2. Pattern implementation details 190

4.13.4. Pattern necessary adaptations 192

4.13.5. Pattern publication means 192

4.14. Digital Signatures Pattern 193

4.14.1. Pattern template description 193

4.14.2. Pattern implementation details 194

4.14.3. Pattern examples of usage 195

4.14.4. Pattern limitations 195

4.14.5. Pattern publication means 195

4.15. Smart Contracts Pattern 196

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |11

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.15.1. Pattern template description 196

4.15.2. Pattern implementation details 197

4.15.3. Pattern examples of usage 197

4.15.4. Pattern necessary adaptations 198

4.15.5. Pattern limitations 198

4.15.6. Pattern publication means 198

5. Gamification Approach for PHYSICS Training 200

5.1. Game Mechanics 200

5.2. Game Design & Implementation 201

5.3. Game Storyline Structure 202

5.4. Game Storyline Development 204

5.5. PHYSICS Storylines 204

5.6. Future Steps 206

6. Adaptive Elasticity Controllers Implementation and Incorporation 207

6.1. Introduction- Scope 207

6.2. Relation to requirements 208

6.3. Component/Subsystem Design 208

6.3.1. KEDA overview 210

6.3.2. Benefits from using it 211

6.3.3. Elasticity controllers options 211

6.4. Component Implementation 212

6.4.1. Scaling Kubernetes cluster depending on number of OpenWhisk functions (Scaler 4)
212

6.4.2. Scaling OpenWhisk invokers or Kubernetes cluster depending on Kafka queues (Scaler
6) 214

7. Conclusions 216

References 218

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |12

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

LIST OF FIGURES

Figure 1: Positioning of WP3 related tools in PHYSICS

Figure 2: Comparison between a text-based workflow syntax (GCF) and Node-RED flow

Figure 3: Create Application UC from D2.4

Figure 4: Test Application UC from D2.4

Figure 5: Overview of the PHYSICS Design Environment

Figure 6: Example Customization of the Function Execution Runtime

Figure 7: Node-RED flow to Node-RED runtime Action Image

Figure 8: Different Means of Node-RED Orchestrator Execution

Figure 9: Embedded Node-RED environment in PHYSICS Design Environment for flow creation

Figure 10: Design Environment Build Process and Relevant UI

Figure 11: Design Environment Test Process and Example Node-RED flow

Figure 12: Design Environment Create Application Graph Process

Figure 13: Design Environment Create Graphs UIs

Figure 14: Design Environment Deploy Application Process

Figure 15: Subflow Export Process

Figure 16: Subflow Export Process in the UI

Figure 17: Performance Visualization Process Diagram

Figure 18: Performance Visualization Information in the DE

Figure 19: Image import Process Diagram

Figure 20: Image import User Interface

Figure 21: Import parameters for Jenkins pipeline

Figure 22: POD parameters for Jenkins slave

Figure 23: Check from which location to retrieve the docker image

Figure 24: Create the OpenWhisk action with the docker image retrieved

Figure 25: Authentication

Figure 26: Overview of the Inner Architecture of the Design Environment

Figure 27: Cloud Design Environment Architecture

Figure 28: DevOps process for the generation of deployable artefacts of the user

Figure 29: Performance Pipeline Process and Architecture

Figure 30: Idle Times Correction through a two-stage Load Generation Process

Figure 31: Difference in Observed Metrics between Dry and Main Run

Figure 32: Performance Test Tab in the PHYSICS Design Environment

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |13

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 33: Example Execution of the Performance Pipeline in Jenkins

Figure 34: Example output times from the load generation benchmark data

Figure 35: Sort function execution duration for different memory sizes

Figure 36: Performance Pipeline Indicative Delays

Figure 37: Example Function Benchmark Output of a Load Generation across Different Clusters

Figure 38: Include Annotations Semantic UC specialization

Figure 39: Create Application Graph UC from a semantic perspective

Figure 40: Overview of Semantic Annotations Mechanism Interactions

Figure 41: PHYSICS Annotators palette available in Node-RED

Figure 42: Executor Mode Semantic Annotator Node

Figure 43: Affinity Semantic Annotator Node

Figure 44: QoS Requirements Semantic Node

Figure 45: Custom Function Image Importer Semantic Node

Figure 46: Custom Function Inclusion in App Graph

Figure 47: Software Artefact Replacement Process for Custom Function Image

Figure 48: Sizing Annotator Semantic Annotator Node

Figure 49: JSON Export of an instantiated Executor Mode Semantic Annotator

Figure 50: Application Graph Semantic Output towards the Reasoning Framework of WP4

Figure 51: Pattern Definition Sources

Figure 52: Patterns Inclusion Use Case

Figure 53: Incorporation of a pattern in PHYSICS and beyond

Figure 54: OW Skeleton Pattern

Figure 55: Indicative example of Timeout Error Report

Figure 56: Error Throwing Structure

Figure 57: Preparation of Response For Detailed Error Report

Figure 58: Full Activation Result including Error Details

Figure 59: Example of Context Reuse issue in warm containers

Figure 60: Deterministic Context Purge (OW Tabula Rasa pattern) Skeleton flow

Figure 61: Successful context purging in an OW Tabula Rasa Action

Figure 62: Updated settings of Node-RED for supporting the Tabula Rasa pattern variation

Figure 63: Change from synchronous to asynchronous variable settings in OW Tabula Rasa

Figure 64: Example Usage of the Async Get/Set subflow

Figure 65: Example Orchestration flow as function

Figure 66: Split Join Pattern Concept, Implementation and Example

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |14

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 67: Example Orchestrator Flow for the Split Join Usage

Figure 68: SplitJoinMultiple Variation for dynamic regulation of split size

Figure 69: SplitJoinMultiple Node and Parameters

Figure 70: Example of Needed Input Resizing in SplitJoinMultiple

Figure 71: Testing flow for experimentation data of SplitJoinMultiple message management
overheads

Figure 72: Indicative delays for SplitJoinMultiple message manipulation for different split sizes

Figure 73: Indicative delays for larger messages with the same input to split ratios

Figure 74: Performance Difference between Function and Service mode for the SJ pattern

Figure 75: Example of msg.parts structure normally used in the join node reassembly

Figure 76: Erroneous message reassembly based on simple message count

Figure 77: Correct message reassembly based on the BranchJoin Node

Figure 78: Parameter Setting in the BranchJoin Node

Figure 79: Example Usage of the BranchJoin in two branches

Figure 80: Implementation Flow for the Edge ETL Pattern

Figure 81: Example of Inclusion of the Edge ETL pattern in a service mode

Figure 82: Testing Flows for experimenting with the Edge ETL pattern

Figure 83: DB Failed Samples Variation over time in testing scenario

Figure 84: Scaling Patterns (a),(b) from [33] compared to the proposed pattern (c)

Figure 85: Batch Request Aggregator Pattern Structure

Figure 86: Node-RED flow implementation of the Batch Request Aggregator pattern

Figure 87: Example flow for the inclusion of the Batch Request Aggregator

Figure 88: Example of function adaptation for use with Request Aggregator

Figure 89: Model Structure for Usage with the Request Aggregator Batch Regulation

Figure 90: Target Service for Investigation of Benefits of the RA Pattern

Figure 91: Investigation of Batch Size and Inter-arrival Period on the Response Time Average

Figure 92: Average batch size of requests (Y axis) in milliseconds as the experiment progresses

Figure 93: Average number of containers (Y axis) in the system as the experiment progresses

Figure 94: Average frequency of requests (Y axis) in the system as the experiment progresses

Figure 95: Response time of requests (Y axis) in milliseconds as the experiment progresses

Figure 96: Encryption/Decryption Flow Implementation

Figure 97: Diagram of the Encrypted Storage variation

Figure 98: Encrypted/Decrypted Storage Variation of the Cryptography Pattern

Figure 99: Implementation Flow for the Custom Anonymization Pattern

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |15

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 100: Presidio Anonymization Pattern diagram

Figure 101: Presidio Anonymization Implementation Flow

Figure 102: Fujitsu Digital Annealer Unit

Figure 103: Specifying the global solver parameters node-RED flow implementation

Figure 104: Specifying the parameters relative to the chosen optimization solving method

Figure 105: Specifying the QUBO parameters Node-RED implementation

Figure 106: QUBO formulation of the two-persons assignment in Node-RED

Figure 107: Checking solver availability Node-RED implementation

Figure 108: Solving the QUBO Node-RED implementation

Figure 109: Response Body of a QUBO solution

Figure 110: Response Body of a QUBO solution

Figure 111: Overview of classes for Configuration of DA

Figure 112: UML diagram for classes in the configuration module

Figure 113: Abstract base class of all configuration

Figure 114: Overall view of the ConfigGeneral class

Figure 115: Overview of the ConfigSolverDA2PT class

Figure 116: Overview of the ConfigSolverDA2 class

Figure 117: Overview of the ConfigSolverDA3 class

Figure 118: Overview of the Solver class

Figure 119: Overview of the Solution class

Figure 120: Loading of Requirements for Javascript Classes

Figure 121: Problem Definition for the two-person Assignment

Figure 122: Addition of Configuration Information for QUBO Problem

Figure 123: Definition of Solver Object

Figure 124: Retrieval of Result from Solver

Figure 125: Result Post-processing for Solver Output

Figure 126: Final Output of Solver Results

Figure 127: Implementation Flow for the OW Monitor

Figure 128: Example of OW Monitor Usage

Figure 129: Example of OW Monitor Usage

Figure 130: Output of the OW Monitor Process

Figure 131: Integrated Use of Router with the OW Monitor

Figure 132: Configuration UI for the Router

Figure 133: Implementation Flow for the Router

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |16

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 134: Integrated Usage Between Router, OW Monitor and Forecaster from WP4

Figure 135: Implementation of the Semaphore Service

Figure 136: Example Use of the Semaphore Pattern for the Instantiation of a
Producer/Consumer structure

Figure 137: Implementation of the Automated Object File Annotator Pattern

Figure 138: Example Inputs and Outputs of the Automated Object File Annotator

Figure 139: Implementation of the Dynamic Orchestrator Pattern

Figure 140: Example Function Input including Dynamic Parameters of Invocation

Figure 141: Example Function using the Dynamic Orchestrator Pattern

Figure 142: Example of App Graph with Dynamic Action Inclusion

Figure 143: Node-RED flow of the Digital Signatures Pattern

Figure 144: Example Output of the Digital Signature Node

Figure 145: Example Usage Flows of the Digital Signature

Figure 146: Smart Contract Service Implementation

Figure 147: Test Flows for Invoking the Contract Server

Figure 148: Deployment Playground of Smart Contracts Pattern

Figure 149 :Gaming Server Architecture

Figure 150: File structure of a test storyline

Figure 151: Template Structure of a Gaming Scenario

Figure 152: Storyline Development UI in the Gaming Server

Figure 153: Execution of the Gaming Server for the Defined Storylines

Figure 154: Elasticity Controller Flow of Operations

Figure 155: Elasticity Controller Relation to PHYSICS Architecture

Figure 156: KEDA Architecture

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |17

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

LIST OF TABLES

TABLE 1: SERVERLESS FUNCTION GENERATOR API
TABLE 2: ARTIFACT QUERY SERVICE API
TABLE 3: GRAPH DRAFT SERVICE API
TABLE 4: FUNCTION SERVICE API
TABLE 5: IMPORT IMAGE SERVICE API
TABLE 6: CLUSTER SERVICE API
TABLE 7: DIFFERENCE IN ACQUIRED RESOURCE USAGE METRICS BETWEEN THE DRY AND THE MAIN RUN

TABLE 8: ADAPTABLE DETERMINATION OF DIVERSE REQUEST RATES FOR DIFFERENT FUNCTION TYPES

TABLE 9: KEY CONCEPTS OF THE PHYSICS CORE ONTOLOGY IN AN OBJECT-PROPERTY-VALUE SYNTAX

TABLE 10: KEY CONCEPTS OF THE PHYSICS EXTENDED ONTOLOGY IN AN OBJECT-PROPERTY-VALUE SYNTAX

TABLE 11: TEMPLATE DESCRIPTION FOR NODE-RED FLOW AS FUNCTION PATTERN

TABLE 12: TEMPLATE DESCRIPTION FOR SPLIT JOIN PATTERN

TABLE 13: TEMPLATE DESCRIPTION FOR THE BRANCHJOIN PATTERN

TABLE 14: TEMPLATE DESCRIPTION FOR SAFE AND FLEXIBLE EDGE ETL PATTERN

TABLE 15: TEMPLATE DESCRIPTION FOR THE BATCH REQUEST AGGREGATION PATTERN

TABLE 16: TEMPLATE DESCRIPTION FOR THE CRYPTOGRAPHY PATTERN

TABLE 17: TEMPLATE DESCRIPTION FOR THE CUSTOM ANONYMIZATION PATTERN

TABLE 18: TEMPLATE DESCRIPTION FOR THE DIGITAL ANNEALER OPTIMIZER

TABLE 19: AVERAGE TOTAL SOLVING TIME FOR THE TWO-PERSONS ASSIGNMENT

TABLE 20: TEMPLATE DESCRIPTION FOR THE SLIDING WINDOW ACTION MONITOR PATTERN

TABLE 21: TEMPLATE DESCRIPTION FOR THE HIGH AVAILABILITY ROUTING PATTERN

TABLE 22: TEMPLATE DESCRIPTION FOR THE SPLIT JOIN PATTERN PATTERN

TABLE 23: TEMPLATE DESCRIPTION FOR THE SPLIT JOIN PATTERN

TABLE 24: TEMPLATE DESCRIPTION FOR THE DYNAMIC ORCHESTRATOR PATTERN

TABLE 25: TEMPLATE DESCRIPTION FOR THE DIGITAL SIGNATURES PATTERN

TABLE 26: TEMPLATE DESCRIPTION FOR THE SMART CONTRACTS PATTERN

TABLE 27: INDICATIVE SCALER STRATEGIES

-

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |18

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

LIST OF CODE SNIPPETS

CODE 1: DOCKER-COMPOSE.YML FOR LAUNCHING LOCAL DESIGN ENVIROMENT

CODE 2: EXAMPLE JENKINS FILE

CODE 3: DOCKERFILE EXAMPLE FOR NODE-RED BASE IMAGE UPDATE

CODE 4: DOCKERFILECUSTOM EXAMPLE FOR FINAL FUNCTION IMAGE GENERATION

CODE 5: EXAMPLE BUILD AND REGISTRATION EXTERNALLY TO THE PHYSICS PLATFORM

CODE 6: POST /ENDPOINTS FOR SETTING A NEW RATIO FOR…
CODE 7: AN EXAMPLE DEFINE PARAMETERS TO A REGISTERED FUNCTION UPON CREATION OR UPDATE

CODE 8: REPLICA SET DETAILS

CODE 9: TARGET OF SCALING

CODE 10: SETTING OF FUNCTIONS PER NODE ELASTICITY METRIC

CODE 11: SETTING OF ELASTICITY METRIC BASED ON QUEUE SIZE

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |19

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

1. INTRODUCTION

In recent years, infrastructures and services have been characterised by the continuous
advancements in the area of cloud computing, starting from the use of ephemeral and elastic virtual
machines and reaching the level of lightweight containerization approaches for application
packaging and deployment. In order to adapt and exploit this new way of resource provisioning,
application developers had to go through an immense adaptation process, having to tackle issues
like state handling, ephemeral nature of the resources, need for more distributed and elastic
application behaviour, as well as avoid common design pitfalls in the microservice domain [1] .

Architectural approaches such as microservice-based design principles [2] or cloud native
application design considerations [3] have aided as a guide in the process, but have not alleviated
the developer from the main effort needed to break down their applications, as well as handle the
aforementioned issues. Nowadays, with the advent of further computing models like serverless
computing and specifically Function as a Service (FaaS) [4], the developers are yet again facing
challenges to migrate the core of their applications into more fine-grained, function-oriented
chunks.

Indicative challenges [5] in the new computing model include extension of the application domain
through a suitable trade-off between expressivity (of the application graph) and simplicity,
maintainable composition models for serverless workflows, usage of patterns for serverless
applications, inclusion and support for the legacy part of serverless applications, versatile
development processes supported by relevant development tools and CI/CD processes. Other
approaches [6] also suggest the application development continuum approach for combining
functions and services in one environment, using annotations to propagate dictations and
managerial approaches directly from the developer to the underlying management layers,
abstractions and visual development tools for building non-trivial FaaS applications, while
combining and adding legacy parts to short-lived functions without the need for extensive
application refactoring. The addition of programming patterns offered as reusable components
may significantly aid application adaptation and functionality.

1.1. Objectives of the Deliverable

The main objective of WP3 is to enable abstracted and more flexible exploitation of compute
continuum services by the application layer of the FaaS model, thus maximizing the benefits from a
transition to cloud-related environments. Aspects under consideration include the ability to add
diverse annotations to an application, ability to visually design and compose a FaaS based
application structure, while reusing existing templates and functionalities out of the box, as well as
packaging functionalities for minimizing the knowledge barrier for incorporation and deployment
along with the service graph by the cloud service adopters. The resulting description should be
mapped and translated to a specification understood by the platform layer (WP4), while offering
directives and annotations that can be used by WP4 and 5 in order to better adapt to application
needs (Figure 1).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |20

https://www.zotero.org/google-docs/?lc3Wni
https://www.zotero.org/google-docs/?619W87
https://www.zotero.org/google-docs/?uoklDR
https://www.zotero.org/google-docs/?967gLO
https://www.zotero.org/google-docs/?iXnU7p
https://www.zotero.org/google-docs/?0HcES4

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The purpose of the deliverable is to present the PHYSICS Cloud Design Environment for FaaS, a
framework for enabling easier application workflow creation and adaptation to the FaaS model.
The PHYSICS environment encapsulates the widely used (in the IoT domain) Node-RED web-based
function framework for event driven applications, coupled with a back-end system that undertakes
the preparation of the provided code and functionality for registration and deployment to a target
FaaS platform (based on Openwhisk). The goal of the environment is to provide the following
contributions:

● User-friendly visual way of creating functions and linking them together in workflows,
exploiting a palette of existing functionality from the Node-RED environment as well as
function orchestration abilities.

● Provide a set of functionalities in the form of patterns (subflows), that may aid the
developer in the adaptation to the FaaS paradigm, used directly in a drag and drop manner
in the workflow.

● Support a wide variety of features through a modular DevOps process, including the ability
to execute as one Openwhisk function (based on the Node-RED runtime) for an entire flow
of functions, as an orchestrator function (orchestrating other deployed functions), or as a
combination of the two, while automatically generating the deployable artefact images as
well as embedding more complicated processes (involving backend platform services) in a
seamless manner (like in the case of the performance pipeline).

● Include diverse annotations as guidelines to other management components down the
stack, enabling extended options such as function placement, preferences in scheduling,
inclusion of an accompanying service component, elasticity based on a number of
parameters or factors etc.

Figure 1: Positioning of WP3 related tools in PHYSICS

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |21

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Through the aforementioned features, application creation, adaptation and migration to the FaaS
platform can be significantly enhanced, limiting the learning curve and development time, as well as
runtime operation needs.

1.2. Insights from other Tasks and Deliverables

1.2.1 Insights from the Use Case Applications

Especially for WP3, since it is the main entry point of the PHYSICS platform, the interaction with the
Use Case applications and the respective developers has been extensive. From as early as M5,
storyboard creation and scenario drafting were performed in a co-creative manner, in order to help
the transition to a more function-oriented implementation (more details are included in D6.3).
Furthermore, by investigating the application functionality and scope, WP3 has proposed a set of
patterns that were anticipated to yield benefits for them. As early as M10 the specific example
patterns had been presented in a relevant UC demo workshop that incorporated 8 separate example
processes utilizing provided Node-RED flows for a series of aspects like design of a flow in the
Design Environment, inclusion of a parallelization pattern (inspired from the needs of the Smart
Agriculture UC), an arbitrary shell script and relevant docker image inclusion (both as an executable
and as a semantic description for importing legacy code), privacy and security flows etc. Generic
examples of Node-RED development as well as Openwhisk function creation in Node-RED were also
demonstrated. Further patterns were designed and implemented in the following months following
relevant discussions in regular meetings. During the second iteration of the project, the feedback
from the use cases has led to the development of new patterns (e.g. the High Availability Router
one) as well as enhancements in others (e.g. the enhanced monitor outputs for function level
errors).

1.2.2 Insights from the main technical tasks

With relation to the main technical tasks, the overall PHYSICS architecture plays a central role as
input, as well as the relevant requirements posed in D2.2. However, the layers following WP3 (i.e.
WP4 and 5) are also considered as a source of input, with relation to the capabilities offered to the
applications, since these capabilities need to be exposed to the developer. The latter would need to
select and specify the relevant options, as means and directives for influencing further operations
down the PHYSICS stack. An example of such a process was the drafting of the annotation list and
the semantic models, the definition of which was, in any case, an open and continuous process.

1.3. Structure

The document is structured as follows: Section 2 presents the main architecture and building blocks
of the PHYSICS Design Environment, as well as the rationale of the execution modes and build
processes. Section 3 presents the Application side semantic block, including the different needed
annotations, the way these are imported and processed by the Design Environment before being
forwarded to the platform level. Section 4 provides the rationale of the patterns’ implementations
in PHYSICS, including details on their implementation, variations, examples of usage and

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |22

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

experimentation. Section 5 presents a gamification and training server creation approach, that aims
to make PHYSICS training more attractive and interesting for the end users. Section 6 documents
the approach on the adaptive application elasticity controllers while Section 7 concludes the
deliverable.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |23

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

2. PHYSICS DESIGN ENVIRONMENT CORE

2.1. Introduction-Scope

As mentioned in the Introduction, the aim of PHYSICS is to provide a Design and Development
environment to aid application migration to the FaaS model in a more abstract manner. This is
based on the fact that current environments include a significant number of limitations, as well as
the fact that the functional programming style of FaaS creates significant difficulties to typical
application developers. A major drawback of current FaaS platforms is the availability of tools
related to the deployment and function reuse [7]. Function composition however can be used in
order to provide more complex groups of functions through the interaction of simpler ones,
provided that there are according orchestration and grouping capabilities [8]. The notion of
patterns can in this case be useful in order to group appropriate functions that intend to solve a
specific problem (e.g. AI training and optimization [9]).

From the main open source platforms, Openwhisk is the only platform that has a native
functionality in place (sequence operator, i.e. the ability to declare function chains in which the
output of a function is passed to the next one) at the runtime level [10], although it only supports
simple serial execution of functions. A further extension involves the IBM Composer [11], which
implements a set of orchestration primitives, although in a javascript library-based form [12]. The
functionality is also ported to IBM Cloud Functions, the commercial cloud solution from IBM, one of
the main contributors of the Openwhisk project. OpenFaaS has an external plugin (FaaS-flow [13])
for declaring sequences of functions in a textual, code-like manner (including more complex
workflow primitives). The orchestrating logic is also executed as a function. Kubeflow [14] has the
pipeline definition language as well as an editor extension (Elyra) through which pipelines can be
visually defined. However, the concept of workflow in this case is that of a static sequence of
operations (with information passing from one step to another via intermediate cloud object
storage files). Therefore, it lacks the dynamicity and the abilities of an actual runtime environment
correlating the passing of arguments between functions and writing arbitrary orchestration code.

From the main cloud vendors, AWS Step Functions includes a visual programming style, as well as a
number of further operators (including state management), however, it is directly tied to the AWS
services and thus is an option that increases vendor lock-in. Google Cloud Functions supports the
creation of workflows through relevant YAML files and syntax [15], assuming that the functions
have already been deployed. In Figure 2, the comparison between a GCF-based syntax (left) and an
equivalent Node-RED flow (right) implementing the same functionality indicates the differences in
the usability of the two forms, even for simple flows. In the Node-RED flow, only the ready-made
client nodes [16] for the FaaS platform (in this case, Openwhisk) are needed (with the name of the
function to use) plus a small custom function for adapting message fields. Going to even more
complex workflows, including a large number of functions and diverse connections between them,
becomes tiresome and error-prone for the developer in the YAML format, as well as in the other
text/code-based ones such as IBM Composer or FaaS-flow. Other comparisons performed [12]

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |24

https://www.zotero.org/google-docs/?sKRSuT
https://www.zotero.org/google-docs/?gbGizI
https://www.zotero.org/google-docs/?mj6v4G
https://www.zotero.org/google-docs/?EprD41
https://www.zotero.org/google-docs/?GgV3Jn
https://www.zotero.org/google-docs/?qsMm3G
https://www.zotero.org/google-docs/?BYdshL
https://www.zotero.org/google-docs/?mG16Wc
https://www.zotero.org/google-docs/?9MZu4P
https://www.zotero.org/google-docs/?xGM39N
https://www.zotero.org/google-docs/?a15nO7

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

indicate drawbacks of workflow management abilities among cloud providers in the case of
fork-join primitives, with the exception of IBM Composer.

Figure 2: Comparison between a text-based workflow syntax (GCF) and Node-RED flow

Apache Airflow is a workflow design and management tool. It allows for planning, scheduling and
automating the flow of data through nodes. Graphs of Directed Acyclic Graphs (DAGs) type
represent the direction of the data, while the output of one node (task) is usually the input of the
next node. Airflow having complex operators cannot be used as a generic function editor. One very
interesting work is TriggerFlow [17]. In this case, different workflow primitives are offered, as well
as eventing mechanisms in order to regulate the execution. The main difference of our work is that
in our case the environment can be used for both function and workflow creation. Furthermore, due
to the usage of Node-RED, we are able to import ready-made functionality in the form of reusable
subflows and nodes, either at the workflow structure or at the core functionality level. Another
difference is the visual support for the workflow creation.

What can be observed from the investigation of the related work is that a number of solutions exist,
but primarily for the definition of workflows either without a proper runtime mechanism, or
through code-level libraries/YAML files difficult to write for flows containing many functions and
complex connections. They have very little support for function re-use (especially function groups
reuse) and no support for annotations that can somehow be propagated to lower levels of
management. There is no single environment that can help the developer code, visually design, test
and deploy the functions while also acting as an orchestrator during runtime.

For this purpose, the main editing environment selected in the PHYSICS project is Node-RED.
Node-RED is a very popular tool in the context of IoT, for building event driven, functional
programming style applications. From that aspect, Node-RED portrays a number of significant
advantages in terms of the aforementioned features:

● A visual server environment for wiring and deploying together functions into complex and
arbitrary workflow structures, without the aforementioned limitations in terms of types of
wirings or implemented orchestration patterns. The programming style of the environment
follows a functional, event driven programming approach, fitting to the baseline FaaS model.

● A more augmented runtime environment can be used as the basis of execution, aiding in
creating FaaS functions (or actions) that internally consist of multiple Node-RED functions.
This enhances the development process (due to the runtime abilities for message tracking
and manipulation) as well as enables local flow testing directly in the Node-RED server

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |25

https://www.zotero.org/google-docs/?bsACAe

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

editor, skipping the costly and time consuming actual FaaS deployment. A large number of
errors (e.g. typical Javascript syntax or logic errors, message handling and field setting, etc.)
can be handled at this level prior to the actual deployment. Furthermore, the inclusion of
more than one Node-RED functions in a FaaS function output would result in less needs for
containers during execution, therefore less back-end contention.

● Abundance of ready-made nodes [18], especially from the IoT domain but also for general
systems, exploiting the generic npm repository of Node.js [19], one of the largest open
source repositories.

● Ability to group functions as subflows, aiding in code reusability, sharing and function
management, workflow simplification and abstraction.

● Ability to treat the workflow definition as a meta-specification layer. Given that Node-RED
has its own simple workflow definition schema, this can act as a meta-specification from
which translations to different provider syntaxes can be performed in order to mitigate
vendor lock-in.

Node-RED typically runs as a server, so the main question is: can it be used initially as an editor and
testing environment for creating functions and workflows that are afterwards deployed on a typical
FaaS platform? For this purpose, further backend services and functionalities need to be offered.
Furthermore, can it also be used for orchestrating functions and in what way? And what happens in
this case with common issues like double billing in the serverless trilemma [20], i.e. the principle in
which no function should wait (and get billed) while waiting for another function to complete?

It is necessary to stress that in the context of PHYSICS, there are two levels of orchestration. Initially,
at the application level, orchestration (or in other words function choreography) implies the
coordination between function execution as well as the passing of arguments across the function
flow. In essence, it is the way the functions are linked together in order to form the business logic of
the application. On the other hand, at the platform level, orchestration refers to the coordination of
the deployment, monitoring and runtime management of the resources (FaaS platforms, container
clusters, networks, etc.) needed to execute the application based on the placement decisions, as well
as translation of the app structure to the specification of the FaaS platform. Application level
orchestration is included in this document (and is in scope of WP3) whereas platform level
orchestration is included in D4.1 (and is in scope of WP4 and mainly T4.5).

2.2. Relation to project requirements

With relation to requirements expressed in D2.3, the PHYSICS Design Environment is affected by
the following ones:

● Req-3.1-WorkflowDef
○ Ability to define a workflow of functions that implement the business logic

● Req-3.1-MultiTenancy
○ Ability to distinguish between different branches/users in the environment

● Req-3.1-LogsService
○ Ability to have concentrated logs from involved microservices in one location

● Req-3.1-BuildsHistory
○ Ability to have a record of the builds performed in the environment

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |26

https://www.zotero.org/google-docs/?lhDsL8
https://www.zotero.org/google-docs/?PGcwvf
https://www.zotero.org/google-docs/?aK4X6F

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Req-3.1-SupportedRuntimes
○ Ability to support multiple runtimes (e.g. nodejs, python, Node-RED)

● Req-3.1-CustomDockerImages
○ Ability to define (or create) an arbitrary docker image as the actionable artefact of a

function

2.3. Application Creation Use Cases

The main use cases that have been foreseen in D2.4 are included in the following figures (Figure 3,
Figure 4) in order to give an overview of the functionalities needed, in the two main operations,
creating of an application through defining or embedding application logic, and testing the designed
application. In the following sections, refinement and increased detail on parts of the use cases are
also presented.

Figure 3: Create Application UC from D2.4

2.4. Design Environment Overview

The overview of the PHYSICS Design and Development Environment appears in Figure 5. The main
editing environment is an embedded container of a Node-RED server, with an enriched palette of
nodes (including the built-in ones, additions from the Node-RED community repository as well as
extensions provided by the PHYSICS environment). The PHYSICS editor extensions include either
ready-made subflows that are built for a specific purpose (see section 4 for details) or semantic

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |27

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

annotation nodes (see section 3 for details) and any other node from the Node-RED ecosystem that
may be useful. All these elements can be dragged and dropped directly in an arbitrary workflow in
order to augment its functionality. During this development, the developer can also use semantic
annotations that give a wide number of possibilities in order to affect various aspects of a flow or
function execution. As an example, sizing of the function (in terms of memory) can be dictated,,
while other considerations may include the deployment target (e.g. function or flow A needs to be
deployed on Edge B).

Figure 4: Test Application UC from D2.4

Once the developer finishes the development of the flows, they can move to the Design and Control
UI, in which they select which flows to prepare for instantiation. From then on, the process is
orchestrated by this component, which contacts the Serverless Function Generator for extracting
the code from the Node-RED environment and calls a relevant DevOps process implemented as a
Jenkins pipeline. Different pipelines are supported (e.g. create function from flow or from imported
image) in order to adapt to the needed steps in each case and generate the final deployable artefact
(code bundle, image etc). This process is supported by relevant repository and docker image
registry services.

The flow also passes through the Semantic Extractor component, which extracts the declared
annotations in the selected flows and maps them to ontological concepts defined in the PHYSICS
Ontology. The resulting data structure is derived from the JSON specification of the typical
Node-RED flow, and the declarations in the overall application graph. Thus, the application graph is
created as a representation of the flow and the associated annotations encoded as semantic triples
in JSON-LD form. The triples are stored for later use (during deployment) in the Reasoning
Framework and Inference Engine (WP4). Upon finalization of this process, the annotated app graph
is forwarded to the PHYSICS platform management layer, which includes functionality to process
the graph and register the according functions and native sequences to the FaaS platform. It also
maintains the relevant annotations (e.g., mapped to Kubernetes keywords or Openwhisk options) in

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |28

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

order to dictate the expressed developer needs (in terms of deployment, function management,
affinity, sizing, etc.). Following, details on the different execution patterns are presented.

Figure 5: Overview of the PHYSICS Design Environment

2.4.1. Custom Runtimes and Execution/Orchestration modes

In order to enable multiple manners and environments of execution the Design environment has
defined different possibilities.

Custom Runtimes Ability

The DE comes with a baseline image template that includes the main dependencies (Node-RED,
palette of PHYSICS-provided flows and patterns etc). However in many cases the application
developers may need to add their own environments, scripts etc. For this reason, the PHYSICS DE
gives them the ability to change the baseline image Dockerfile, so that they can install anything they
need such as Python frameworks for AI, relevant scripts or other tools (Figure 6). Thus they can use
the Node-RED flows as the main interface to Openwhisk or as a generic orchestrator, whereas the
main logic resides in their imported code.

A second option was added in the second iteration of the project, through the ability to upload a
custom image. This image can be based on any relevant template however it must also contain the
necessary interface so that it can be executed by Openwhisk.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |29

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 6: Example Customization of the Function Execution Runtime

Node-RED flow embedded in a Node-RED container for execution as service or function

One of the main features of PHYSICS is the ability to write any arbitrary workflow in Node-RED,
exploiting any type of node that can be then executed either as a service (typical Node-RED
execution) or as a function. This process is split into two parts. Initially, an in-flow support is
provided in the form of a skeleton flow that will be detailed according to the pattern. Inside this
flow, any node-RED packaged node, as well as npm-based libraries, can be exploited, thus leading to
the inclusion of a code base with extensive capabilities. In this mode, the developer can wire nodes
in more versatile manners (also supported by relevant patterns of Section 4), since their execution
is performed within the Node-RED runtime of the Openwhisk action container, not limited by any
workflow specification limitation of the FaaS platform.

Figure 7: Node-RED flow to Node-RED runtime Action Image

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |30

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

An extra benefit of this case is that it solves the issue of splitting the function logic packaging into
many different separate functions. Managing hundreds of functions in the context of one application
has been identified as one of the obstacles in FaaS development. Furthermore, grouping many
lightweight functions in one actionable function image, based on the Node-RED runtime, results in
much fewer container overheads due to the fact that no separate container needs to be raised for
each individual and potentially small function. However, relevant DevOps processes need to be in
place in order to generate the respective deployable image, including all necessary dependencies,
settings, etc.

Orchestrator Flows for complex function workflows

As mentioned in the introduction of this section, due to the limitations of the reviewed
environments and the inherent ability of Node-RED to act as an orchestrator, by passing messages
that trigger functions, one key feature is to use a Node-RED flow in order to orchestrate complex
function wiring and workflow primitives. In this case, the execution of an orchestrating flow can
also be performed as a function. This has the extra benefit that the specific orchestration definition,
based on the Node-RED workflow meta-specification, can be afterward translated and executed
potentially on multiple providers with limited changes, by adapting to the underlying workflow
specifications used by each provider. This directly leads to a decreased vendor lock-in for the case of
FaaS.

The created orchestration flow can be used either as a function or as a service. However, in the
service mode one is constrained by the scalability of a single Node-RED environment used to
orchestrate many executions. Furthermore, they get billed for the constantly running orchestrator
service. These two arguments are the most commonly used for moving a functionality to a
serverless paradigm in any case. The two potential orchestration ways appear in Figure 8. It needs
to be stressed that the inner invoked actions may be Node-RED-based actions or actions following
any other runtime.

Despite the aforementioned advantages, usage of a Node-RED flow acting as an orchestrator and
executed as a function would result in a double billing issue [20] (i.e. the fact that a function should
not wait for another function to execute), since the orchestrator function would need to wait for the
orchestrated functions to finish. However, there are various arguments for exploiting this approach,
presented in the next paragraphs.

Argumentation against the double billing principle in Orchestrator Functions

The main arguments against considering orchestration as part of the double billing principle are the
following:

● Whether the orchestrating function would be billable is primarily a business model decision
and should be separated from the technical ability. I.e., the provider might choose to offer
such functionality for free or with a different cost model than function execution time. If the
respective provider wants to gain a competitive advantage and give the ability to their
customers to easily create and deploy arbitrary workflows, they could follow this approach.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |31

https://www.zotero.org/google-docs/?CWhGMv

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

In a similar manner, many other types of services (like usage of dashboards) are not
separately billed by the providers, even though there are available REST APIs for every
possible action performed through the dashboard. The aforementioned services are offered
primarily as a more user-friendly means to create and manage cloud resources, thus leading
to increased domain uptake. Similarly, in the serverless domain specifically, there is no
charge for e.g., the gateway service that is running and listens for events that trigger
functions.

Figure 8: Different Means of Node-RED Orchestrator Execution

● Usage of such an approach would alleviate the need for a scalable orchestrator, a daunting
issue on its own, since each separate orchestrated flow would be in its separate function
execution. This setup is by default scalable. Furthermore, the existence of an actual
orchestrating runtime (Node-RED runtime) would mean that any workflow primitive could
be applied based on custom logic and appropriate message handling.

● 82% of serverless applications use 5 or fewer functions and only 31% of them include
workflows [21]. Even these are mostly simply structured, small, and short-lived. Having the
ability to create more complex application workflows would be in favour of the providers in
the long run, since more complexity in the workflows would directly incur higher number of
included functions and according invocations.

● If we consider that a function should not wait for an operation (i.e. blocking call) since in
that time it is billed without being useful, why do we accept blocking calls in the most
typical serverless use cases, e.g. the retrieval of a data object from an object storage prior to

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |32

https://www.zotero.org/google-docs/?1ekq3R

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

feeding it to an AI image detection function, and not go for alternative near-data processing
models [22].

In a nutshell, we consider the fact that the double billing principle can aid when writing single
functions. It leads to a more asynchronous style of programming, however it should not be applied
at the function workflow orchestration level, given the constrained current abilities of FaaS
platforms in this feature.
Following, further information is provided on the main components and processes of the Design
Environment.

2.5. Design Environment App

The PHYSICS Design Environment is a web application, which embeds the Node-Red environment
and extends it with features for communication with other PHYSICS components such as the
deployment preparation, the semantic extraction and the deployment process itself.

2.5.1. Component Design and Processes

The Design environment allows the developer to perform following actions:
● Develop Flows in Node-RED: The embedded Node-RED environment tab in the PHYSICS

Design Environment (Figure 9) allows the developer to use it the same way as the
standalone Node-RED application/server.

Figure 9: Embedded Node-RED environment in PHYSICS Design Environment for flow creation

● Build and deploy to test environment: The Developer can choose the flow (Figure 10), which
will be extracted from Node-RED, uploaded to the object bucket and used by a Jenkins Job to
create the Docker Image with a Node-RED environment containing only the chosen flow,
which will be later deployed as FaaS to the test environment.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |33

https://www.zotero.org/google-docs/?vNXlsV

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 10: Design Environment Build Process and Relevant UI

● Test deployed flows: All already built flows are also available as OpenWhisk actions in the
test environment, which can be triggered from the Design Environment in order to test the
solution (Figure 11). In that case, the developer may use the Openwhisk Action client node
inside Node-RED to trigger an invocation of the function on the target Openwhisk
installation. The user can also test the action with a performance evaluation on the local
environment or in a remote cluster.

Figure 11: Design Environment Test Process and Example Node-RED flow

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |34

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Create Application Graphs: Developers can also group developed flows into application
graphs, start the same building process as for the test environment if needed and store them
in the Reasoning Framework of WP4 as triples (Figure 12 and Figure 13). More information
is included in Section 3.7, linked to the PHYSICS ontology and annotation mechanisms.

Figure 12: Design Environment Create Application Graph Process

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |35

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 13: Design Environment Create Graphs UIs

● Deploy Application Graphs: The Developer can trigger the whole app deployment, which
will send the information about flows and built artifacts to trigger the right deployment
process (Figure 14).

Figure 14: Design Environment Deploy Application Process

● Export Created Subflow: Developers have the possibility to export custom subflows as
packages, ready to be deployed on npm and Node-RED package registry (Process in Figure
15 and UI in Figure 16).

Figure 15: Subflow Export Process

● Performance Visualization: The solution provides a fully customizable dashboard, where the
Developer can view performance pipeline results and benchmarks for every function as well
as monitor of the OpenWhisk cluster (Process in Figure 17 and UI in Figure 18).

Figure 16: Subflow Export Process in the UI

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |36

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 17: Performance Visualization Process Diagram

Figure 18: Performance Visualization Information in the DE

● Import image: The solution offers the possibility (Figure 20) to import into the Physics
environment an application image from an external or Physics repository, be this public or
private, so long as the application is compatible with the Openwhisk API specification. In
the case of a private repository the user and password must be provided during the import
flow, which will be stored encrypted in Jenkins. The imported image is also available as
OpenWhisk actions in the test environment, executable in the test section of the Design
Environment. After the request, the user can monitor the state of the import directly from
the import page, where it reports the history of all imported images, with the action name
associated, the date of the import request and the state. The according process diagram and
interactions between the existing components appears in Figure 19. When the user requests
for an import the DE calls a specific Jenkins pipeline named “load-custom-dockerimage”. The
DE interacts directly with the REST API exposed by Jenkins. The pipeline was created using
the groovy language provided natively by Jenkins.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |37

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 19: Image import Process Diagram

Figure 20: Image import User Interface

The structure of the pipeline can be divided into 4 macro areas. The first macro area in which the
input parameters (Figure 21) to the pipeline are defined. These parameters include:

● The external registry boolean variable, indicates whether the image should be imported
and stored in the external registry

● The public boolean variable indicates whether the image should be imported and stored in
the PHYSICS registry

● The registry variable contains the reference to the registry from where to get the external
docker image

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |38

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● The repo variable specifies the repository, within the remote registry, where the docker
image is stored

● The credid variable is the ID of the secret in Jenkins in which the credentials have been
saved, in encrypted mode, to access the remote registry

● The dockerimage variable specifies a docker image to fetch
● The version variable specifies a docker image version to fetch
● The actionname variable defines the name of the action to be created in OpenWhisk

associated with the imported docker image
● The old_action variable, optional field, specifies the name of an action already associated

with the imported docker image
● The user variable specifies the user who has requested the import image

Figure 21: Import parameters for Jenkins pipeline

The second macro block defines the POD parameters(Figure 22) within OpenShift that will be used
to execute the pipeline; this POD will be a Jenkins slave POD governed by the Jenkins master POD.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |39

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 22: POD parameters for Jenkins slave

The third macro area is composed of two stages (Figure 23) used to evaluate whether the user
wants to import the image from the external (private or public) or from PHYSICS registry.

Figure 23: Check from which location to retrieve the docker image

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |40

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The last macro area, also composed of two stages (Figure 24) defines whether the action on
OpenWhisk will be created from the imported docker image or using the image already available in
the PHYSICS registry.

Figure 24: Create the OpenWhisk action with the docker image retrieved

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |41

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Authentication: The solution integrates a Single-Sign On solution based on the open source
identity provider Keycloak and the LDAP directory to prevent unauthorised access to the
develop environment (Figure 25). To speed up the onboarding process of new developers, a
web based portal has been created for the self-provisioning of new accounts, where at the
end of the provisioning the user can download the installation guide of the solution.

Figure 25: Authentication

2.5.2. Subcomponents Implementation

The Design Environment is distinguished in the following two parts:

● Control UI (Frontend)

The UI currently provides two main functionalities/tabs: one for importing the Node-RED
environment and one for additional control features. In addition, the Control UI contains a
navigation panel for Builds (building and deploying to test environment), Test (to trigger flows
deployed in test environment), Graphs (creating application graphs and deploy them through WP4),
Export Subflow (to export a specific subflow as a npm package), Visualization (a Node-RED
dashboard embedded inside the Control UI, where the Developer can view the performance pipeline
result for a specific function), Import Image (import application image from external registry in
Physics environment) and Configuration (to configure deployment, i.e. choose Edge Locations). A
number of indicative screenshots were listed above per process. The Control UI is an Angular
Application written with Angular Material component library.

● Serverless Function Generator (backend)

Serverless Function Generator (SFG) is a REST service which works as a backend for the Control UI.
It allows the frontend application to communicate (with help of supporting microservices described
below) with all other external resources like Jenkins, Semantic Extractor, Node-RED Admin API or
the Deployment Process (interface to WP4). SFG is built on the NestJS framework. There are other
JavaScript REST frameworks like NextJS or ExpressJS, however, NestJS is built based on dependency
injection and modularization mechanism of Angular so going with both Angular and NestJS makes
the whole solution more consistent. The Serverless Function Generator API appears in Table 1.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |42

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Table 1: Serverless Function Generator API

HTTP Path Description

POST /build Extracts flow for given flowId (together with configuration and subflows),
update repository with Node-RED data, upload the JSON file with flow to
the object bucket and trigger Jenkins job with url to the uploaded flow.

POST /graph get the application graph, extract its flows and load the artifacts for each
of them (trigger build process for the ones which are not built yet) and
send it to Semantic Extractor to be stored

GET /graph Get all created graphs.

GET /graph/draft Returns all graphs, which are still waiting for some of its flows to be built.

GET /function Returns all available functions’ names

POST /function/invo
ke

Invoke function for given name and parameters

GET /function/:acti
vationID

Get result of function invokation

GET /flow Get all flows available in Node-RED

GET /subflow Get all subflows available in Node-RED

POST /npm-packages Requires a subflow id as input and return as output the related package,
ready to be published on a package registry.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |43

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Artifact Query Service (supporting microservice)

Artifact Query Service is a microservice, which allows us to query MongoDB to get artifacts for
already built flows. Artifact Query Service is built on the NestJS framework (Table 2).

Table 2: Artifact Query Service API

HTTP
Method

Path Description

GET /artifact getting all artifacts for already built flows

● Graph Draft Service (supporting microservice)

Graph Draft Service is a microservice, which allows us to query MongoDB for graphs, which waits
for its flows to be built to be created as an application in WP4. Graph Draft Service is built on the
NestJS framework (Table 3).

Table 3: Graph Draft Service API

HTTP
Method

Path Description

GET /draft getting all graph drafts from database

POST /draft Add graph draft into database

● Function Service

Function Service is a microservice, which allows us to communicate with OpenWhisk to get a list of
actions, invoke one of them and get its result. Function Service is built on the NestJS framework
(Table 4).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |44

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Table 4: Function Service API

HTTP
Method

Path Description

GET /function Returns all available functions’ names

POST /function/invoke Invoke function for given name and parameters

GET /function/:activationID Get result of function invocation

● Semantic Extractor Local (optional supporting microservice)

Semantic Extractor Local is a microservice, which can be used optionally to simulate functionalities
provided by WP4 components to allow WP3 components working as a standalone platform. Its API
is a merged API of the Semantic Extractor and Reasoning Framework. Semantic Extractor Local is
built on the NestJS framework.

● Build Result Processor (supporting asynchronous microservice)

Build Result Processor is a microservice, which reacts on messages on RabbitMQ queue populated
by Jenkins Job after successful build and process the data to be usable for other asynchronous
processor described below. Build Result Processor is built on the NestJS framework.

● Graph Processor (supporting asynchronous microservice)

Graph Processor is a microservice, which reacts on messages on RabbitMQ queue populated by
Build Result Processor and uses the build information to send graphs to semantic extractor if there
are drafts of graphs, which needs only currently built flow to be created. Graph Processor is built on
the NestJS framework.

● Artifact Processor

Artifact Processor is a microservice which reacts to messages in the RabbitMQ queue populated by
the Build Result Processor, and saves built artifacts in the database to be used by SFG during graph
creation. The Artifact Processor is built on the NestJS framework.

● Import Image Service

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |45

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Import Image Service is a microservice, which allows us to query MongoDB for imported image
data, to maintain trace of the state and the history of the user imported image. Import Image Service
is built on the NestJS framework (Table 5).

Table 5: Import Image Service API

HTTP
Method

Path Description

POST /import-image Add import image into the database

GET /import-image Retrieve all import-image by user

PUT /import-image/:id Update import image state by id

GET /import-image/docker-i
mage

Get import image by docker image

GET /import-image/cred-id Get user label repository credentials

● Cluster Service

Cluster Service is a microservice, which allows us to query MongoDB to get the configured cluster
where it can run the action to get the performance evaluations. ClusterService is built on the NestJS
framework (Table 6).

Table 6: Cluster Service API

HTTP
Method

Path Description

GET /cluster Returns all available clusters

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |46

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

An overview of the Design Environment Architecture appears in Figure 26.

Figure 26: Overview of the Inner Architecture of the Design Environment

2.5.3. Local Design Environment Deployment

For testing purposes, the component can be served locally using NX [23] cli from the repository
available on the PHYSICS DevOps environment or by the docker-compose command using a relevant
docker-compose file containing Node-RED environment image, SFG image and Control UI image
(Code 1). It communicates with Jenkins, available in the PHYSICS cloud environment. Besides that, it
can work with the Semantic Extractor to allow Design Environment work as a standalone
component, separate from the other PHYSICS components.

This setup can prove useful in dissemination activities as well as in cases of an interested entity only
in the Design environment leading to a function registration and execution on a specific and already
available local Openwhisk platform. Furthermore, it gives advantages in terms of latency between
the developer and the Node-RED environment.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |47

https://www.zotero.org/google-docs/?EoIuQd

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

version: "3.9"
services:
 web:
 image: <url_to_control_ui_image>
 ports:
 - "4200:80"
 node-red:
 build: <path_to_Dockerfile_in_repository>
 volumes:
 - <path_to_data_directory_in_repository>:/data
 ports:
 - "1880:1880"
 - "8080:8080"
 sfg:
 image: <url_to_serverless_function_generator_image>
 volumes:
 - ./node-red-env:/repository
 ports:
 - "3001:3001"

 semantic-extractor:
 image: <url_to_semantic_extractor_image>
 ports:
 - "3000:3000”

Code 1: docker-compose.yml for launching local Design Environment

2.5.4. Cloud Design Environment Deployment

The next step for the Design Environment is to release it as a web based solution, with the aim to
enlarge people's engagement and remove the difficulty of a local installation based on docker
compose, although all the benefits of having a centralised application.
With that objective, a reengineering of the Design Environment architecture is performed, to
enforce the authentication process on backend features and give to the user the same experience as
in the local installation, to achieve that the architecture is redesigned as presented in Figure 27.

Figure 27: Cloud Design Environment Architecture

The implementation has integrated a new centralised backend based on an open-source,
spec-compliant GraphQL server, that acts as middleware to the actual microservices and gets
directly the data from MongoDB. On top of them, Keycloak, an Open Source Identity and Access
Management solution, is used to authenticate all communications from frontend to backend.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |48

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

With the development of the DE in the cloud, a new login page was created from which each user,
after registering, has the possibility of running their DE and, once they have finished their work, to
stop it. This provides two advantages:

1. Shutting down the environment when not in use eliminates any security risk.
2. Using it only when necessary allows better management of resources.

From an infrastructural point of view, the segregation of each environment was achieved by creating
a specific POD for each user. Each POD within it is characterised by a dedicated Node-RED instance
and a lightened version of actual Serverless Function Generator (SFG) is deployed per user. The
creation of the user container is provisioned during the user creation phase through a new
dedicated pipeline, which takes care of instantiating the container with the user's configurations
while also defining a route, composed with the registered keycloak user name, for directing access
to the Node-RED instance. To improve the performance and reduce the requested resource, the user
container will start up at the login on the Design Environment and it will shutdown at the logout or
automatically after one hour of inactivity of the container.

2.6. DevOps Subsystems Support in the DE

2.6.1. General DevOps process

As described in D2.5, the PHYSICS framework development and deployment has been split into two
different strategies. The Development strategy defines the collaborative work of the technical WPs
to build up the framework, with the goal of creating a MVP of the PHYSICS platform. The
Deployment strategy defines a uniform approach to deploy all the PHYSICS components,
particularly how to deploy them inside a cloud provider or an edge location based on a Kubernetes
cluster. While this process is primarily intended for the PHYSICS provided tools, similar processes
have been applied for generating the deployable artefacts in the context of WP3, i.e. the deployable
versions of the code inserted by the developer during the implementation of an application in the
context of PHYSICS.

The available tools for the CI/CD processes defined in the context of T6.1 (and described in D6.2)
can also be exploited in the context of WP3 for the aforementioned artefact generation. These tools
include:

● Gogs: A Git repository manager that lets each developer teams collaborate on PHYSICS 's
source code.

● Jenkins: The de-facto standard open-source automation server for orchestrating CI/CD
workflows. At the same time, it is also planned to evaluate the possible usage of Tekton
tools, since it allows the implementation of pipelines in YAML format.

● Harbor: A popular Docker registry which is CNCF compliant.
● OpenLDAP: Used as the single user directory for all tools, centralising authentication and

simplifying management of developer accounts.
● Helm: A package manager that streamlines installing and managing Kubernetes

applications.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |49

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The DevOps strategy has been built around a set of pipelines, each one serving a different purpose
in the overall process. Details on these are presented below.

2.6.2. Build Pipeline Design and Implementation (Local version)

In the context of the WP3 core processes, there is the need to get the developer-injected code/flow
and create an artefact (software package, docker image etc) that can then be deployed on a target
FaaS platform. The process of adapting the DevOps processes for building the artefacts is illustrated
in Figure 28.

Figure 28: DevOps process for the generation of deployable artefacts of the user

Once the developer chooses which Node-RED flow to build and triggers the process, the SFG
prepares the flow for the Jenkins build, uploads it to the bucket and triggers the Jenkins Job with the
URL to the flow. The Jenkins Job builds a base docker image importing the Node-RED data from the
working Node-RED environment, in order to include any added nodes and dependencies added by
the developer. Then it builds a second image for injecting only the specified flow. The created image
is pushed to the docker repository registry and used by another Jenkins job for deploying the
according OW action for that image to the test FaaS environment. Examples of the Jenkinsfile job
that implements this process follow (Code 2, Code 3, Code 4).

...
 node(label) {
 def repo = '<node_red_data_repository>'
 def project = 'physics'
 def dockerPhysics = '<docker_images_subname>'
 def registryPhysics = '<docker_registry>'
 stage('Clone repository') {
 container('docker-cmds') {
 withCredentials([[$class: 'UsernamePasswordMultiBinding',

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |50

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

 credentialsId: '<credentials_to_use>',
 usernameVariable: 'JENKINSGO_USER',
 passwordVariable: 'JENKINSGO_PASSWORD']]) {
 sh """
 apk update
 apk add git
 git clone https://${JENKINSGO_USER}:${JENKINSGO_PASSWORD}@${repo}
 """
 }
 }
 }
 stage('Build Base Docker image') {
 container('docker-cmds') {
 def REP = sh returnStdout: true, script: "echo '${repo}'|awk -F / '{print \$3}'|sed s/.git//"
 withCredentials([[$class: 'UsernamePasswordMultiBinding',
 credentialsId: '<credentials_to_use>',
 usernameVariable: 'JENKINS_USER',
 passwordVariable: 'JENKINS_PASSWORD']]) {
 sh """
 cd ${REP}
 docker login -u ${JENKINS_USER} -p ${JENKINS_PASSWORD} ${registryPhysics}
 docker build -t ${dockerPhysics}/${project}/base:$BUILD_NUMBER .
 """
 }
 }
 }
 stage('Push Base Docker image') {
 container('docker-cmds') {
 withCredentials([[$class: 'UsernamePasswordMultiBinding',
 credentialsId: '<credentials_to_use>',
 usernameVariable: 'JENKINS_USER',
 passwordVariable: 'JENKINS_PASSWORD']]) {
 sh """
 docker image ls
 docker login -u ${JENKINS_USER} -p ${JENKINS_PASSWORD} ${registryPhysics}
 docker push ${dockerPhysics}/${project}/base:$BUILD_NUMBER
 """
 }
 }
 }
 stage('Build Custom Docker image') {
 container('docker-cmds') {
 def REP = sh returnStdout: true, script: "echo '${repo}'|awk -F / '{print \$3}'|sed s/.git//"
 withCredentials([[$class: 'UsernamePasswordMultiBinding',
 credentialsId: '<credentials_to_use>',
 usernameVariable: 'JENKINS_USER',
 passwordVariable: 'JENKINS_PASSWORD']]) {
 sh """
 cd ${REP}
 docker login -u ${JENKINS_USER} -p ${JENKINS_PASSWORD} ${registryPhysics}
 docker image ls
 docker build -t ${dockerPhysics}/${project}/custom:$BUILD_NUMBER --build-arg flowUrl="${flowUrl}" --build-arg
buildNumber="$BUILD_NUMBER" -f Dockerfilecustom .
 """
 }
 }
 }
 stage('Push Custom Docker image') {
 container('docker-cmds') {
 withCredentials([[$class: 'UsernamePasswordMultiBinding',
 credentialsId: '<credentials_to_use>',
 usernameVariable: 'JENKINS_USER',
 passwordVariable: 'JENKINS_PASSWORD']]) {
 sh """
 docker login -u ${JENKINS_USER} -p ${JENKINS_PASSWORD} ${registryPhysics}
 docker push ${dockerPhysics}/${project}/custom:$BUILD_NUMBER
 """
 }

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |51

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

 }
 }
 }
 }

Code 2: Example Jenkins file

FROM <registryPhysics>/physics/debian-base:latest
USER root
RUN apt-get update && \
 apt-get install -y --no-install-recommends \
 default-jdk

ENV JAVA_HOME=/usr/lib/jvm/java-1.11-openjdk
ENV PATH="$JAVA_HOME/bin:${PATH}"
RUN java -version
RUN javac -version
RUN export JAVA_HOME

RUN apt update
RUN apt install -y python3-dev python3-pip python3-venv
RUN pip3 install --upgrade pip

COPY python-requirements.txt .
RUN pip3 install -r ./python-requirements.txt

RUN chown -R node-red /data
RUN chmod -R 775 /data

USER node-red

Code 3: Dockerfile example for Node-RED base image update

ARG buildNumber
FROM <registryPhysics>/physics/base:$buildNumber
ARG flowUrl
USER root
WORKDIR /usr/src/node-red
COPY ./data /data

WORKDIR /data
RUN npm install

WORKDIR /usr/src/node-red
RUN chown -R node-red /data
RUN chmod -R 775 /data
USER node-red
RUN curl -v $flowUrl > /data/flows.json
RUN ls -a

ENV PORT 8080
EXPOSE 8080

Code 4: Dockerfilecustom example for final Function Image Generation

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |52

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

2.6.5. Performance Pipeline Design

2.6.5.1. Performance Pipeline Motivation and Overview

The goal of the Performance Pipeline is to embed and automate the collection of performance data
for a given function during the function development in order to serve a number of purposes.
Initially, from an application/function creation (WP3 point of view), developers may need more
direct information on the performance aspects of a given function version they created. In many
cases, performance stress testing is performed at the end of the development. This implies that any
performance related problems may be detected too late, or they may hide behind a complex
application structure. Executing the performance test directly on each function version can help in
the early detection as well as isolation of performance bottlenecks. Checking the performance of the
same function under different versions is another use of a performance test embedded in the
development process.

Furthermore, in typical FaaS cost models, the memory assigned to each function is one of the main
aspects of cost consideration. A different rate applies for each memory size, with the other parts of
the cost being the number of invocations and how much time each function execution takes for this
memory setting rate [24]. Thus, analyzing the benefit of a certain memory setting relates to both
functional (enabling the function to run successfully without out-of-memory errors) as well as
non-functional aspects (benefit of using a higher level memory). This benefit should also be mapped
to the difference in the achieved performance of this function. In this way, the function owner may
be given an informed choice for the desired setting.

What is more, in the PHYSICS context, the existence of multiple available clusters as well as the
optimization of function placement across these, implies the existence of relevant performance data
that can help in that optimization. Having test executions of a given function across these clusters
can aid in a more targeted and adapted decision making process in WP4.

Finally, from a resource management perspective (WP5 point of view, more information in D5.2 for
the collocation strategies), resource contention due to concurrent container placement on the FaaS
execution substrate is still a problem [25], generating delays of even 11x times higher function
execution duration in cases of small-scale infrastructures such as private clouds. The identification
of the resource profile of a given application component (i.e. if it is memory or CPU-intensive) has
shown in the past that it can lead to significant minimization of this overhead [26], following its
consideration from a provider point of view, and improved resource selection [27], from an
application owner point of view. However the provider needs to have some information or
annotation on the created functions in order to enable optimization of the co-allocation of these
functions execution.

The Performance Pipeline is designed as an optional (from a developer point of view) extension to
the conventional function packaging and deployment process in PHYSICS described in the previous
sections. The mechanism integrates a load generation process towards the available clusters,

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |53

https://www.zotero.org/google-docs/?IuxxOW
https://www.zotero.org/google-docs/?zHoFr3
https://www.zotero.org/google-docs/?zZz36M
https://www.zotero.org/google-docs/?uBdn7s

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

retrieval of function performance evaluation (results of the function execution duration, wait time
etc) as well as acquisition of the function execution resource usage profile. During the performance
testing of the function, the pipeline collects low-level resource usage statistics (CPU, memory,
network in/out, and file system use) for each function, creating a resource usage profile. This profile
is stored and compared to other functions through a clustering and classification approach (with
the help of the PEF in WP4), annotating each function based on its behaviour in the used metrics
(e.g. low/medium/high memory). This way, the platform can benefit from a kind of “function
crowdsourcing”, categorising the available functions in a relative manner. During the app graph
deployment, the included functions profiles are retrieved and embedded into the application graph
by the WP3 services, thus forwarding them to be used by the according PHYSICS components down
the stack (Global Continuum Placement in WP4 and Coallocation Strategies in WP5). From a FaaS
provider's perspective, these annotations can be utilised to optimise function placement on
available nodes. For instance, anti-affinity groups can be determined for similarly behaving
functions based on their usage footprint, thereby reducing concurrent container overheads and
competition for the same type of resources. More information on the background profiling and
classification process can be found in D5.2.

2.6.5.2. Related Work

In [28], research was conducted on how serverless (mainly FaaS) affected DevOps practices. By
hosting workshops and interviewing five company employees that were most involved with the
development of the DevOps pipeline, the authors concluded that more than half of the DevOps
practices are affected by serverless computing. It was also noted that one of the most critical parts
of the DevOps development process is a reliable pipeline. Lastly, they ranked the importance of each
DevOps practice. Automated performance and security tests in the target environment were graded
with seven out of ten, however, the fully scripted deployments, where the performance pipeline is
part of, were graded with nine out of ten and end-to-end testing was also graded with nine. The
work does not include conclusions about how the pipeline should be implemented specifically.

The work in [29] presents an approach for developing a serverless pipeline by taking advantage of
AWS serverless technologies in order to replace traditional CI/CD tools. This approach presented
significant price benefits by using serverless technologies in the context of a pipeline. In our work,
serverless functions are used for the main functionality of the performance pipeline (load
generation, clustering, classification), aligning with the recommendations of the specific work. The
authors of [30] applied processes similar to ours that include triggering a pipeline and gathering
performance metrics through an analytics and monitoring solution. The testing was done in a range
of RAM availability for the function runtime from 128 to 2048, with some exceptions for each major
cloud provider (AWS, Azure, Google Cloud, IBM Cloud). The study focused on comparing the
performance of different FaaS platforms for different RAM availabilities. Thus it covers the
benchmarking part of our work (function owner view) yet not the profiling one (provider view).

Other works focus on the creation of a suite or tool for FaaS performance evaluation. In [31], a
Serverless Application Analytics Framework was developed in order to help developers get

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |54

https://www.zotero.org/google-docs/?zSegko
https://www.zotero.org/google-docs/?DNktwo
https://www.zotero.org/google-docs/?yi6PeO
https://www.zotero.org/google-docs/?ED0jyQ

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

performance metrics for their functions with minimal cost. This framework collects Linux Time
Accounting metrics such as CPU idle, user, kernel, I/O wait time, wall-clock runtime, and memory
usage directly from the function by requiring a few additional lines of code to be added to the
function. Then a client-side application can be used to define and execute tests. This approach can
be more detailed, however it intervenes with the function development process and needs the
developer's collaboration. Compared to this, in our work, the profiling is performed in a
non-intrusive manner.

A different approach was developed in [32] where instead of adding code inside the tested function
the authors used a proxy cloud function (PCF) that was invoked before the target cloud function and
was responsible for the data collection. The data collected by PCF includes execution time, time
needed to create and route a request, latency time, response time, time to transmit data
unidirectional, throughput and size of http request/response. So with this approach the authors
managed to retrieve data from the function performance level, compared to the low level traces of
the [31]. In other cases the data for the performance evaluation are pulled from the cloud service
provider [33] [34].

From the investigated works, there are either profiling or benchmarking approaches, but there is
no combined approach. The work presented in this section combines information from both
function-related metrics, such as average wait time, initialization time, function execution duration,
success rate, cold starts etc., as well as the resource usage of the function execution (i.e. low-level
metrics including CPU, RAM, network and filesystem). Furthermore, it categorises the given
function into relative low/medium/high categories per resource metric in order to be used during
the function placement process [35], taking into consideration all other functions available in the
platform.

2.6.5.3. Performance Pipeline Design and Process

The overall architecture of the performance pipeline appears in Figure 29 and has been integrated
into the PHYSICS Cloud Design Environment process. The performance pipeline is an extension to
this process, that allows either plugging in the extra performance analysis step or invoking it on
demand based on user preferences. A series of steps are outlined here, corresponding to Figure 29,
to facilitate reader understanding of the specified process:

● Function (Action) development: the process during which the developer creates the code
and crafts a deployable artefact of a function (or action in the Openwhisk terminology)

● Load generation (Steps 1 and 2): the process of generating artificial load (Step 1:
benchmarking) towards the deployed function in order to check its baseline execution time.
The goal is to have exactly one function executing for multiple times and extract its average
execution time as well as other parameters such as wait time in the system etc, which are
stored during Step 2.

● Profiling (Step 3):process of acquiring the resource usage trace of an executed function
during Step 1. After the execution of the load generator, the pipeline proceeds with querying
the resource usage metrics from the PHYSICS platform. These metrics include averages for

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |55

https://www.zotero.org/google-docs/?luR8oA
https://www.zotero.org/google-docs/?rygNnh
https://www.zotero.org/google-docs/?PEVwW1
https://www.zotero.org/google-docs/?8meeSV
https://www.zotero.org/google-docs/?pSxuKR

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

function pod CPU, memory, file system and network data usage in the defined query interval.
The data are retrieved based on the current timestamp after the finish of the load
generation process minus the main load test duration set in the input parameters. Then the
specific profile vector (trace) data is also saved in the performance DB and is also forwarded
to the next stage (Function Classification). The acquired vector is stored during Step 4.

● Clustering (Steps p1-p3): the machine learning process of comparing the traces from
multiple functions in order to create groupings of more similar values. The traces are
gathered in Step p1, the clustering process is run in Step p2 and the results (centroids of
resource behavior) are stored in Step p3. This process is executed offline and in a potentially
periodic manner in order to get updated by new executions. It is not included in each
pipeline run since the cluster centers are not expected to change significantly unless a
significant increase in the dataset appears. In this way the pipeline delays are reduced.

● Categorization/Classification: the process through which a newly tested function's profile
(extracted in Step 3) is categorized against a set of predefined categories defined in Step p2.
The profiling vector of Step 3 is passed during Step 5 to the Categorization process. The
latter retrieves in Step 6 the centroids created offline during Step p2 and measures the
distance of this function profile in Step 7. The resulting categorization is stored in Step 8.

Figure 29: Performance Pipeline Process and Architecture

2.6.5.4. Finetuning the Load Generation Process for Profiling

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |56

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

A significant aspect of load generation needs to be considered, given that it primarily affects how
the profiling is performed during the execution. One of the problems when applying a generic
process for potentially different functions is how much request rate to use for the load generation.
Ideally, in order to profile the usage of resources, one would need to have one fully utilised function
container. If the execution time of a function is much lower than the inter-arrival rate of the function
invocation, then this would result in high idle periods of the container between the invocations, as
seen in the left part of Figure 30.

Figure 30:. Idle Times Correction through a two-stage Load Generation Process

This idle time effectively confuses the profiling process since average resource usage metrics are
acquired from the load generation. Monitoring solutions such as Prometheus scrap monitor data
every eg. 15-30 seconds, thus no specific resource monitoring can be done directly on the pure
function execution time. Thus, these idle gaps should be minimised as much as possible since it
would appear as the function is not using the resource, while it is actually the lack of invocations
that causes the low metrics. On the other hand, we need to keep requests low enough so that they
reuse the same function container (warm execution). This is again needed in order to get statistics
from containers that are heavily used and do not include idle time. The same utilisation gap
problem would occur even if we used a blocking client, i.e. one that waits for the response before
sending the next request. In this case idle periods would appear since the serverless APIs do not
allow blocking requests. They immediately return a response for receiving the request, but then the
client needs to poll for the result. Thus the difference between the polling period and the function
duration would again create idle gaps.

For the above reasons, we applied a two-stage load generation approach, as seen in Figure 30.
Initially the first stage runs a load generator with a rather relaxed request rate (i.e. dry or trial run),
e.g. 1 request per 30 seconds or 1 minute, in order to get with the same mechanism a baseline
average response time for different functions that may have different duration sizes. Once this is
acquired, this dry run response time is used as the inter-arrival interval between the requests of the
main load generation phase. A 20% safety coefficient is applied in order to cater for any random
higher delays. After finishing both stages, only the resource usage results from the second stage are
collected. The performance outputs of the load generator are then stored as results.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |57

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

2.6.5.5. Evaluation of the Two-Stage Load Generation process
To assess the effectiveness of the dry (trial) run adjustment, we configured the dry run settings with
a request inter-arrival time of 30 seconds, which is sufficient to cover the execution time of many
functions without generating numerous function containers. We then employed the process defined
in the previous paragraph to regulate the inter-arrival rate of the main stage. Both stages have a
similar duration of 200 seconds. Finally, we compared the outcomes of the dry run and the main
run. The results from the FaaS cluster monitoring (Figure 31) demonstrate a clear difference in the
obtained metrics.

Figure 31: Difference in Observed Metrics between Dry and Main Run

Table 7 below presents the difference for each used metric in the two stages approach for the target
function (a sorting function), along with a difference ratio, calculated from the division of the main
run result by the dry run one. From this the importance of the adjustment is evident. CPU usage has
16 times more observed load while network usage portrays 45 times larger one when the two-stage
approach is used. Only the memory appears to be similar, probably due to the fact that memory
refers to the used memory allocation (which is allocated even with 1 function execution).

Table 7: Difference in Acquired Resource Usage Metrics between the Dry and the Main Run

Resource Without Dry Run With Dry Run Difference Ratio

CPU 0.0009480 0.0158765 x16.74

Memory 22573056 27979776 x1.23

Network In 23.15 1042.875 x45.04

Network Out 11.575 520.875 x45.00

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |58

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Filesystem Use 643072 5808128 x9.03

In addition, Table 8 portrays the generated inter-arrival request delays for 4 different experimental
functions (sort, list, fibonacci and fileRW). The pipeline is able to detect the differences in the
expected response time of each function and adapt the main run load generation achieving the
adjustment goal. In this case the values are augmented since we did not remove the first execution
inside the dry run that included a cold start. For further reducing the idle time, this value can also be
removed since it appears only in the first execution of the function.

Table 8: Adaptable Determination of Diverse Request Rates for Different Function Types

Function
Determined Request Inter-arrival

Rate (milliseconds)

sort 900.39

fibonacci 1314.20

fileRW 677.40

list 925.40

2.6.5.6. Performance Pipeline Execution

The Performance Pipeline is available as an extra tab in the Design Environment, as shown in Figure
32. It has a number of input parameters that relate primarily to function-specific details such as
action name, test duration, function memory and test function payload. Once these are defined, no
further involvement is needed from the developer side. The performance pipeline is executed inside
an Apache Jenkins CI/CD environment (Figure 33), orchestrating the various stages needed (load
generation, benchmarking results extraction, low level profiling metrics collection and invocation of
the classification process).

The majority of these operations are implemented themselves as functions (load generator, cluster
creator, classifier) available from the Performance Evaluation Framework of WP4, so that they can
be easily deployable in a FaaS context. The pipeline is supported by a set of small services that aim
to store state (benchmarking results, profiling vectors, categorizations and cluster centroids). This
information is stored inside T.4.2 PEF and is used within the pipeline as well as maintained for
future reference, presentation to the user and collaboration with other platform elements that are

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |59

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

responsible for optimised operation including placement and scheduling optimizers. More
information about the PEF APIs can be found in D4.2.

Figure 32: Performance Test Tab in the PHYSICS Design Environment

Figure 33: Example Execution of the Performance Pipeline in Jenkins

If a developer wants to compare function execution duration for different functions or different
function versions to identify which one performs the best, load generator data like those shown in
Figure 34 can be used. From the examples presented the developer may determine if a specific
function may need performance improvements.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |60

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 34: Example output times from the load generation benchmark data

Furthermore, they can apply the process for different memory settings of the same function and
acquire a relevant comparative analysis like the one shown in Figure 34 for a sorting function case.
From this it can be seen that for the given function, increasing the memory size from 128 to 256 can
lead to an improved execution, however further increase does not represent a significant difference.
Thus it can be used to optimise the sizing of a function as well as the associated costs, since in a
typical FaaS model cost is largely dependent on the execution time and the memory of a function
(Figure 35).

Figure 35: Sort function execution duration for different memory sizes

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |61

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

2.6.5.7. End to End Performance Pipeline Delays

The duration of a performance pipeline is largely set by the developer, since they select the test
duration of the main load generation phase (as seen in the previous paragraph). Thus, they can
select whether having a more thorough analysis or a faster one is more important. The test runs
used in our work had a duration of around 8 minutes each. A chart with indicative durations of
these runs can be seen in Figure 36. The dry run phase was statically set to 200 seconds as well as
the main run one.
The remaining delays in the aforementioned figure refer to the orchestration needed in the pipeline.
Because all the main steps of the pipeline are implemented through external functions, for better
manageability and plug & play architecture, the pipeline needs to poll in the intermediate steps for
getting the results of the load generator and the classifier function. This is due to the fact that
serverless APIs typically do not allow blocking calls, so the caller needs to poll afterwards for
getting the execution results. We applied a polling period of 5 seconds for this process. The
orchestration delays are in total around 2 minutes in each run, excluding the delays of the dry and
main run.

Figure 36: Performance Pipeline Indicative Delays

2.6.5.8. Performance Pipeline Outputs and Multi-cluster Support

The performance pipeline has also been designed to enable the support for benchmarking against
multiple clusters. Given that PHYSICS may use more than one clusters, the platform needs to be
aware of the performance of a function in each one, which also serves as an input to the Global
Continuum Placement process in WP4. Thus the cluster to use is also an input parameter in the
process.

Load generation is always performed from the hub cluster central location (AWS in our case). This is
a conscious decision since we also want to include any network latencies in the acquired benchmark
results, assuming that the remaining application components, invoking the function, will be located

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |62

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

centrally. An example of the outputs is included in Figure 37, retrieved from the WP4 PEF API. More
details on this are provided in D4.2.

Figure 37: Example Function Benchmark Output of a Load Generation across Different Clusters

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |63

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

3. SEMANTIC MODELS FOR APPLICATION CHARACTERISTICS DESCRIPTION

3.1. Introduction- Scope of the Application Characteristics Description

As mentioned in Section 2, the PHYSICS Design Environment is an entry point for the development
of an application that will later on be deployed as a PHYSICS app in the context of WP4. In order to
detect what needs to be described from an application graph specification, which will be forwarded
to the respective deployment process, one needs initially to define what is an application in the
context of PHYSICS and from which parts it comprises. An application in PHYSICS is a collection of
flows (that consist of functions) and services. More than one element of each category may be
included in an application, grouped under the same app ID. Grouping by the same app ID implies
that we can set options and annotations at any desired level (e.g. function, flow or application),
while managing the overall collection as a unified application (e.g. during deployment). Some
further details on the main building elements are as follows.

Functions

The functions are the primary building blocks. Functions can be generic, including any piece of code
included by the developer, built-in (or imported from external repositories) Node-RED nodes, as
well as external docker images executed upon request. In order for the latter to happen, the images
need to be encapsulated around the relevant FaaS platform specification for execution. This includes
a set of steps to prepare the image, which is platform-specific. For Openwhisk, the relevant
specification needs to include two methods [36]. In essence, any container image that has included
a web server and exposed two methods (/init for initialization and /run for execution) can be used
as the target of invocation, assuming that a relevant link between these two methods and the
internal needed actions has been applied (e.g., triggering of the relevant execution script in the /run
case as well as processing of the input arguments in the request in order to pass them to the
underlying execution).

 Flows

A flow is a group of functions that are linked together in a workflow in order to achieve a specific
goal or part of the application logic. These functions receive the initial message, process it based on
their inner logic and then propagate it to the next function in the chain. In order to increase
reusability and manageability of a flow, specific and reusable subgroups of functions can be grouped
around subflows, appearing as one node in the flow.

Inclusion of services

Given that the serverless paradigm is not necessarily a “one size fits all” model, we consider that
there will be parts of the application that need to be executed and included as typical services. This
not only enables the richer representation of the application, but also facilitates easier porting,
limited to the application parts that are expected to benefit the most from the FaaS approach,

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |64

https://www.zotero.org/google-docs/?CNSXVT

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

however still being able to manage the overall application through a single platform. Thus, one of
the goals of PHYSICS should also be the ability to include existing services in the context of an
application. One distinction for the services inclusion is whether these services should be directly
controlled by the PHYSICS platform (i.e. deployed and operated) or they are external services used
without control.

Besides this general structure of the application, dedicated semantics should also be defined
describing a set of characteristics for each part of the application as annotations, in order to guide
the lower layers of PHYSICS management and decision making. These may be deployment or
execution options, constraints for operational management, elasticity considerations etc. In essence
such an annotation list should exist and be configured through the environment, providing ways for
the developer to set them and the framework to retrieve them. Following, details on each step are
presented for the use of semantics at the WP3 level, i.e. the semantic descriptions at the application
side. Further information on semantics is available in D5.1 for the semantics at the resource side,
while the bridging framework is the Reasoning Framework presented in D4.1.

3.2. Relation to project requirements

From D2.3, the list of requirements that the semantic approach should address is the following:
● Req-3.2-WorkflowCoverage

○ Ability to understand and model the structure of a functional workflow

● Req-3.2-RequirementsCoverage

○ Include sufficient attributes for the requirements a workflow component may have
regarding hardware, software or location.

● Req-3.2-ConstraintsCoverage

○ Include sufficient attributes for the requirements a workflow component may have
regarding QoS, affinity placement (in the cluster) etc.

● Req-3.2-LinkWithVocabularies

○ Links with other ontologies in order to follow the linked data paradigm.

● Req-3.2-ReasoningCapability

○ The created triples must be effectively usable within reasoners.

● Req-3.1-CustomDockerImages

○ Ability to define an arbitrary docker image as the actionable artefact of a function

One general requirement is also the fact that for the deployment of the application, its structure and
elements should be appropriately described so that they are understood and managed by the WP4
process.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |65

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

3.3. Semantics Use Cases

3.3.1. Include Annotations UC

As identified in D2.5, the application developer in PHYSICS may annotate parts of the application
created or imported through the Node-RED environment. In order to further specialize the specific
use case from a semantic perspective, a more detailed view appears in Figure 38. The annotations
are useful for a variety of purposes such as:

● functional needs (e.g. dictate what image is used for which architecture, a specific location
constraint for function deployment & execution etc)

● non-functional needs (e.g. QoS constraints, importance of the specific function etc)

These annotations are taken under consideration at all stacks of the PHYSICS platform, according to
their scope. For example, placement constraints should be taken into account when deciding the
placement of the overall application, importance during scheduling in the cluster etc. In order to
annotate flows (Figure 38), the main abilities of Node-RED can be used, including the use of
specifically defined nodes, created subflows as well as annotation characteristics inside the
environment (such as function groups) that can be used for that purpose. Other indirect
annotations can also be acquired, e.g. regarding the application structure, from the JSON
specification of a Node-RED flow (e.g. which functions are wired together).

Figure 38: Include Annotations Semantic UC specialization

3.3.2. Create Semantic Graph

During the deployment process, the developer would need to select which flows are part of the
application graph and trigger an app graph creation process, as detailed in Section 2.5.1 Step 5.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |66

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

During this process the semantic block of the environment should retrieve the respective flows,
process the JSON specification of Node-RED that includes the various functions and their
connections and map them to the ontological concepts defined in the PHYSICS ontology (described
in Section 3.5). The relevant use case appears in Figure39. Following, the description of the
application structure as well as the elements and annotations it comprises should be forwarded to
the Reasoning Framework (Inference Engine) of WP4 for the follow-up actions. In order to enable
this use case, a process and component to generate the graph and semantic triples from the
available Node-RED flows is needed (Semantic Extractor component defined in Section 3.7).

Figure 39: Create Application Graph UC from a semantic perspective

3.4. Annotation Mechanisms Incorporation

In the PHYSICS environment, two ways have been designed to import annotations, in order to adapt
to the level these annotations also need to apply (function or flow), a code level process and a
semantic node one. Information coming from the DevOps process, regarding the generated
deployable artefact per element of the graph is also needed, since this will be finally used by WP4.
After this process, the overall application graph is represented by a set of JSON-LD triples under the
same app ID in the Reasoning Framework of T4.1. From this location they can be retrieved by the
remaining deployment process in WP4. The overview of the annotation mechanisms interactions is
depicted in Figure 40. Following, details on the two designed annotation mechanisms are portrayed.

3.4.1. Function level annotations mechanism

At the function level, in-code annotations can be wrapped around a specific syntax, and are put
within single-line comments within the simple function node in the Node-RED visual development
tool. The inspiration for such an annotation mechanism originates from the Dependency-Aware
FaaSifier implementation [37], the special characters used in annotations in common programming
languages, as well as the fact that statements regarding the semantic web and graph databases are

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |67

https://www.zotero.org/google-docs/?99v55c

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

commonly expressed as triples of object-property-value. The core idea is to have a way to express
(a) the property and value wherever the object is the function itself, and (b) the complete triple in
cases where there need to be more definitions that are related to the function. The syntax is
explained below, along with what each statement means in terms of semantics:

Figure 40: Overview of Semantic Annotations Mechanism Interactions

● Function annotation: //@<property>=<value> This kind of annotation is composed of (a) a
single-line comment symbol, (b) the ‘@’ character, (c) the annotation, which is a property
from the ontology that has the Function class as domain, (d) the ‘=’ character and (e) the
value. Practically such an annotation maps to a triple where the object is the function that
contains it. The most important kinds of function annotations are laid out in section 3.4.3,
with an explanation for each one.

● Triple associated to the function: //$<object>@<property>=<value> This case is composed
of (a) a single-line comment symbol, (b) the ‘$’ character, (c) the object or local definition,
(d) the ‘@’ character, (e) a predicate/property from the ontology which has the class of the
object as domain, (f) the ‘=’ character and (g) the value. This proves useful in cases where a
simple function annotation includes an object property, rather than a data property, and the
value is an object that either needs to be locally defined, or needs to have some of its other
properties defined within the context of this particular function. This particular scheme is
for more advanced usage, and allows for the creation of complex directives for the given
function.

In both of the above cases, the key or the property originates from the ontology, and the value is of
the type that the range of the property is, and all included objects, properties and values do not have
any prefixes. The corresponding triples are created by parsing the code content of the function node
and checking for these two syntax schemes. Each object-property-value triple is created only if it is
valid, given the ontology and the overall environment of the development tool for the given

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |68

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

user/developer, and the appropriate context and prefixes are added to the data. This process is
mainly enacted by the semantic extractor, as explained further in Section 3.7, and it results in triples
that use a context that has the PHYSICS ontology as the main vocabulary, serialized in the JSON-LD
format. These triples are included in the semantic representation of the overall flow, and are sent to
the Reasoning Framework for storage.

3.4.2. Flow level annotations mechanism- Semantic nodes

At the flow level, a special set of nodes (semantic annotators) has been created
as subflows and included in the Node-RED palette. Node-RED offers the ability
to create subflows, in which one can define the required fields (e.g. in a UI
format). These fields are included as subflow properties and environment
variables. Various nodes have been implemented up to this point in order to
address one or more categories of annotations needed at the flow level. A
number of indicative ones are presented below. Each of the semantic nodes is
also accompanied by a relevant README file accessible in the Node-RED
environment. The PHYSICS Annotators palette, available in Node-RED appears
in Figure 41.

Executor Mode Node

The Executor Mode is a semantic node used to indicate whether a specific flow
will be executed as a service or as a function.
Intrafunction Monitor
This is a helper node that can be used together with a logging system, in order
to forward monitoring information from an arbitrary location in a Node-RED
flow. Thus with the use of this node the developer can redirect checkpoints or
other status/performance information to an external logging service or the
DMS service from WP4.
Optimization Goal
This node is to indicate the developer goals in the form of weights (0-100) for
the 3 main optimization goals: performance, energy and cost. Thus the
developer should include in each flow the percentage interest in each of them,
e.g. 30(%) on performance, 30 (%) on energy and 40 (%) on cost. The total
should be 100.
Importance Node
This is a node to indicate the importance of a flow (low/medium/high). This
could be useful in the context of scheduling or autoscaling mechanisms

prioritization for functions.

Figure 41: PHYSICS Annotators palette available in Node-RED

DMS Interface Node
This is an interface node in order to interact with the Data Management Service functions that are
available for interacting (writing/reading) to KeyDB (T4.4). The node can be used in any developer

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |69

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

flow in order to read or write data to the DMS. The data to be written (key/value pair) needs to be
included in the msg.key (key for storing) and msg.value (value of storing) or set via the UI. The full
UI of the node appears in Figure 42 and includes information on the location and configuration for
contacting the service. This information can also be passed through according message fields in the
Node-RED flow that includes the node. The inclusion of the DMS interface node as a semantic
annotation node was performed so that the resulting usage of the DMS is depicted in the
annotations forwarded to WP4. In this manner, the platform would understand that a given function
is using the DMS service and could also take this into consideration when deciding where to place
that function from a data locality point of view.

Figure 42: Executor Mode Semantic Annotator Node

Affinity Node
This is a semantic node to indicate that a flow has affinity considerations with flows in the same or
other app (Figure 43). This information may be useful for the placement and optimization processes
of PHYSICS. The target action is referenced through the deployment artefact id (e.g. imageID), so it
needs to have been built beforehand. The relevant information can be found in the Build Tab of the
Design Environment. The app ID can be used to indicate an action belonging to a different app.
Therefore this information needs to be available in the Design Environment (it is under the Graphs
tab). If the app ID is left empty, it is assumed that the node refers to this app, since the app ID is
given during application creation and it is not available at design time.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |70

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 43: Affinity Semantic Annotator Node

Locality Annotator Node
This node is used to indicate the locality, if needed, for a given function. The node includes logic to
dynamically retrieve the available locations, which are then offered as a dropdown for the developer
to choose from.

Architecture Node
This is a node in order to include details of the needed h/w architecture for a given function (e.g.
GPU capabilities, specific CPU architecture capabilities etc)

QoS Requirements Node
This node is available in order for the developer to specify the desired QoS metrics for their function
execution. This information may be used by other components like the autoscalers or the routers
available. The metrics available are the same offered by the Monitoring Pattern described in Section
4, i.e. average duration, initialization or wait time for a given function and the window of time this
should be calculated upon. An example from the node UI appears below (Figure 44).

Figure 44: QoS Requirements Semantic Node

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |71

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Dynamic OW Action Node
This is the node to use dynamically placed actions, whose placement and location is decided after
design time. Due to the importance of this process, more details are included in Section 4 under the
Dynamic Orchestrator Pattern.

Custom Function Image Importer Node
This node is to be used in the case a custom image has been used as the basis for a function, as
mentioned in Section 2. After importing the image from the aforementioned functionality, the main
intention is to use it in the context of a PHYSICS application, thus to include it in a collection of flows
and functions to be deployed at the typical PHYSICS production environment. However, given that
this function has not followed the typical stages of a PHYSICS function, a relevant declaration
process needs to be followed, including creating a semantic annotation for this custom image used.
In order to support this, the PHYSICS DE provides a relevant semantic node, the “Custom Function
Image Importer”. The user needs to create a new flow in the DE, in which they will drag and drop
that node and populate it with the name of the custom image in the relevant field (Figure 45). In this
flow they can also include other needed annotations from the PHYSICS available ones (e.g. sizing,
locality etc.).

Figure 45: Custom Function Image Importer Semantic Node

Finally, although there is no relevant function logic inside this flow, they need to build it through the
DE. The reason for this is that only built flows are allowed to be included in an app graph in the next
stage. So the system needs to have this build documented. Once the flow is built it can then be added
to a PHYSICS App like any other “green” flow (Figure 46).

However one consideration here is that the deployable artefact in this case
(registry.apps.ocphub.physics-faas.eu/custom/george:183) will be the image built from the DE
(thus this flow that has only the semantic nodes) and not the manually imported image that is
intended to be used. However this is solved by the PHYSICS Semantic Framework (Semantic
Extractor component). When the created app graph will be fed into the SE, the latter will detect that
the specific graph has a custom image (from the existence of the “customImage” tag) and will
replace the “hasSoftwareArtifact” tag with the value of the “customImage” key value field included
in the flow description. This way the app graph will have the correct info when forwarded to the
PHYSICS platform for deployment and most importantly it will follow the same process as any other

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |72

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

deployable PHYSICS function. An excerpt from the app graph and the replacement rationale appears
in Figure 47.

Figure 46: Custom Function Inclusion in App Graph

Figure 47: Software Artefact Replacement Process for Custom Function Image

Sizing Annotator Node
The Sizing Annotator node (Figure 48) is used for defining the function container size for execution
on OW. Based on this node, the developer may dictate the memory size this container should have,
as well as the set timeout. This information needs to be exploited by the platform layer when the
respective flow will be declared as an action in the Openwhisk environment.

Figure 48: Sizing Annotator Semantic Annotator Node

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |73

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Ways of processing the semantic node inputs
Selected values in annotation nodes remain in the JSON export of the flow, thus are retrievable and
processable. The relevant JSON description of the node includes the name as well as the unique id of
this subflow type (“id”:”694cb….”) and any included fields. Once this node is dragged and dropped
in a flow, it is instantiated and the relevant selection (Service in this case) by the developer is an
extra section included (Figure 49). The type of the node includes the unique id of the Executor Mode
subflow (“id”:”694cb….”) as well as an id of the node instance itself (“id”:”47b23….”). Through the
correlation of the generic subflow ID or by the subflow name, the post processing can correlate this
node to the Executor Mode type, while retrieving the set value of this specific instance.

Figure 49: JSON Export of an instantiated Executor Mode Semantic Annotator

3.5. PHYSICS Core Application Graph Description Ontology

An ontology has been created in order to accommodate reasoning over the structure, operational
parameters, characteristics and requirements of an application that is designed within PHYSICS.
Such an application is deployable on the continuum that encompasses multiple heterogeneous
resources, and different components may be instantiated and executed in different resources. The
PHYSICS application ontology is devised in order to (a) guide the application design, (b) help define
further characteristics that guide the deployment process, (c) provide the majority of the
metamodel definitions for the reasoning engine of T4.1, (d) formalise the overall vision of the
PHYSICS project in a widely understandable and interoperable way from the application
perspective. The core concepts of the Application Graph Description ontology are explored in the
subsections of this section, while the subsequent subsections explore the ontology as it extends
beyond the core application description, as well as the way semantics are extracted from the
defined flows.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |74

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

3.5.1. Included concepts description and background

The core application ontology revolves around the concepts that have to do with (a) the data model
of the Node-RED flows, (b) workflows as parts of an application or as a combination of applications,
and (c) the interfaces between the parts of the workflow, commonly referred as nodes. As such, the
core ontology mainly revolves around the hierarchy of the different classes of application
components, based on core ideas related to the “Workflow” term, and applying them to the
node-red flow model. The idea is to express all terms in a hierarchy that enables the inheritance of
properties, as well as the ability to reason over application definitions. Additionally, the core
ontology includes the “Pattern” term, while the different design patterns explored in section 4 are
laid out as its subclasses.

The high-level modelling of the application description begins with the “Process” term, in the highly
abstract domain of workflow descriptions, rather than the more specialised term in the domain of
operating systems. The “Application” and “Workflow” terms are the direct children of the high-level
“Process” class. The “Workflow” class is also abstract, and the specialisation used in PHYSICS is the
“Flow” class, which encompasses flows as they exist in Node-Red and are deployable in the PHYSICS
platform. The “Sub-Flow” class signifies the packaging of flows as reusable sub-flows in other flows,
as well as the mandatory message wire inputs and/or outputs they have to include. The
“Application” class encompasses any piece of logic that is deployable to the continuum, regardless of
its size and characteristics. An “Application” individual is either a member/instance of the
subclasses of “Application”, or a composition of more individuals like this. The domains and ranges,
which are the classes/types of the objects and values, of the properties related to “Application” are
important, as they signify the ways in which simple or complex applications are composed, and by
extension imply the possible or desired placements and deployment strategies.

As such, the PHYSICS “Flow” class is a descendant of both the abstract “Workflow” and the PHYSICS
“Application” class, since one flow can by itself be an application. On a similar note, and because of
the use of the FaaS model, the “Function” class, which encompasses function nodes, is a subclass of
“Application”. Functions can be used in Flow compositions, with most of their relationships and
attributes being mostly the same as the Node-RED representation, and are considered to be the
most basic atomic deployable entities. There are also Applications that do not fall in the “Flow” or
“Function” classes, which are packaged as services, and are also used in Flow compositions. The
“Service” class encompasses these applications, and serves as a connection between FaaS and other
paradigms. The “External Service” is a direct subclass of “Service”, which encompasses Services that
are used in PHYSICS Applications, but are not controlled by the same entities, and may not even be
part of the PHYSICS ecosystem. The deployment of an application may be handled differently, based
on the external services it uses, as their operation is not under the control of the platform, and the
application may need to be optimised so that parts of it have more performant and reliable access to
those services. The “Standalone Container” is another subclass of “Service”, which signifies the reuse
or deployment of a complete containerized service as part of an application. A “Standalone
Container” individual is controlled by the same entity that deploys the application, and the PHYSICS

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |75

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

platform, enabling the deployment and reuse of applications that do not fall into the FaaS domain
and are possibly monolithic or legacy or resource-heavy processes.

Since Flows are based on the Node-RED flow representation, a flow is composed of different nodes,
and are all encompassed in the PHYSICS “Workflow Node” class. This class is a disjoint union of
multiple classes, mainly “Function”, “Software Library Node”, “Service”, and “Sub-Flow”, because
each Workflow Node can be a member of only one of these classes. Ready nodes that can be used in
the visual composition tool (Node-RED) which utilise, at least a part of, a library are members of the
“Software Library Node” class. Moreover, the members of the “Pattern” class are essentially
pre-loaded subflows, created based on a software or cloud design pattern, and imported into the
visual environment, as further explained in section 4. As such, Patterns are inferred to be part of the
“Workflow Node” disjoint union. A Pattern, however, is to be handled differently from a mere
Sub-Flow, in reasoning, optimization and deployment processes, as each pattern has its own
characteristics, requirements and use-cases, with many pre-set properties, and additional
configuration properties specific to each Pattern type.

Similarly, the interfaces between applications, and/or their components, are encompassed in the
“Application Interface” class. Application Interfaces exist in an Application or Flow in various
different forms. The topmost subclasses are “API”, “Connectivity Protocol”, and “Message Wire”, each
with different properties and class hierarchies. Message Wires are essentially the connections
between Node-Red nodes in Flows, and can be interpreted differently by the PHYSICS platform
depending on the situation. APIs and Connectivity Protocols are found anywhere, and signify the
way with which the applications and components interact and communicate, either in the same
execution environment, or over the network, or over even the internet.

This overall class structure is the core of the PHYSICS Application ontology, and is meant to be able
to describe the overall characteristics and structure of an application. It is also the skeleton upon
which different properties are based, in order to be able to create descriptions that can be
processed by the combination of OWL reasoning, custom rules reasoning, and further
decision-making and optimization processes of the PHYSICS platform, so as to make optimal
placements and deployments on the continuum.

3.5.2. Useful external ontologies

In the realm of linked data and open vocabularies, there do not exist ontologies that include terms
about the kind of programming workflows that Node-RED and PHYSICS have per se. However, there
do exist ontologies that define class hierarchies and characteristics of more generic workflows as
dataflows, which most typically are Directed Acyclic Graphs. The modelling of the PHYSICS
application class hierarchy is based upon Node-RED, using the following external ontologies as a
guide, with the goal of connecting to or reusing terms from related ontologies wherever possible.

The Visual Modelling tool Model (vmm [38] for short) defines a vocabulary that includes the
characteristics of a modelling tool, and originates from the study of UML software modelling tools.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |76

https://www.zotero.org/google-docs/?jzM6dP

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Although vmm falls outside the scope of the application description, it provided a guide for
modelling terms related to Node-RED in a more abstract and reusable way. The Abstract Workflow
Description [38] (Wfdesc for short) ontology is an abstract description of workflows and their
structures. Wfdesc is meant to be an upper ontology to be used for more specific workflow
definitions, and as a way to express abstract workflows. The workflow description structure is
useful as a basis for the modelling of the PHYSICS applications as workflows. The Wfprov 2 ontology
is linked with the workflow descriptions of Wfdesc, in order to form a provenance trace of the
execution of a workflow. However, Wfprov does not align with the modelling requirements of
PHYSICS. Nevertheless, some of its terms can be used as a connection point with this ontology, in
order to define which entity runs the workflow, what artifacts may be the results of the workflows,
and how and where they are invoked on. The invocation of the steps of a workflow execution are
described by the Workflow Invocation Ontology3, which provides useful insights to the
representation of an actual workflow execution, but does not align with PHYSICS application
modelling. The different kinds of data-intensive activities that are common in data operations, and
the ways in which each activity is implemented within a workflow, are found in the Workflow Motif
Ontology4. However, this ontology is only usable as a guide for imprinting common observations in
the application metamodel, and is not suitable to be reused.

In general, linking related ontologies with occurrences of equivalent terms in the manifests of the
FaaS platform and the visual workflow programming tool of PHYSICS has proven beneficial in the
semantic modelling of applications in PHYSICS. However, the only ontology that made a serious
contribution to the PHYSICS application ontology is Wfdesc, which is imported in its entirety. Using
its abstract Classes, a Workflow-related class hierarchy is organised into the core application
ontology, as seen in the previous sub-section. After a search for terms useful to the application
metamodel, no other ontology was found as capable to be linked or imported with the core
application ontology. There is a possibility that Wfprov may play a more important role in the
evolution of both the core and extended application ontology, as other entities are introduced, in
order to better identify the involved people and platforms in the application definitions. In the end,
the core ontology will have to be refined based on the evolution of the PHYSICS platform.

3.5.3. Domain model

In this subsection, some key triples of the core application ontology are laid out. Table 9 shows
some of the key triples, showcasing the main classes seen in the ontology description, as well as key
properties that connect them, and the meaning each connection has. The full ontology has been
available online and can be visualised through WebVOWL5.

5https://service.tib.eu/webvowl/#iri=https://drive.google.com/u/0/uc?id=1-9dnKP3Qr0oa9dEarp
-hH2QfYvbXuDN4&export=download

4 Workflow Motif Ontology, Available at: http://purl.org/net/wf-motifs.

3 Workflow Invocation Ontology, Available at: http://purl.org/net/wf-invocation.

2 Wfprov Ontology, Available at: http://purl.org/wf4ever/wfprov

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |77

https://www.zotero.org/google-docs/?BX2lXv
https://service.tib.eu/webvowl/#iri=https://drive.google.com/u/0/uc?id=1-9dnKP3Qr0oa9dEarp-hH2QfYvbXuDN4&export=download
https://service.tib.eu/webvowl/#iri=https://drive.google.com/u/0/uc?id=1-9dnKP3Qr0oa9dEarp-hH2QfYvbXuDN4&export=download

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Table 9: Key Concepts of the PHYSICS Core Ontology in an Object-Property-Value syntax

Object Property Value Description - Comments

Application includes Flow Flow Properties like this make the Application
individuals that have them be
compositions of multiple Application
components.

Application includes Service Service Similar to above.
This is for when a Service is included in
an Application. This may more
commonly be used with “Standalone
Container” individuals as values.
Similar properties between Application
and other Application components exist.

Flow has Node Workflow
Node

Shows that a node is part of a Flow. This
is a more high-level property.

Flow has Function Function Sub-property of the above. Shows that a
Function is included in a Flow. Derived
from Node-RED.

Workflow
Node

has Input Application
Interface

A Workflow Node, commonly a Function,
has an Application Interface, commonly
a Message Wire) as input. Derived from
Node-RED.

Workflow
Node

outputs Application
Interface

Similarly, a Workflow Node has message
wires as outputs. Derived from
Node-RED. There is an inverse property
to this one in a manner similar to the
two above. Commonly used with
Functions and Message Wires.

Application has Runtime
(sub-property of has
Dependency)

Runtime A Function requires a software Runtime
to run on. A hard dependency that needs
to exist.

Flow hasJSONDescription string Keep the original Node-RED-based JSON
description intact, so that components
like the orchestrator can do their own
interpretation/translation of the Flow.

Template has Instance Instance These are general-purpose, high-level
classes, with two inverse properties.
They encompass common cases of
templates used for instantiation. In
programming a class is a Template
which has some objects as Instances. In

Instance has Template Template

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |78

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

virtualization or containerization, a VM
or container image is a Template which
has a running VM or container as an
Instance, and so on.

Any individual can be marked as
Instance, or Template or both, if such a
relationship applies.

Application is Black Box boolean Application individual is a Black Box, if
true. That means that an Application is
not composed of any of its subclasses,
and is not an Instance (has no
Template).
This should be inferred by a rule that
finds that an Application is not an
Instance of a generally valid and
non-Black-Box Template Application,
and not a member of any of the
Application subclasses.
Black Box Applications should not be
used as Templates. Certain subclasses,
like Flow, Function, should not be black
boxes.

Application is Top-Level & Composite boolean An Application is a Top-Level package
that is a Composition of several
individuals that are members of its
subclasses, if true.
This can apply to members of subclasses
like Flow, as long as they are the
top-level Application package in their
case.
This should be inferred by a rule that
finds the top-level composite
Application.

Deployable
Software
Artifact

has Execution Mode
(swArtifactExecutionMode,
different from the one below
called appExecutionMode)

Execution
Mode

A Deployable Software Artifact
individual is a URI that targets the
file/artifact in question directly.
A Deployable Software Artifact
individual has possible Execution Modes
for some Resource types/classes (or
Specific Resource individuals).
The Execution Modes supported in
PHYSICS by default are:

● Node RED Action
● OpenWhisk Sequence

Deployable
Software
Artifact

is Deployed On Resource

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |79

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Service Execution
The Software Artifact Types supported
in PHYSICS by default are:

● Service Description File (e.g.
compose file etc.)

● Source Package
● Docker Image

Deployable
Software
Artifact

artifact Type Software
Artifact Type

Application has Deployable Software
Artifact

Deployable
Software
Artifact

An Application Individual has a Software
Artefact that can be deployed on some
kind of resource.

Application has Execution Mode
(appExecutionMode, different
from the one above called
swArtifactExecutionMode)

Execution
Mode

Mode of Execution for an Application
individual. There can be 1 or more
supported Execution modes for an
Application individual. Like other
properties, a definition like this on a
sub-component overrides the generic
definition on a composite.

Standalone
Container

has Image (sub-property of has
Template, means that
individuals are also marked as
Instance and Template
respectively)

Software
Image
(subclass of
Deployable
Software
Artifact)

A standalone Container (subclass of
Service) is instantiated from a Software
Image. The Software Image can be either
a reference to an image from a
repository (preferable), or reference to a
Dockerfile.

Function or
Flow
(depending
on the
annotation)

annotation
(as a Property)

value Every annotation shown in Table 2 of
section 3.4.3 is included in the core
ontology as a triple, where each
annotation is mapped to a triple like
this.

3.6. PHYSICS Application Extended Ontology

This section proceeds with the overview of the extensions over the core application graph
descriptions. There are various added terms that have to do with Resources, Quality of Service,
Deployment Targets and various additional parameters, that (a) make a more direct connection
between the application and the target resources and (b) provide a holistic view of the PHYSICS
platform, from the perspective of the application design.

3.6.1. Included concepts description and background

The extensions of the application ontology go beyond the definition of an application as a workflow
and the functions as the main workflow nodes. In order to facilitate the correspondence between
applications and resources, the ontology includes high-level definitions of (a) resources for

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |80

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

deployment, such as Cloud services, compute nodes and platforms, (b) locality constraints, (c) Raw
Computational Resources, such as CPU and memory, as resource requirements, (d) QoS constraints
to be matched to the Performance Benchmarks done on Resources or SLAs, and (e) other related
terms that can be used as Application parameters and requirements.

The extended ontology is made with just one concern in mind: Finding the appropriate resource to
deploy the application on. The Workflow-based “Application” class, its hierarchy of classes, and the
entire core ontology in general are part of the extended ontology, with the core term of interest for
the matching being the “Application” class. From the side of the deployment targets, the “Resource”
class is the core term of interest, and it has its own class hierarchy. The majority of the parameters
to be matched between an application and resources can be summed up into three axes, which are
modelled as distinct class hierarchies, namely (a) “Raw Computational Resource”, (b) “Locality” and
(c) “QoS”. These constitute the disjoint union of the “Deployment Attribute” class, which has
“Application Requirement” and “Resource Attribute” as subclasses. An “Application” individual
defines requirements which are later matched to resource attributes through reasoning, and
through optimization whenever reasoning does not find exact matches, or whenever the matches
are more than one.

Moreover, properties of the classes that constitute the disjoint union of “Deployment Attribute” may
be sub-properties of the properties of this class in many cases. For these deployment attributes,
there can be different ways to express a specific value or many possible values. A “Raw
Computational Resource” member is a computational resource with processing power or storage of
some sort, with examples including a processing unit like CPU, GPU, TPU, or temporary storage such
as RAM, or Persistent Storage like HDD or SSD, or a MicroController like an Arduino, or a specialized
card, or FPGA, or ASIC. The “Locality” class encompasses the different ways to either advertise the
location of a Resource, or the desired deployment location or area of an application. This implies
that the location of a Resource is easily retrievable, either by (a) annotating an available resource
with its geolocation, (b) by including an expression of Location Information through DNS, so long as
the resource is addressable by a domain name, following a standard such as RFC 18766 or reverse
DNS[38], or (c) by means of a third-party service that may provide a semi-precise location based on
IP address, utilising complex methods such as the landmark-based one seen in [39].

As such, “Locality” individuals can be expressions of geo-locations or geographical areas as
GeoJSON7, which may be combined with location names based on regions and/or reverse DNS. Big
geographical regions, such as continents and countries can be named in advance in order to be able
to match the Locality of Applications and Resources by simple string values directly. The “QoS”
individuals that are Resource Attributes may be (a) defined by the Resource directly, (b) defined by
the SLA of the Service, or (c) provided by a “Performance Benchmark”, given a “Benchmark
Scenario”, for a given metric. For an Application, a “QoS” requirement may define preferred values or
ranges of acceptable values for a given metric.

7 GeoJSON specification, available at: https://geojson.org/

6 A Means for Expressing Location Information in the Domain Name System (IETF RFC 1876),
available at: https://datatracker.ietf.org/doc/rfc1876/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |81

https://www.zotero.org/google-docs/?I9s36s

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The “Resource” class mentioned in this section, along with its hierarchy, is a more abstract view of
the resources, from the point of view of the application. The “Resource” class hierarchy includes
many different kinds of deployment targets, which may stem from different domains. As such,
different kinds of Cloud Services, Compute Nodes, Serverless Platforms and Storage Nodes can be
described based on that, and this constitutes the connection with the PHYSICS Resource ontology
created in WP5.

Additionally, there are Classes which express the performance profiling of Application instances,
namely “Performance Benchmark”, “Load Generation Data” and “Performance Profile”. One
Application may be associated with exactly one “latest Performance Benchmark” instance, one
“Load Generation Data” object, and one “Performance Profile” object, for one location. An
application can have one or more than one instance of these properties, each pertaining to a specific
location. There is also a property for old performance benchmarks of an Application individual, in
case historical data is kept in the knowledge base. The core idea is that an application undergoes
benchmarking and performance analysis in order to produce a performance profile. That profile
denotes how high the resource requirements of the application are, compared to the resources
available in the deployment environment in each tested location. There are also accompanying
metrics gathered from benchmarking the application during load at each location, which are
expressed as data properties of a “Load Generation Data” object.

There are cases where information that follows the structure the ontology dictates will need to be
defined in simpler ways than a, sometimes large, set of triples, as they are meant to be more
common in usage than others. As such, the semantic annotations explained in section 3.4 are
properties with “Function” or “Flow” as their domain and can sometimes be “shortcuts” into more
complex descriptions, by defining rules. The resolution of such descriptions through rules are to be
implemented as part of the integration of the components of the entire semantic block, in WP6.

3.6.2. Useful external ontologies

In order to create the overall structure of the PHYSICS ontology, including the connection with other
domains, as well as the resource descriptions of T5.1, some external ontologies have been
investigated. Most of the external vocabularies were used as guides for modelling parts of the
ontology, while some connection points and inclusions are to be considered.

When it comes to application requirements that have to do with resources, i.e. the devices or
platforms an Application can be deployed on, there exist some ontologies that encompass related
terms. Some useful ontologies from the cloud computing domain, in that regard are the Ontology for
Cloud Computing Instances8 and the Ontology for Service Level Agreements9. However, these are
minimal ontologies which only provide some ideas for the modelling of resources. When it comes to

9Ontology for Service Level Agreement for Cloud Computing.
http://cookingbigdata.com/linkeddata/ccsla/

8 Ontology for Cloud Computing Instances, available at:
http://cookingbigdata.com/linkeddata/ccinstances/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |82

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Resources that are part of the Edge Computing and IoT domains, the W3C Web of Things
recommendation provides insights into their hierarchy, relationships and usability guidelines. The
Web of Things is a concentrated effort by W3C to create standards that will reduce the
fragmentation of the IoT domain, by unifying many terms into a small set of ontologies. In the WoT
architecture10, the way to describe, expose, as well as consume a “Thing” are laid out. As such, terms
from the WoT Thing Description11 and Binding Templates12 may be useful for laying out application
requirements that are satisfied from special IoT equipment at the Edge. The inclusion of a subset of
these ontologies is to be considered during the integration of the overall PHYSICS ontology,
containing both the Application and Resource metamodel.

Since the continuum that PHYSICS is considered overlaps with multi-cloud service compositions
(MCSC), and for cases where specific services or unique requirements (e.g., object stores etc.) are
included in the application description, it is best to explore further works about MCSC on the
semantic web. In [40], a unified cloud service description is proposed, which is meant to be able to
accurately represent any cloud service, by consolidating all common characteristics and organizing
them in nine dimensions/sub-ontologies:

● Service sub-ontology, representing the general information about a cloud service. (type,
deployment model, category, evaluation, service reusability, etc.).

● Functional sub-ontology, which represents the overall functionality, as the set of operations
offered by a cloud service.

● Technical sub-ontology, represents the technical aspects, that is, the way a cloud service is
accessed.

● Participant sub-ontology defines the different actors (e.g., providers, consumers)
participating in the description, composition, and invocation of cloud services.

● Interaction sub-ontology describes the services' behavioural aspects, and how cloud
providers and consumers interact with services.

● Service-level sub-ontology comprises the QoS capabilities of each service (e.g., security,
reliability, compliance).

● Legal sub-ontology, which represents the legal aspects and restrictions of the cloud service's
usage.

● Pricing sub-ontology, which represents the fees and pricing models for consuming a cloud
service.

● Foundation sub-ontology, which represents the general concepts (e.g., artifact, resource,
location, time). Additionally, it addresses the resources control and visibility, the dynamic
changes in the environment, and the environmental constraints.

This description can be used for automated service selection, based on characteristics and QoS
constraints, expressed in Semantic Web Rule Language. In the same work, an algorithm for selecting

12Web of Things (WoT) Binding Templates, available at:
https://www.w3.org/TR/2020/NOTE-wot-binding-templates-20200130/.

11 Web of Things (WoT) Thing Description, available at:
https://www.w3.org/TR/wot-thing-description/

10 Web of Things (WoT) Architecture, available at: https://www.w3.org/TR/wot-architecture/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |83

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

a combination of clouds is introduced, which considers both service semantics and multi-cloud
settings, optimizing the usage of Multi-Cloud Environments. This work may prove useful to the
whole PHYSICS project in general. A semantic engine for porting applications to the cloud and
among clouds is presented in [40], which later became part of the mOSAIC framework. In order to
aid in modelling cross-cloud deployments and optimize cloud deployments based on QoS metrics,
requirements, prices and other SLA parameters, CloudPick [41] was introduced as an operational
platform, which is based on ontologies. CloudPick may diverge from the PHYSICS project, however,
it provides insights on both modelling resources and optimizing their usage.

Another important extension domain is that of locality requirements. The GeoJSON-LD13 vocabulary
can be used to encode coordinates or geographical areas, by just semantically annotating valid
GeoJSON data with the vocabulary and indicating the appropriate class. In addition to that, the
Vocabulary for Regions and Zones on Cloud Computing14 is used to specify the suitable regions of
Data Centres where application components can run and can further help model a Locality class
hierarchy.

The approach of the creation of connections of Application descriptions with other domains, was
done from the perspective of the requirements that an Application will have in order to be deployed
and operational. Many of the connections and inclusions are to be further considered and
introduced, in tandem with tasks T4.1 and T5.1. The goal is to connect the work of the Application
ontology, along with its extensions, with the resource descriptions.

3.6.3. Domain model

This subsection proceeds to show some key extensions of the PHYSICS Application Ontology, in a
manner similar to section 3.5.3. The extensions of the ontology provide connections between the
Core Ontology Classes and other related domains, in order to enable the matching of an Application
with the Resources it can or will be deployed on, through reasoning and optimization processes.
The key extensions are laid out in Table 10 below and are also included in the WebVOWL link of the
main ontology.

Table 10: Key Concepts of the PHYSICS Extended Ontology in an Object-Property-Value syntax

Object Property Value Description - Comments

Application requires Application
Requirement
(subclass of
Deployment
Attribute)

Express a requirement of an Application, or
application component.

14Vocabulary for Regions and Zones on Cloud Computing.
http://cookingbigdata.com/linkeddata/ccregions/

13 GeoJSON-LD format, available at: https://geojson.org/geojson-ld/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |84

https://www.zotero.org/google-docs/?FV2Gol
https://www.zotero.org/google-docs/?SME69f

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Resource has Resource
Attribute

Resource Attribute
(subclass of
Deployment
Attribute)

Express the offering of a Resource.

Deployment
Attribute

with Value string or number or
boolean

One specific value for a given Deployment
Attribute individual. The subclass commonly
used on the application descriptions is the
“Application Requirement”. The attribute has to
always has to also be part of one and only one
of the following classes:

● Locality
● QoS
● Raw Computational Resource

Deployment
Attribute

with Variance number Applicable only if the above exists, with a
number value. It expresses the acceptable
variance of the attribute.

Deployment
Attribute

with Min Value number Minimum value, when expressing a numerical
range.

Deployment
Attribute

with Max
Value

number Maximum value, when expressing a numerical
range.

Deployment
Attribute

with Possible
Value

string or number One or more possible values for the given
attribute.

Deployment
Attribute

with Prefered
Value

string or number Preferred value, but not the absolute target.

SLA or
Performance
Benchmark

has Derivative
QoS

QoS (inferred
subclass of
Deployment
Attribute)

A QoS attribute derives from the SLA of a
Resource, or Performance Benchmarks done
on the resource.

Application has Owner User The owner of the application. Extracted by the
user id used in the call to deploy the
application.

Application
Management
Entity (subclass
of Management
Entity)

manages
Application

Application These properties express Management Entities
that manage Applications or Resources.
Management Entities include management
systems, orchestrators, operations support
platforms, etc. for Applications or Resources.
The common characteristic of these
management entities is their (softwarized)
configurability via APIs.

Resource
Management
Entity (subclass

manages
Resource

Resource

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |85

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

of Management
Entity)

Application has Platform
Dependency
(sub-property
of has
Dependency)

Operating System
or
Management Entity
or
Raw Computational
Resource or (some
specific Resource
subclasses:)
Storage Node or
Serverless Platform
or Cloud Service

Property to express hard platform
dependencies. This goes beyond runtimes,
libraries and frameworks, as it has to do with
software or hardware platforms, as well as
specific hard dependencies of those platforms
that may affect the Application (component).
Applications cannot be deployed on Resources
if their dependencies are not fulfilled.

Pattern enhances QoS Patterns can change some QoS parameters.
The QoS parameter and its metric and values
are an expression of the expected difference to
baseline. (Further modelling regarding Pattern
and QoS relationships to be done.)

Pattern deteriorates QoS

Deployable
Software Artifact

has Artifact
Dependency

Operating System
or
Management Entity
or
Raw Computational
Resource or (some
specific Resource
subclasses:)
Storage Node or
Serverless Platform
or Cloud Service

Property to express hard platform
dependencies, but for an Artifact that is built
from an Application definition. This goes
beyond runtimes, libraries and frameworks, as
it has to do with software or hardware
platforms, as well as specific hard
dependencies of those platforms that may
affect the specific Deployable Artifact.

Application
(Instance or
Component)

has
Performance
Profile

Performance
Profile

This property assigns Performance Profiles to
an Application Instance or Component. Each
Performance Profile for an Application consists
of the Location it applies to, and the Resource
Requirements Classification.

Performance
Profile

has Location Location or
Locality

The classification of the requirements in terms
of various resources, based on the overall
resources available, and conditions present, at
a location. An Application may be classified to
have “low”, “medium” or “high” requirements
for computational resources:

- CPU
- Memory
- Network Traffic Reception
- Network Traffic Transmission

Performance
Profile

defines
Resource
Requirements

Resource
Requirements
Classification
(Various data
properties
regarding the
requirements or
usage of

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |86

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

- File System Reads
- File SystemWrites
- GPU (optional, if GPU is, in fact,

required)
Each classification results from performance
analysis done on the specific Location or
Locality the performance profile is created for.

computational
resources)

Application
(Instance or
Component)

has Load
Generation
Data

Load Generation
Data
(Collection of data
properties)

Various data properties with scalar values,
regarding the results, and some inputs, of the
latest benchmark done during generated load,
at a specific location.
These properties include resource usages,
averages and standard deviation values of
various metrics, such as latency, duration and
delay of the application’s operation.

3.7. Semantic Extractor Process and Implementation

The Semantic Extractor is the component tasked with (a) extracting different annotations from
Flows and Functions and (b) transforming the JSON representation of Application components from
Node-RED into a JSON-LD representation compliant with the PHYSICS Ontology (as seen in Section
3.5) as well as its extensions (as seen in Section 3.6). It now supports the representation of different
Application structures, requirements and annotations, and is also made to be extensible in terms of
the supported annotations. The outputs are fed to the Inference Engine of WP4, as well as the
deployment pipeline that follows. The workflow of the semantic extractor can be summed up in the
following steps:

● The Design Environment (DE) triggers the Semantic Extractor (SE) (Step 4 of the process
described in Section 2.5.1) to begin its workflow, on the flows from Node-RED with specific
IDs, and the corresponding deployable artefact locations. This is done by calling the /extract
endpoint with an HTTP POST, with the body including all Node-RED flows (main logic) and
subflows (re-used logic or annotator nodes) selected together. The body also includes the
display name and branch name of the application, the ID of the deployable artefact to be
created, the type of the artefact, and the corresponding deployment action name. The
semantic extractor responds with an acknowledgement that the extraction trigger has been
received.

● The SE creates the top-level JSON-LD representation of the application based on the
contents of the DE output with some basic properties. It also segregates the different parts
of the DE output in order to properly analyze them with different pieces of logic, especially
flows and subflows.

● The included semantic annotations (more details on their types in Section 3.4) are extracted
from each Flow as well as the Functions included.

○ For the Flows, the annotations are extracted by recognizing annotator nodes, which
are represented as Node-RED subflows in the DE output, and setting the values that
are set in their instance properties for the corresponding properties.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |87

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

○ For the Functions, the single line comments are parsed, in order to create the
corresponding annotations, as explained in section 3.4.1. The extraction is done by
recognizing the explained syntax within the single-line comments. The processing of
the single line comments within the code follows the example of this project15.

● The overall structure of the Flow is parsed and transformed in order to be compliant to the
ontology. First, the context that introduces the ontology and the various addressing schemes
are introduced as a base structure, as pre-computed in step 2. Then, the flow is filtered, and
each node and component is classified as an entity that belongs to a class defined by the
ontology, and the properties that connect those entities are added in order to form the
proper triples (in RDF terms).

● Once the flow is fully transformed, the SE attempts to include additional data by making the
appropriate requests to the Performance Evaluation Framework (PEF) of T4.2. As long as
the developer has gone through the Performance Pipeline process described in Section 2,
PEF will have been enriched with the results of that execution. Thus it will provide the SE
with raw data regarding the performance profile, as well as load generation results and
input data, as a response, given combinations of flow and branch IDs as inputs, for the
various available OW cluster locations. The SE then parses this data in order to create the
appropriate ontology-compliant objects, as well as property-value pairs for the
corresponding flows. As a result the flow objects include the relevant results of the PEF
where applicable, in the JSON-LD structure.

● The structure that is created up until that point is validated via a json-ld processor, in order
to ensure the proper data structure is created, by cleaning and normalizing the document,
and to enforce the JSON-LD standards. The result is a JSON-LD document in array-notation,
that complies with the ontology, and can thus be introduced as it is in a triple store or
reasoning engine. This description also includes the original representation as it was taken
from the DE, for the cases where the raw representation is needed for orchestration and/or
deployment purposes.

● Each JSON-LD document in the aforementioned array-notation structure that is a flow
representation is pushed to the Inference Engine, once it is processed. The reasoning engine
then continues with its own process. The inference engine will build upon the
representation the extractor provided, by imposing an OWL inference / entailment regime,
and using further inference capabilities that build upon it.

● The Application ID, and different component IDs that are ready are sent to the Design and
Control UI. The user is notified that the selected Flow and the corresponding Application
components are ready.

The data transformations are done either manually or with the help of the JSONata library16, and the
JSON-LD processing is done via RDF.js17 and mainly its JSON-LD context parser18 in order to provide
a valid, compact and compatible representation of the Application description. The semantic
extractor has been developed and tested as a Node-RED flow that processes the data outputs of DE

18 https://github.com/rubensworks/jsonld-context-parser.js

17 RDF.js library, available at: https://rdf.js.org/

16 JSONata library, available at: http://docs.jsonata.org/overview

15 Dependency Aware FaaSifier project, available at: https://github.com/qngapparat/daf

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |88

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

and PEF, regarding flows from the instances of Node-RED used in a PHYSICS DE. It is packaged
either as a Node-RED extension or as a standalone Node.js service. Since the way the internals of the
extractor operate are heavily dependent on the structures that the ontology imposes, the extractor
and the ontology have been developed in parallel, in order to ensure that the ontology is well-suited
for the project’s needs, and that the extractor is fully compliant with the expectations of the
dependent tasks.

Figure 50: Application Graph Semantic Output towards the Reasoning Framework of WP4

An example of a translated application graph appears below, consisting of two functions. The
semantic extractor is able to understand the DE input (Node-RED flows of these functions) and
translate them to the concepts of the ontology, feeding that information into WP4 and the Reasoning
Framework. A number of different annotations are included in the specific example and are
transferred to the app graph, as this appears in Figure 50, including sizing, importance, execution
mode, locality etc. The extractor has also retrieved and included performance profile and
benchmarking information (loadGenData tag) that was available for one of the functions in the
defined application.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |89

https://docs.google.com/document/d/1yPu2L4GR70fqikLvSLGMwSntxPr4kbGrI3PZbWARUH4/edit#bookmark=id.7jrl2enjmic4

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4. DESIGN PATTERNS

4.1. Introduction

The concept of patterns is introduced in order to aid in the creation of reusable partial
implementations that can be dragged and dropped in the developer environment, and thus speed
up the application creation process as well as minimize the knowledge barrier for the developer.
Patterns have been a very useful tool for dictating design principles as well as driving abstract
implementations for a specific domain [42]. Patterns, or architectural styles, are considered a key
element of cloud software application development in order to increase code reuse and ensure a
number of issues such as fault tolerance or performance in distributed environments [43].
Especially for developers coming from more typical programming backgrounds, the use of
asynchronous, function-oriented programming can be considered challenging. Therefore, the
grouping of even simple sequences in generic, reusable collections can prove useful in this
transition.

Numerous definitions are included in the existing literature with relation to patterns [44]. The one
followed in the context of PHYSICS is that a pattern is “a proven series of activities which are
supposed to overcome a recurring problem in a certain context, particular objective, and specific initial
condition” [45]. For this reason, the defined and implemented patterns in the context of PHYSICS
come with a complete documentation around these fields. However, this is not sufficient, since as
can be found in typical detailed pattern documentations [3], patterns may come with specific
requirements for their application, as well as drawbacks and limitations. Patterns do not fit to all
cases, typically have a set of parameters to be determined, weak points and strong points,
limitations and can be compensated by other patterns. Therefore, this information is also included
on a pattern description level. This is needed in order to inform the developer about these issues, as
well as enable the combination of complementary patterns or the avoidance of using conflicting
ones.

In the context of this work, the concept of a pattern fits very well with the generic ability of
Node-RED to group entire workflows in subflow nodes and add properties and configurations on
top of them. This functionality then is included in the environment palette as a single node, hiding
all underlying complexity. The developer can directly drag and drop that node in their flow and use
it directly, a feature that significantly speeds up development. It is necessary to stress that a pattern
implementation may be executed in either a service or function (sequence) mode, may reside on the
client or on the server side, but they need to be configurable, reusable and parametric.

Sources of pattern definitions

The main sources from which relevant pattern definitions have and will be extracted in the context
of PHYSICS include (Figure 51):

● cloud and FaaS specific patterns [46] that need to address specific domain issues (e.g.
minimize invocations, improve some features like state, cold starts etc.)

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |90

https://www.zotero.org/google-docs/?oPKm2P
https://www.zotero.org/google-docs/?5hB2kP
https://www.zotero.org/google-docs/?sF9eAQ
https://www.zotero.org/google-docs/?eOndOa
https://www.zotero.org/google-docs/?mVUFf2
https://www.zotero.org/google-docs/?223Cv2

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● the project’s research and innovation scope and objectives
● the project’s use cases and their specific problems and considerations

Figure 51: Pattern Definition Sources

Following, further details per pattern are portrayed, including their relation and usage within
PHYSICS, their relation to requirements, as well as implementation and experimentation details
where appropriate. Initially a brief description is given on a table template basis, whereas further
descriptions are provided in subsequent sections.

4.2. Patterns usage and inclusion

4.2.1. Pattern Use Cases

The specialisation of the use case of pattern inclusion appears in Figure 52.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |91

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 52: Patterns Inclusion Use Case

In order for the developer to include a pattern in their application flow, they need to drag and drop
it in their flow. Following its incorporation, the developer needs also to instantiate any input
parameters needed by the pattern. These parameters may regulate usage and application of the
pattern or pure functional aspects.
This functionality is related to the generic requirements expressed in D2.2 and more specifically:

● Req-3.3-PatternApplication: The exposed patterns need to be seamlessly integrated into the
application structure. To this end, they need to be exposed in the Visual environment and
directly integrated into the application workflow, while configurable, if applicable, through
the environment. The mechanism for enforcing the pattern should be seamlessly deployed
along the application in the FaaS platform.

● Req-3.3-PatternDocumentation: The exposed patterns from T3.3 need to be completely
documented so that the application developer is aware of their structure, operation, effects
and outcome.

4.2.2. Patterns Incorporation

In order to enable the aforementioned incorporation, the patterns need to be available in the
environment (Figure 53).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |92

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 53: Incorporation of a pattern in PHYSICS and beyond

To achieve this, the pattern description subflow (in JSON format) needs to be available in a
reachable repository and included in the environment of the Baseline Node-RED image created by
PHYSICS. For cases of patterns that are deployed as separate services, a relevant description node
should exist in order to point to a template docker file for the service. However, in order to extend
their usage outside PHYSICS, since many of these patterns will cover generic usages, the specific
individual JSON descriptions of the patterns will also be made available to external Node-RED
repositories19 so that they can reach wider audiences. In this case, any external developer, not
belonging to the PHYSICS ecosystem, or not having incorporated the overall PHYSICS functionality,
will be able to cherry pick and select an individual subflow that may prove useful.

Following, details on the implemented patterns for this period are included in the following
paragraphs. For each pattern, a template table for pattern description is included, followed by
subchapters that describe details on a number of needed information such as implementation
details, examples of usage, limitations, variations etc.

4.3. Node-RED flow as function pattern (OWSkeleton)
4.3.1. Pattern template description

The Node-RED flow as function template description is provided in Table 11.

Table 11: Template Description for Node-RED flow as function Pattern

Pattern name Node-RED flow as function (OW Skeleton)

19 https://flows.nodered.org/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |93

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Relation to
Requirements

Req-3.1-WorkflowDef, Req-3.1-CustomDockerImages, Req-4.2-FaaSBenchmarking (to
check delays inserted by the runtime), Req-6.1-stateless, Req-3.3-PatternApplication

Source of
pattern

Development abstractions for all UCs, Execution mode defined in PHYSICS

Pattern Context Use Node-RED as an extra and more abstract runtime for serverless functions

Pattern
Underlying
Problem

Asynchronous and functional programming style is not very intuitive for developers
with different backgrounds. Workflow definitions of current FaaS platforms limited in
terms of abilities and large flows complexity of description

Pattern
Usefulness/
Objective

The pattern enables the usage of Node-RED as a generic programming environment for
functions and workflows, exploiting the abundance of available nodes as well as easy
local testing. By creating the flow in the editor one can debug most significant errors.
Then by utilizing also the PHYSICS DevOps processes, to create the deployable artefact
and deploy the flow as an executable function in a relevant Node-RED runtime image.
Through this runtime, the developer may create in a more user friendly manner
complex flows, as well as exploit the baseline functionality of Node-RED and the
community repositories and nodes. They are also not limited by constraints of FaaS
platform workflow specifications.

Schema

Prerequisites Adaptation to the I/O specification of an Openwhisk action.

Condition of
application

Need to include readymade logic from the Node-RED ecosystem in an easier manner
than native function creation in one of the available Openwhisk runtimes

Input
parameters

flows.json file of the flow

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |94

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Output
parameters

deployable container image to be registered at the target OW platform

Included
functionality

Wrapping, Context Reuse functionalities

Pattern
limitations

Higher startup times compared to native runtime environments, context reuse issue

Linked to
Pattern

Node-RED orchestration

Indicative
Domains of
Applicability

Generic means of writing function logic

4.3.2. Pattern implementation details

The Openwhisk specification indicates that any docker image can be included as a function provided
that it has a REST interface with two endpoints (a POST /init and a POST /run), listening on port
8080. The /init method is used to initialize the environment of the function (if needed) while the
/run is used for the actual execution of the function and for passing any input arguments. To this
end, a relevant subflow has been created (OWSkeleton in Figure 54) that includes the two methods
and an example hello world function. The hello world function can be replaced by one or more
functions linked in a flow, as long as the wiring is maintained (first node in the flow to be linked to
the /run endpoint and final node of the flow linked to the http response node). Any available
Node-RED node can be used (or externally imported) while creating the inner flow, thus enabling
the incorporation of arbitrary logic from the developer. The same applies for function wirings, that
can follow any type of wiring and workflow orchestration logic supported by the Node-RED runtime
or empowered by the patterns described in this document. One key feature in this process is the
Jenkins pipeline mentioned in Section 2.6, that guarantees that whatever dependency (e.g. extra
node or library used in the Node-RED editor environment, settings or credentials files) is also
included in the template Docker image that is generated as a result of the DevOps process. The
OWSkeleton node appears in Figure 54.

One key consideration in this case is the need to have separate function names for each flow. So each
flow , in order to be generated, starts from the same baseline Node-RED template image, the specific
flow file as well as other node dependencies are copied in the new image from the development
environment and the image with a discrete name is registered as the one to trigger on the specific
action activation. This is the only way since fetching dynamically the flow would not work for cases
of paused containers reuse in Openwhisk. The respective generic Node-RED template image would
be treated as a single runtime image by Openwhisk. This means that once OW had executed an
Action of the Node-RED type, a subsequent call to another Node-RED action (but of a different flow)
could reuse the same paused container that also includes the context of the initial action. Any
context created in the first execution would be visible in the second one. This is of course dangerous

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |95

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

from a security point of view but also from a functional point of view if the two different instances
share any context variable name that is not initialized as part of the flow logic. In case different
flows were meant to be executed, this again will not work since the init method, that could
potentially be used to fetch the new flow, is not re-executed in the warm execution case (container
re-use) by Openwhisk.

Figure 54: OW Skeleton Pattern

Improved Logging through an Error catching process

Another point of attention is the need to include detailed error capturing for function related errors
as well as propagation of these to Openwhisk following the according specification. This is
especially critical for solutions like PHYSICS, in which many intermediate layers (e.g. WP3, 4,
Openwhisk, Kubernetes) are intertwined. We also need to avoid the fact that different errors may
occur during an invocation and the possibility of one internal error to cause other cascading ones. In
the specific example (Figure 55), the logs display a top level error of a function timeout:

Figure 55: Indicative example of Timeout Error Report

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |96

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

However if we examine the execution carefully, we may observe that the reason for this timeout is
the fact that the function execution has stalled inside the Node-RED runtime for another reason (e.g.
wrong input argument). This is in principle an error on the function creation itself, which is twofold.
Initially it should catch that error and return a relevant error message to Openwhisk, indicating that
the execution has finished in an erroneous way. This way one can avoid waiting until the function
timeout to detect the erroneous execution, leading to faster debugging. The Openwhisk interface
dictates that the response object should contain an error field in order to indicate this. In that
message it could also indicate more details of the internal function error. If editing the function from
Node-RED, then a suitable insertion of such an error would be through the proper configuration of
the msg.payload before returning the error response object, by including a relevant error field in the
msg payload (msg.payload={'error':'Some Error Message'}).

If the flow needs to capture an error from any node it needs to use the built-in Catch node of
Node-RED and then add the msg.payload.error field in a subsequent function node. According to
(https://nodered.org/docs/user-guide/writing-functions) if the function encounters an error that
should halt the current flow, it should return nothing. To trigger a Catch node on the same tab, the
function should call node.error with the original message as a second argument, as depicted in
Figure 56.

Figure 56: Error Throwing Structure

We can then write some generic code to include that information in the msg.payload, which is the
response object towards Openwhisk (Figure 57).

Figure 57: Preparation of Response For Detailed Error Report

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |97

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

In this way we will get a lot of information regarding the error including the payload of the msg that
triggered the error in the first place as well as the node in which it occurred. The according output
in the activation result appears in Figure 58.

Figure 58: Full Activation Result including Error Details

This ensures that accurate logging information is propagated both to the Openwhisk environment
and therefore to the final user of the function. All the aforementioned functionality has been
included in the updated Skeleton template of the pattern, in order to assist developers in the
process.

4.3.3. Pattern examples of usage

This skeleton is used across many different patterns in this document, especially the Node-RED Split
Join pattern. In a typical standalone usage external to PHYSICS, for parsing the above hello world
flow, one should create the flow file in a relevant Node-RED server environment, export the flows
file as a JSON from the environment and then build a relevant image. Extra Node-RED packaged
nodes included in the palette by the developer should be manually inserted in the dockerfile, in a
manner similar to the docker file presented in Code 3. Then the image should be built, pushed in a
docker registry and registered with Openwhisk with the –docker flag (Code 5). Now the action is
accessible for execution either via wsk cli or HTTP.

docker build --no-cache -f Dockerfile -t username/action_name .
//The no-cache argument is needed since it should retrieve the flow each time from the repo in case of //changes

docker push username/action_name

wsk action create action_name --docker username/action_name --web true
//--web true should be used if one wants to invoke the action directly from an HTTP endpoint

//examples of invocation
OW CLI mode: wsk action invoke action_name
HTTP: GET http://serverIP:3233/api/v1/web/<namespace>/default/<action_name>.json

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |98

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Code 5: Example build and registration externally to the PHYSICS platform

However in the context of the PHYSICS design environment, this creation is performed by the
DevOps processes described in Section 2, that includes an extraction of the node dependencies, the
inclusion of the relevant flows file and the publication and registration of the image automatically.

4.3.4. Pattern necessary adaptations (application side)

The main adaptation from the application side in the flow refers to the way the arguments are
passed from Openwhisk to the inner function logic during runtime. The incoming parameter (and
any other parameters) are wrapped around a specific JSON structure by Openwhisk before passing
them in the inner functions. Thus any input arguments that are included in the POST body of the call
are automatically wrapped around a msg.payload.value field when executing in the Node-RED flow
function. This needs to be treated accordingly by the developer, so that they can obtain and process
the values. The same applies for the testing process inside the Node-RED editor. The developer
should directly use this structure in the testing environment in order to avoid errors during
deployment of the action in OW. One final point of attention is the fact that the logic needs to return
a JSON object according to the OW specification.

4.3.5. Pattern variations

As mentioned previously, one of the issues relates to context reuse. Typically executed function
containers remain in the Openwhisk environment in a paused mode for a period of time after
execution (~12 minutes). If during that time another function invocation comes for the same
function, the paused container is reused. This means that any variable that is initialized in the first
invocation will maintain the value if not re-initialized. In order to demonstrate this aspect, an
experiment was performed in order to check whether the context variables of a previous execution
were available in a subsequent execution. The process appears in Figure 59. Initially we created a
flow that is executed as a Node-RED docker action. In the flow, a random id is assigned to a context
variable, if it does not exist. Then this random id is returned as part of the response to the caller.
Indicatively, triggering twice the execution of the action, with a sufficient delay so that the first one
has finished before the second request arrives but below the paused container lingering period, has
a result of returning the same random id in both calls.

This context reuse example creates opportunities however for creating more than one pattern
variations with relation to context and state reuse, in order to cover for all possibilities and use
cases (needing or not the pre-existing context). The three variations implemented or foreseen are
listed below.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |99

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 59: Example of Context Reuse issue in warm containers

Opportunistic Context Reuse

The default way presented above, that includes the observable context from a subsequent execution
of a new function invocation on a paused container, could be the default way in which functions can
be written. In this manner the developer would need to be careful regarding needed initializations
of parameters and variables to happen in the flow logic, however they could also benefit from
finding existing context from previous executions from a performance point of view. For example, if
a function needs a token in order to access an external storage, the call to obtain the key would need
to be performed in each function invocation. However if the function finds the key in the context
from the previous execution this could speed up its execution, if no security issues arise. For
example, if a developer creates a serverless API that uses some input argument to retrieve a
different token per user, while all users invoke the same endpoint, this pattern would not be
suitable. However if the invocations are expected to be performed by the same user, then the token
could be reused. This pattern is noted as opportunistic since it is not guaranteed that in all cases the
functions will find a paused container and thus context from the previous executions.

Deterministic Context Purge (OW Skeleton Tabula Rasa pattern)

In case the developers consider that finding context from previous executions can be dangerous or
harmful, this variation will guarantee that any pre-existing context will be purged. In this case, the
context preservation is shifted to the local filesystem option of Node-RED, given the fact that it can
be easily deleted within the function flow. For this reason, caching of the context in memory is also
set to false, while flush interval is set to 0.05 seconds on change. A counter is set during the /INIT
method to indicate whether this is the first execution. If not, in the use of the paused container the
/INIT method is not re-executed by OW. Hence the main /POST flow includes a switch based on the
value of the counter. If it is not zero, then the flow is redirected to delete the local file that includes
the context. To support this manner of operation, a new pattern has been created, the OW Skeleton
Tabula Rasa, that appears in Figure 60.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |100

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 60: Deterministic Context Purge (OW Tabula Rasa pattern) Skeleton flow

In this case, repeating the previous experiment with the random IDs appears in Figure 61,
indicating a successful context purging and a new random ID value.

Figure 61: Successful context purging in an OW Tabula Rasa Action

What also needs to change in this case is the way Node-RED handles context. The settings needed in
the respective settings.js file appear in Figure 62. Initial performance measurements (included in
T4.2) do not indicate a significant performance drawback of this approach, however one
disadvantage is that now reads and writes to the flow or global context need to be wrapped around
asynchronous functions (example appears in Figure 63) which is a significant increase of
complexity compared to the straightforward get/set synchronous methods used in the initial OW
skeleton.

In order to abstract more the way developers use the flow and global variables, we have provided a
get/set subflow that can be configured via the incoming message fields values in order to perform
this operation. The node is configured via the following message attributes:

● msg.get_set= "get" or "set" for which method to choose

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |101

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● msg.contextLevel="flow" or "global" for which context level to choose

● msg.variable="<variable_name>" for which variable name to use

● msg.payload for the value to be set

Figure 62: Updated settings of Node-RED for supporting the Tabula Rasa pattern variation

Figure 63: Change from synchronous to asynchronous variable settings in OW Tabula Rasa

In case of getting, the variable value is sent in the outgoing msg.payload. An example of usage of the
node appears inside the flow of Figure 64. The code of the example (asynchelloaction) is available at
the project repository while the docker container image is available on Dockerhub20.

Figure 64: Example Usage of the Async Get/Set subflow

20 Async Hello Example Image, available at: https://hub.docker.com/r/gkousiou/asynchelloaction

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |102

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Deterministic Context Reuse (Externalized State pattern)

In the case of Opportunistic Context Reuse, if the next invocation comes within the paused container
duration they will find the existing context. But if they arrive after that, a new container will be
created. Given that in some cases one may be interested in reusing context, a third pattern can exist
in order to guarantee that in all circumstances. For example, this enables the implementation of
other patterns such as the function chain, i.e. the ability to execute functions for longer time than
the maximum allowed by the FaaS platform. In order to achieve that, one should include in the
function a timer to measure the remaining time, and when this timer is near the max function
execution time, it could store the state to the external store and trigger a next function of the same
type which would reload the state and resume. Alternatively, this could be done in the stopping
section of a function upon an external timeout event. In order to separate between different
function executions this could be used with a key based on the activation id of a function. This id
would feed as an input argument to the second, extended execution of the same function instance.

Node-RED can be configured to store the context in an external store. Custom plugins can also be
created in order to use whatever external storage service to store the state. This gives the
opportunity to define a way to always use that state, loading it from the external store on
initialization and saving it on finalization. This pattern can exploit plugins that use the DMS of T4.4
in order to store the state, or any other alternative external storage services.

Node-RED orchestration as a function

As mentioned in Section 2, orchestrating an application through Node-RED may provide significant
advantages, in terms of abilities to define arbitrary workflow structures. Typical FaaS platforms
provide very limited ways of describing large and complex workflows, either without support for
workflow primitives or with complex text/yaml syntax that can not scale to large numbers of
functions. Through this variation, one can exploit Node-RED’s arbitrary wiring and runtime support
for message manipulation in order to construct arbitrary workflow orchestrators, along with the
control structures provided as patterns in PHYSICS (e.g. SplitJoin or BranchJoin patterns). In this
case, the inner actions invoked in the workflow should already be registered with the platform or at
least included in the overall application graph. A prerequisite in this case is the Openwhisk node
client of Node-RED, for invoking the inner actions. The user should also use the Semantic Executor
mode in order to define that this flow will be executed as a service. A generic example of such a flow
appears in Figure 65, while more detailed and complex examples are included in the SplitJoin
Pattern section that utilizes this pattern. The blue node is the Node-RED Openwhisk interface node
that invokes a given function (or action in the OW terminology).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |103

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 65: Example Orchestration flow as function

4.3.6. Pattern experimentation outcomes

The performance measurements for the Node-RED runtime as well as differences in orchestration
modes have been benchmarked in the context of T4.2 and are included in D4.1.

4.3.7. Pattern publication means

The OW skeleton pattern and its variation is included in the Node-RED palette as a subflow. The
nodes and example flows and images are also available in the project Node-RED flows repository21

as well as dockerhub registry.

4.4. Split and Join Pattern

4.4.1. Pattern template description

The template description of the Split Join pattern appears in Table 12.

Table 12: Template Description for Split Join pattern

Pattern name Split And Join (ForkJoin)

Relation to
Requirements

Performance, Scalability, Req-3.3-ParallelContainerExecution,
Req-4.2-FaaSBenchmarking (to check effectiveness of approach)

Source of
pattern

Parallel computations from Smart Agriculture and Smart Health UCs

Pattern Context Problems that can be easily parallelized based on different data inputs that need to be
executed on the same program (Single Program Multiple Data-SPMD)

21 PHYSICS Node-RED flows repository: https://flows.nodered.org/collection/HXSkA2JJLcGA

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |104

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Pattern
Underlying
Problem

A problem size might be large, leading to significant execution times for centralized
execution. Parallelization of execution would lead to performance benefits.

Pattern
Usefulness/
Objective

The pattern aims to exploit the inherent parallelization of the serverless paradigm,
following the ability to launch separate containers based on incoming requests. To this
end, it takes an array of inputs and splits it into different messages, each of which
triggers the invocation of a function. The Join function waits until all executions are
finished and joins the results in an output array.

Schema

Prerequisites Array Input of whatever type (e.g. objects, sources of data etc.)

Condition of
application

N/A

Input
parameters

Name of the inner parallel function to invoke, array of inputs to the inner function

Output
parameters

Merged response object from the inputs

Included
functionality

The split is performed on each element of the top level array of the JSON object.
Therefore if one needs to apply another tradeoff (e.g. include more than one data inputs
for one function), a multilevel array will need to be created before the application of the
pattern flow. Furthermore given the burst of requests for this specific function runtime,
context reuse should be expected between function invocations. This can prove useful in
terms of performance, but should be taken under consideration when creating the main
function.

Pattern
limitations

The maximum benefit applies for the maximum concurrency factor of the function in
the FaaS platform. If the number of invocations caused by the split exceeds that limit,
then the pending requests will wait until a relevant function container is available.
Furthermore, contention due to multiple container executions on the same node should
be measured.

Linked to
Pattern

Node-RED flow as function pattern (including orchestration variation)

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |105

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Indicative
Domains of
Applicability

Parallel computations, Single Program Multiple Data (SPMD) pattern with output
barrier (Fork-Join)

4.4.2. Pattern implementation details

The created split (fork)-join pattern to parallelize parallel computations based on the Single
Program Multiple Data (SPMD) pattern (Figure 66a) appears in Figure 66b. These computations are
in many cases based on typical parallel technologies like MPI, which however are more difficult to
develop and support.

In a function programming style, the parallelization may be performed by splitting the initial
message that contains an array of rows upon which the same computation will be applied on each
row. Each split message then triggers a respective function execution on a FaaS platform, while a
Join node waits for all the respective partial messages created from the original message. Contrary
to the MPI case, we do not need to have declared in advance available and static MPI nodes to be
used for the parallelization. The invocations are forwarded to the FaaS platform and are executed
based on the typical FaaS execution model. Grouping at the output is performed based on the
unique original message id that characterizes all partial messages as well as a msg.parts field that
indicates the position in the initial sequence of each partial message.

The Split and Join nodes are built-in Node-RED nodes. The Action node is a Node-RED packaged
node available on npm to interface with an existing Openwhisk platform22, while the "function"
nodes include custom code used to adapt incoming and outgoing message fields (e.g. enforce a
convention that the array to be split is included in the msg.payload field). The overall functionality is
included in a subflow (SplitJoin node in left-side palette), and can be used directly in an example
flow (Figure 66c) with minimum effort, indicating only the Openwhisk endpoint to be used. It can
thus be included in any Node-RED server flow.

4.4.3. Pattern examples of usage through a function orchestrator

In order to fully exploit the functionality of the environment, the flow can be executed in a function
mode, thus enabling higher scalability of the orchestration mechanism, exploiting the Node-RED
Orchestration variation of the Node-RED flow as function pattern presented in this document. In
order to enable this, the subflow needs to be wrapped around the Openwhisk Skeleton flow.
Arguments are passed by the Openwhisk runtime as the body of the POST /run method.

22 Node-red Openwhisk Interface Node Description. Available at:
https://flows.nodered.org/node/node-red-node-openwhisk.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |106

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 66: Split Join Pattern Concept, Implementation and Example

The needed arguments are two, initially the name of the inner Openwhisk action to invoke (the
function responsible for processing each input chunk) and the initial array of input data that are
split and sent for processing in chunks. The resulting flow appears in Figure 67.

The latter also includes a couple of testing flows that can be used while the developer implements
and tests the flow inside the Node-RED editor environment. These can prove very useful for
debugging and fixing a number of Javascript or data passing related errors without having to deploy
to the actual Openwhisk environment. Indicatively, during the tests for the creation of this flow,
approximately 70-80% of the errors were fixed without the need to deploy to the final FaaS
platform.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |107

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 67: Example Orchestrator Flow for the Split Join Usage

4.4.4. Pattern necessary adaptations

In order to use this pattern, initially the application needs to have adapted the inner computation to
be performed in a containerized manner, as well as a function manner. Therefore, they need to have
registered the inner function in the Openwhisk environment, in whatever manner (e.g. native
openwhisk function, or, if embedded in a Node-RED flow, the Node-RED flow as function pattern.
For having a more flexible execution, and for supporting variations of multiple split sizes (see next
section for SplitJoin variations), this inner function should be able to handle arrays of inputs.

4.4.5. Pattern limitations

Given the creation of one function container for each request, one question when applying this
pattern relates to the stress caused in the backend. While parallelization would enable the faster
execution of the application, the existence of vast container numbers in the background would
mean that contention arises during execution, especially in resource constrained environments such
as edge locations or small clusters. Furthermore, raising a container in that manner in order to do a
rather small computation (e.g. in the Smart Agriculture UC each individual simulation takes

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |108

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

approximately 1-2 seconds) would result in having to tolerate overheads for container creation or
reuse.

Another limiting factor is the concurrent actions limitation by the Openwhisk environment, which is
a limit to the number of the same function instances that may execute concurrently in the cluster. If
that number is reached, then the extra requests start to fail. Therefore, a careful selection of the split
size should be performed, which in turn would regulate how many requests would be generated
towards the backend. This led to the creation of a relevant pattern variation (SplitJoinMulti) in
order for the developer (or the environment) to regulate the split size, presented in the following
section.

4.4.6. Pattern variations

As mentioned above, the ability to define an arbitrary split size of the input array could prove
critical in order to ensure a smooth and flexible execution. For this purpose, the SplitJoinMultiple
variation was created that appears in Figure 68.

Figure 68: SplitJoinMultiple Variation for dynamic regulation of split size

In contrast to the simple SJ pattern that breaks it into single messages, this pattern gets the initial
message and chunks it down based on the msg.payload.value.splitsize value. Therefore if an array of
1000 rows (included in the msg.payload.value.values) is inserted and the splitsize is set to 10, it will
create 100 inner calls of the msg.payload.value.action, each of which will undertake 10 inputs. The
solution of the msg.payload.value.splitsize was chosen since node properties of the built-in
Node-RED Split node allow only environment variables to be used for setting the split size. These
can be configured only at startup and thus can not be used for dynamic management of the pattern
during runtime. Furthermore, with this dynamic setting we can also pass the split size as an
argument when we incorporate this subflow around an HTTP endpoint and the split size can be an

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |109

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

input argument. However it needs to be noted that now the functions used in the inner parallelized
action need to be able to process arrays as inputs.

The flow includes also a rate limiter, in order to be aligned with any Openwhisk options regarding
maximum invocations per minute. By setting the rate limiter to the according OW limit, we can
avoid failures of action invocations due to this limit. The parameter can be set in the millisecond
interarrival time (msg.paylod.value.maxOWmillisecinterarrival). Furthermore, the flow supports a
local multithreaded execution, if the respective function needs to be executed within the top level
function without spawning inner level external functions. In this case, the incoming value of
msg.payload.value.execution needs to be set to "local_multithread". If it is set to "faas'' then the
Openwhisk Action that is contained in the msg.payload.value.action is used.

The data format of the msg.payload is specifically designed so that it is compatible with the way
Openwhisk passes arguments so that this flow can be directly combined with the OW Skeleton node
and executed as an orchestrator function. The configuration parameters can also be set through the
node menu (Figure 69), however the values in the incoming message will override any set values
during node initialization.

Figure 69: SplitJoinMultiple Node and Parameters

4.4.7. Pattern experimentation outcomes

One of the relevant questions for the operation of the SplitJoin pattern (especially the Multiple
Variation) is how much time it takes for the rearrangement of inputs in order to be split into lower
level arrays. For the dynamic split size to take effect, the initial N rows array needs to be broken
down into N/S arrays (where S is the split size) and pushed down the hierarchy of the message
object. An example of splitting a 4 element array with a split size of two appears in Figure 70,
depicting the message object just before the entry to the SplitJoinMultiple node and the message

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |110

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

just after the “array chunks” function of the pattern. Therefore, one should try to experiment with a
number of different array input sizes and relevant split sizes in order to detect significant delays or
memory limits when applying this pattern.

Figure 70: Example of Needed Input Resizing in SplitJoinMultiple

To this end, the following testing flow was created (Figure 71), for testing out the time delays
needed inside the pattern when having a number of different setups. In order to measure only the
specific time segments in the flow, the calls to the OW node were bypassed, since we are interested
primarily in the delay due to the inner pattern management activities. Furthermore, the rate limiter
was bypassed, since this is again a limitation of the OW setup. So this measurement includes the
delay for restructuring the array as well as delays for splitting, propagating and recollecting the
messages. The flow was executed within the Node-RED environment running as a server.

Figure 71: Testing flow for experimentation data of SplitJoinMultiple message management overheads

Different split sizes were used (20,100,500,1000,10000) for different sizes of inputs (1000, 10000,
100000,1000000,10000000). While for small sizes the delay is negligible (in the range of 20

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |111

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

milliseconds), for cases of large arrays (e.g. 1,000,000 inputs) (Figure 72) the split size significantly
affects the speed, primarily due to the fact that a large number of messages needs to be created and
propagated within the environment for small steps, increasing delays from 8.6 seconds (when split
size is 10,000) to 102,888 seconds (when split size is 20).

Figure 72: Indicative delays for SplitJoinMultiple message manipulation for different split sizes

However also the size of the messages affects the delay, although to a smaller extent, as Figure 73
indicates. In each plot, different input size variations that create the same number of inner
messages (as derived from the input size/split size ratio) indicate larger delays as the total input
size increases. Given that the number of messages is constant in this case, what changes is the size
of each message, containing more rows.

Figure 73: Indicative delays for larger messages with the same input to split ratios

When adding the flow in a function wrapper, according to the Node-RED orchestrator pattern, we
anticipate a larger delay due to the intermediate layer. Also we would like to check the limits of
Openwhisk, which relates to the size of the input message. Indicatively, by using the default values
of the input message, we get the following error from as early as 100k rows:

"POST
http://10.100.59.182:3233/api/v1/namespaces/guest/actions/splitjoinmultiplegrounded?blocking=t
rue Returned HTTP 413 (Payload Too Large) --> "Request larger than allowed: 4300027 > 1048576
bytes.""

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |112

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

indicating that based on the specific row size, we can have a maximum of 25K rows approximately
as top level input. This is evidence that a bypass should be followed in order to enable larger input
sizes.

In terms of timing delays, it can be observed in Figure 74 that there is a significant increase in the
case of the function execution (again referring only to pre and post processing delays of message
handling). The function executions were warm ones. However, even though the difference seems
large, the benefits of a function execution (e.g. no dependency from the Node-RED throughput limit
of a single server) favor for this mode of operation, especially given the fact that the delay difference
in the orchestration would be small compared to the overall time of the application.

Figure 74: Performance Difference between Function and Service mode for the SJ pattern

Experimentation on the number of containers used (i.e. split size used) with relation to
performance of the function execution and total application time has been performed and is
included in D4.2.

4.4.8. Pattern publication means

All relevant artefacts have been created and included in the project repository. These include:
● testing flows

● SJ and SJmultiple flows, included in the PHYSICS palette as well as standalone flows23

23 https://flows.nodered.org/flow/7a5acfc999b1ad47bb32b5d37419c777/in/HXSkA2JJLcGA

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |113

https://flows.nodered.org/flow/7a5acfc999b1ad47bb32b5d37419c777/in/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.5. BranchJoin Pattern

4.5.1. Pattern template description

The template description for the BranchJoin pattern appears in Table 13.

Table 13: Template Description for the BranchJoin Pattern

Pattern name BranchJoin

Relation to
Requirements

Req-3.1-WorkflowDef

Source of pattern Generic Workflow construction needs

Pattern Context The applications need to implement specific workflow constructs that can aid them in
capturing the business logic. Specifically, at some point in the workflow, they may need
to merge messages coming from two branches in one single message.

Pattern
Underlying
Problem

Typically in a combined use of a split join node, the split node takes care of annotating
the message with information used by the join (such as msg.parts, index in the
message sequence, id based on which to filter various messages coming in the join
node), in order to properly reassemble the initial message in the join node. However
when one needs to just merge the outputs from two partial branches, without the need
to use a split in the beginning, the info needed to correctly reassemble the message
does not exist.

Pattern
Usefulness/
Objective

The pattern automates and abstracts the process of structuring annotations in
messages coming from different branches in order to support the developer to create
easily such joins in the flow logic.

Schema

Prerequisites The developer uses one such node in each branch as well as a default Node-RED join
node

Condition of
application

Need to merge messages coming from different branches

Input parameters Message from branch A and message from branch B

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |114

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Output
parameters

One combined message at the output (as array of payloads)

Included
functionality

Adds msg.parts logic to support the Join node

Pattern
limitations

No cloning should be performed in the messages in the branches, same initializing
point of the two branches

Linked to Pattern Node-RED flow as function

Indicative
Domains of
Applicability

Generic Workflow primitives needs

4.5.2. Pattern implementation details

The default Join node of Node-RED can distinct branch messages coming from different initial
messages, however a relevant annotation needs to exist (Figure 75). This annotation, typically
included by a split node in a combined split/join usage, is necessary for the join node to reassemble
the messages. It includes an id, assigned during the split of this particular message, the number of
elements of the original message as well as the index (location) of this partial message with regard
to the original position in the message. With this information, the join node waits until all the partial
messages of the same id are assembled and then recompiles and sends the compiled overall
message. If multiple splits are performed, each one pushes down the stack of the parts object the
relevant information. Each Join node then pops the last inserted item and performs the join based
on this information.

Figure 75: Example of msg.parts structure normally used in the join node reassembly

However, when the initial split node is not needed, alternative ways can be used such as using a
counter of messages in the Join node for the reassembly of the message. The problem then appears
in Figure 76.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |115

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 76: Erroneous message reassembly based on simple message count

The timing of message arrival as well as delay in processing in the branch will lead eventually to
errors in the reassembly of the message. The intermediate BranchJoin node can be used in order to
insert the aforementioned level of needed annotation (Figure 77). Given that a unique message id
exists for each incoming message in the Node-RED environment, this id is used in the inserted
annotation to correctly assemble the structure. Other points such as the total needed branches and
the position of this branch in the final output are defined by the user and inserted based on the
needed format. The implementation pushes the annotation down the msg.parts object, if that
exists, in order to respect any previous setting of this information by other nodes.

Figure 77: Correct message reassembly based on the BranchJoin Node

4.5.3. Pattern examples of usage

The BranchJoin node UI appears in Figure 78. The user should use one such node in each branch,
just before the usage of a default join from the Node-RED palette. They should also define how many
branches exist (Total Count) and what is the position of this branch in the sequence (from 1 to total
count).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |116

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 78: Parameter Setting in the BranchJoin Node

An example usage in a flow with two branches appears in Figure 79. The Join node should be used
in the default automatic mode. The debug output indicates the merged message object in the output.

Figure 79: Example Usage of the BranchJoin in two branches

The node also respects any existing msg.parts attributed in the message, so that it may not disrupt
any previous setting of this property (if other split-join combinations of nodes are included in the
flow).

4.5.4. Pattern necessary adaptations

One point of attention is that both branches should send a message, otherwise the accumulated
message will never be completed. Thus if a branch may include cases that do not typically send one
for some reason, a dummy one should be inserted to indicate that that branch has finished.

4.5.5. Pattern limitations

The pattern relies on the two routes maintaining the common msg._id attribute of the original
message, which is the filter for joining them. Thus if two routes are completely independent, not
sharing a common starting point, the messages will not be joined. Furthermore, some (limited)
nodes in Node-RED may clone a message, meaning create a new one in the context of their
operation and forward this to their output. In this case the msg._id changes and the Branch Join
node will fail to find a match. Therefore the developers are advised to include debug nodes in the
two points prior to the Branch Join node in order to detect whether this happens in their flow.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |117

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.5.6. Pattern publication means

The pattern is available on the PHYSICS bundle of nodes, as well as a standalone flow in the
Node-RED repository.

4.6. Safe and Flexible Edge ETL Pattern

4.6.1. Pattern template description

The Edge ETL Pattern template description appears in Table 14.

Table 14: Template Description for Safe and Flexible Edge ETL Pattern

Pattern name Safe and Flexible Edge ETL Pattern

Relation to
Requirements

Resilience (in terms of network failures), Reliability (in terms of data loss) , Adaptability
(in terms of linked IoT systems)

Source of
pattern

Smart Agriculture UC

Pattern Context IoT and Edge environments responsible for data collection and forwarding (example of
greenhouse nodes responsible for plant sensors data collection)

Pattern
Underlying
Problem

Especially in edge environments in which a large part of the data collection process is
performed, intermittent network failures may lead to data loss. In many cases,
application logic only buffers a limited number of data points, therefore if the failure
lasts for a larger period of time than the buffer size, the intermediate data is lost. This
creates considerable consequences in the operation of services, especially of estimation
and modelling services that need accurate and complete time series of data in order to
reach a safe conclusion. Therefore a pattern based approach to maintain locally these
data points and retry to push them in the main storage service should be in place in
order to enhance the reliability and robustness of the application since with the
application of this methodology data loss is expected only for cases of internal network
collapse.
Furthermore, in typical IoT environments data may come in from different sensors,
different protocols or different communications channels. Therefore an adaptable and
abstracted manner of retrieving this information and adapting it to the needed data
model for storage and further processing is needed. Potential filters and data clean-up
may also be performed in this step.

Pattern
Usefulness/
Objective

The goal of the pattern is initially to enable the developer to exploit Node-RED
abundance of IoT related protocols, clients and systems in order to create flows that
retrieve the data and prepare them for ingestion, easily and in a more decentralized

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |118

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

manner. To this end it also exploits the Node-RED flow pattern. Once the data item has
been finalized, it needs to be pushed towards the central storage service. However if the
call fails, the pattern should store the data item locally and apply the retry pattern (or
the circuit breaker one) for a limited number of retries, in order not to stress the system
endlessly. The pattern periodically retrieves the locally stored data items that have not
been sent and pushes them to the central service and if the call succeeds deletes them
from the local store.
The pattern may be applied either as a standalone Node-RED service or as a Node-RED
based function. In the former case the data may be stored in the Node-RED container
(e.g. through a locally deployed sqlite mini DB), in the latter an accompanying data
service element (e.g. from T4.4) needs to be used for local (edge) data storage.

Schema

Prerequisites Edge FaaS environment, lightweight k8s version on the edge or standalone Node-RED
server, installed sensors and a mean/interface to obtain their values

Condition of
application

On each trigger of a new data point
Periodically to repush the local values to the main Cloud DB

Input
parameters

Values from data sensors, ETL needs, IoT interface

Output
parameters

Type of external system for pushing, transformed values stored in central Cloud storage

Included
functionality

Retry mechanism, local store mechanism, retrieval and deletion of past values

Pattern
limitations

In case the pattern is applied as a function, complementary data services are needed on
the edge in order to maintain the state as well as a lightweight OW instance such as
Openwhisk Light.

Linked to
Pattern

Retry/Circuit Breaker Generic Pattern, Node-RED flow pattern

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |119

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Indicative
Domains of
Applicability

Smart Agriculture, Smart Ehealth

4.6.2. Pattern implementation details

The pattern is implemented as a Node-RED flow and packaged as a subflow (Edge ETL Service). The
implementation appears in Figure 80. Initially an input is provided so that the developer can plug
in any kind of means to obtain the primary data value, encapsulated in the payload field of the
message. Then any custom ETL logic can be applied through one or more functions and apply any
needed transformation, filtering or other operation on the data. Once this is finalized, the generic
part of the pattern begins. Given that any output nodes, such as the HTTP out node used in this
example, may substitute the contents of the msg.payload field with the results of the call that pushes
the data to the central system, it is necessary to maintain the original data for future use (in case the
transmission fails). For this reason, these are moved in the "Keep contents'' function in the
msg.originalpayload field. This function is also responsible for inserting a retry counter in the
message, as well as differentiating the origin of the message (new data that have arrived or past
data that have failed and have been stored locally).

Figure 80: Implementation Flow for the Edge ETL Pattern

The call to the external system is performed and if this fails a configurable number of retries is
attempted immediately. If all of these fail, the data item is forwarded for storing in a local database
based on sqlite, embedded in the Node-RED environment. The data item is stored as is, in a string
format, along with a timestamp collected from the Node-RED environment and an optional field on
a used format for the string inputs. Periodically, e.g. every 30 minutes, 1 hour etc, the top box of the
flow is activated in order to retry past failures. In this process it selects all data items from the DB,
splits the message into one individual message per data item and retries the overall process. The

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |120

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

split on a data item granularity is performed in order to maintain data integrity on the DB, since for
each message if a success in transmission is observed a deletion from the local DB is performed to
avoid duplicate values sent over the network. The pattern includes also self-initialization abilities
(Initialization-Configuration Box), in order to create the DB tables if they don’t exist and to
configure the number of retries and target url. However the latter parameters have also been
included in the subflow configuration parameters for more ease, as will be detailed in the next
section.
Some points of attention include:

● The retry field in the message needs to be created as different with comparison to msg.retry,
since the http node creates such a msg field in each request. Therefore the pre-existing field
for retries in this flow will be overwritten by the http node (similarly to the msg.payload
field).

● Some nodes, like the http request node, do not throw a nodejs error event when the call
fails, but instead the error is included in the message. Therefore the CATCHABLE ERROR
node is not able to detect the failed call. For these nodes, the HTTP OUT box logic can be
used as an example of how to detect per case the error condition. An extra step is the direct
link between the switch node and the "retry+1" node, which is not needed in a typical catch
case of an output node that throws an nodejs error event on failure.

● At the moment, deletion from the DB is based on msg.payload and msg.timestamp
comparison, which implies that inside the payload there should be a unique identifier.
However, typically this is the case in IoT related sensing, whereas the existence of
timestamps of collection can also serve as a distinguishing factor between records with
similar other fields.

4.6.3. Pattern examples of usage

An example of the pattern usage appears in Figure 81. In this case we have exploited the abstraction
offered by the subflow in order to create the overall flow. The input node is assumed to be an HTTP
Post endpoint, in which the new data are pushed in, which is directly linked to the Edge ETL pattern
node. An http response node is also needed (top right corner of the HTTP Input Box) in order to
return the response to the caller. It is necessary to stress that this successful response should be
interpreted not as a success to forward the data item to the central DB service but as a response for
the successful receipt of the data item by the pattern. The flow shown in the previous section has
been packaged as a subflow and in the node properties the main configuration parameters of the
pattern can be observed, including the retry limit count and the target URL of the central HTTP OUT
service. These are instantiated as environment variables at the instantiation of the node. The main
pattern includes also a set of testing flows that simulate a local receipt service and generate a HTTP
in call for simulating inputs.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |121

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 81: Example of Inclusion of the Edge ETL pattern in a service mode

4.6.4. Pattern necessary adaptations

Points of adaptation/configuration in new flows include:

● the input protocol used for obtaining the data item. Node-RED has an abundance of ready
made nodes that can be used to e.g. create an HTTP endpoint, listen on an MQTT or AMQP
broker etc. This input layer needs to be created by the developer depending on their system
and linked to the input of the pattern

● the output protocol is currently an HTTP POST call, including the data item in the payload. If
another protocol is needed, the EXAMPLE HTTP OUTPUT box needs to be replaced with the
according logic (similarly to the input)

● the interval of the cron job for lost data retry (configurable in the CRON JOB node set
interval)

● the number of initial retries as well as the target URL of the HTTP OUT service

4.6.5. Pattern limitations

At the current time, the pattern stores the data in a local sqlite mini DB, for portability reasons and
especially given that the number of data sizes is not expected to be large in a normal operation.
Therefore in order to reduce dependencies from external systems the local mini DB option was
applied. If one needs to decouple the local execution (e.g. if the pattern needs to be run as a
function) then the target DB path should not be inside the local container environment since there
is no guarantee that the same container will be reused, given that containers in FaaS case are
ephemeral and created on demand. Therefore the specific setup can only be used for the service
mode as is, unless the DB interface nodes target an external to the container DB.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |122

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.6.6. Pattern experimentation outcomes

For testing the pattern, two aspects are important. Initially how the pattern scales in terms of stored
messages depending on the failure scenario and finally whether the application of the pattern
results in no lost data. In order to test these aspects, the following experimental setup was used:

● Initially the target URL was set to change every 5 minutes to an existing endpoint and every
3 minutes to a non-existent one. The difference in the intervals thus generates a condition
simulating the network outage that is more oriented towards the fail condition. This was
selected in order to stress the system more, given that it would mean higher storage needs
and burst messages for pushing the past failed data.

● A client generated 2 calls per second for creating new data items. This is significantly higher
than the declared need of the Smart Agriculture case, whose current sampling rate is 1 new
data item every 10 minutes, thus resulting to an equivalent of 1200 greenhouses message
rate.

● The periodic cron job for past failed data submission was set to 2 minutes.

● The log files included the timestamp of each new data item call as well as a sampling of the
database size every 10 seconds.

● The HTTP out endpoint documented the data items in a log file. Thus at the end of the
experiment one can compare the log files at the client (included timestamps) with the log
files of the HTTP out service to detect whether all samples have been pushed to the HTTP
out endpoint.

The helper flows for the test appear in Figure 82. Initially a flow is used in order to generate the
client requests and log the generation timestamp of each call. While the calls are performed, the
flow below (LOG DB SIZE) retrieves and stores the row count of the DB. Upon experiment
completion, the CREATE LOG TABLES box creates the two tables (sent_items and received_items)
and the POPULATE LOG TABLES box feeds the logs into the DB. The COMPARISON box then applies
the query that appears in the debug window in order to check differences between the two tables.
No differences can be found. Thus no single data item is lost in the process, as was determined also
by the comparison of the two log files, the generated messages and the received ones in a total of
18500 samples. Indicatively, the Smart Agriculture Use Case reports that the pre-PHYSICS
implementation loses approximately 50% of the available data items.

The experiment was left to execute for ~2 hours. The evolution of the db size appears in Figure 83.
From this it can be seen that the size fluctuates as expected from the interval difference in the
simulated outage, and it also reaches a large number of points (~1400). This generates a burst of
retries at the pattern side when the periodic cron job is activated, which however are manageable
and result in cleaning the database in each cron job cycle.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |123

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.6.7. Pattern variations

A variation of the ETL service pattern is the ETL function pattern. One may need to execute this
pattern as a function. For adapting it, the main modifications are to change from the usage of the
local mini DB to a function-external, edge-local storing mechanism as well as split the two processes
(individual data item processing and periodic resubmission) to two functions. The second can be
directly triggered periodically based on the Openwhisk scheduled tasks process. Two extra subflow
nodes have been created for this reason. Further variations may be created by the user in order to
adapt to different protocols for input and output.

Figure 82: Testing Flows for experimenting with the Edge ETL pattern

Figure 83: DB Failed Samples Variation over time in testing scenario

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |124

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.6.8. Pattern publication means

The pattern is embedded in the main PHYSICS Node-RED environment and offered through the
palette. The source code of the subflow is available at the PHYSICS repository and it is
self-contained (meaning that it can be directly copied and used in any Node-RED environment).

4.7. Batch Request Aggregator Pattern

4.7.1. Pattern template description

The template description for the Batch Request Aggregator appears in Table 15.

Table 15: Template Description for the Batch Request Aggregation Pattern

Pattern name Heavy Thread Aggregator/ Batch Request Aggregator

Relation to
Requirements

Non Functional- Performance & Cost, Req-4.2-FaaSBenchmarking (to check
effectiveness of approach)

Source of
pattern

Project research and innovation objectives, cost models of FaaS based on number of
invocations

Pattern Context Applies to either microservice or FaaS based implementations that involve high
initialization times compared to the actual internal computation

Pattern
Underlying
Problem

Typical thread-pool server operations rely on threads (1 thread per request) that may
need significant resources to launch and operate, while the work internally may be
minimal. This is especially true when these functions/services are based on underlying
heavyweight frameworks/environments such as AI or numerical computation
frameworks. Especially under heavy traffic a significant number of these threads needs
to be launched concurrently by the server, leading to further degradation of
performance. This is especially augmented in the FaaS domain given that typically
functions may be wrapped in containers and for each function invocation a relevant
container needs to be spawned. In this case container tail latency (or start-up delay)
further degrades performance, as well as queueing time in case the specific function
reaches the maximum number of concurrent invocations.

Pattern
Usefulness/
Objective

The goal of the pattern is to reduce the number of concurrent threads needed, or
container invocations, by aggregating incoming requests in batches, not launching the
main server threads (or respective containers) until a threshold is reached and then
launch one single thread (or function triggered container in FaaS) that includes all the
needed inputs as an array, significantly reducing performance overhead. Given that the
main function invocations will be less, as well as less time consuming (due to avoiding
multiple startup latencies as well as performance degradation from the concurrent
containers), this aspect is also expected to improve the associated costs in the FaaS
business model, since this is highly related to number of function invocation and time of
execution. Expected results:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |125

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Private cloud: less concurrent containers, improved performance for the same
amount of resources under heavy traffic

● Public cloud: less function invocations-> less cost

Schema

Prerequisites Function needs to accept array input, Ability to measure frequency of requests, some
form of controlling logic

Condition of
application

Frequency of incoming traffic determines whether the Aggregator is beneficial or not. If
frequency is too low, waiting until a batch is complete before submitting it to the
backend will be counter productive

Input
parameters

Name of function to invoke, endpoint type

Output
parameters

Response per request needs to be returned

Included
functionality

Logic to enable or disable the pattern based on the conditions of traffic

Pattern
limitations

Sequential execution of the rows in each batch.

Linked to
Pattern

-

Indicative
Domains of
Applicability

Performance/AI model querying, Numerical simulations

4.7.2. Pattern implementation details

Addressing increased demand in cloud environments is typically achieved through auto-scaling the
use of further resources allocated. However, this comes at the trade-off of increased back-end
resource stress as well as runtime costs. In many application domains, such as Artificial
Intelligence, performance estimation, resource management etc., service implementations are
required to serve incoming requests by leveraging heavyweight computational environments and

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |126

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

libraries. These are used in order to apply created models to desired request inputs and respond
with the according prediction.

When these functionalities are offered as a service, through typical thread-pool server
implementations, this implies that for each incoming request a relevant environment needs to be
spawned in order to process it. This creates extreme stress on a server for mainly two reasons.
Firstly, the initialization time of such an environment thread is typically non-negligible. A
performance analysis on such a server implementation [47] using the Octave environment24

indicated that above 70% of the total serving time (1.2 seconds) for a single client request was due
to raising the respective Octave environment thread. Only 10 milliseconds of computation time
were needed for the actual computation, indicating an extreme overhead of preparation in relation
to the actual computation time. Secondly, when multiple simultaneous requests are sent towards
the server, an according number of threads need to be concurrently run and compete for resources
such as memory and CPU, while interfering with peripheral elements such as cache memories. The
aforementioned competition creates a further increase of.the response times, while concurrency
overheads can reach levels of 400% of performance degradation [26].

Similar overheads apply for more modern computing models such as serverless and FaaS, in which
containers with designated functions are executed in order to respond to an incoming request
endpoint. In this case, the process itself of raising the containerized environment is even worse than
raising another thread on an existing server. Overhead inserted by this computing model is heralded
as one of the main challenges of the domain [48].

In this pattern a request batch aggregation and management pattern is implemented, especially for
cases of computational load that needs a heavyweight environment setup (such as performance
prediction and AI services). The pattern acts as a preprocessing layer and accumulates requests,
withholding their forwarding to the backend based on the conditions of execution (frequency of
requests), in order to regulate back-end resource stress without adding extra resources. Before
proceeding to the main pattern description, a comparison to the current typical scaling patterns in
serverless environments needs to be performed, in order to indicate the differences of the approach
to the current standard mechanisms of serverless platforms.

Scaling patterns in FaaS

Various scaling patterns are available in serverless offerings such as AWS Lambda, Google and IBM
Cloud Functions as well as Knative and Cloud Run [49]. Based on the findings, two main modes of
auto-scaling connecting the number of containers to function requests are identified, in addition to
a third one based on node metrics. Per-request scaling (Figure 84a) raising a separate container per
function request (most typical case) and concurrency value scaling (Figure 84b), enabling the
concurrent execution of multiple functions in one container. The Request Aggregator pattern
appears in Figure 84c. In this case we propose the aggregation or incoming requests before
submitting them to the back-end. Release logic can be on batch size, timeout threshold or a
combination of both. This would enable reduction of total containers running in the system,

24 https://www.gnu.org/software/octave/index

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |127

https://www.zotero.org/google-docs/?JbmsUs
https://www.zotero.org/google-docs/?6MdUvw
https://www.zotero.org/google-docs/?zfN4qo
https://www.zotero.org/google-docs/?52FNNf

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

compared to case (a), while removing function concurrency overheads that can occur in case (b),
especially for computationally intensive workloads.

Figure 84: Scaling Patterns (a),(b) from [33] compared to the proposed pattern (c)

One aspect to notice with relation to serverless environments is the term “concurrency”. One
variation of the term relates to the total number of the function activations in a namespace that
execute across the cluster (in different containers) and is more related to throttling aspects, so that
a specific namespace and its functions does not overwhelm the overall quota of function executions
available to a user [36]. This needs to be distinguished in terminology compared to the case of
“function concurrency scaling factor [50]” that is presented in Figure 84b.

The queue-based load levelling pattern25 resembles the rationale of the batch request aggregator, in
the sense that it does not allow the requests to reach the backend in order not to create
unpredictable peaks in load. For this reason, it accumulates messages in a queue, from which the
consuming function/service retrieves them at its own pace. The main difference here is that the
queue-based load levelling pattern does not aggregate function inputs into one function execution
in order to optimize costs and improve response times, but it only acts as a queue from which the
back-end can retrieve tasks at its own pace. Thus, significant waiting time is added to the requests.
In order to achieve the needed functionality (gathering of incoming requests, creation of batches
and launching of processing instances), the pattern needs supporting logic that is presented in
Figure 85.

25 https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |128

https://www.zotero.org/google-docs/?4KhB5I
https://www.zotero.org/google-docs/?8hbhu4

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 85: Batch Request Aggregator Pattern Structure

The implementation consists of the following main building blocks:
● A submission endpoint accepting external requests and assigning a message id to each one

● A request accumulation layer that stores the requests in a queue, including a map for
indicating which external requests have been included in the batch, based on their message
id.

● Release logic that launches the request batch once specific criteria are met. This logic may
include the calculation of request arrival frequency over a time window.

● A response creation layer in which the original incoming messages wait until the response
from the main operation is available. When the overall response is available, it is broken
down based on the id map, the individual messages are completed and returned to the
clients.

A functional programming framework based on function workflows and message passing between
function nodes (such as Node-RED) is a good candidate in order to implement such a logic. To
implement the logic of Figure 85, the function flow of Figure 86 was created. Supporting flows were
also created in order to aid in management decisions, such as frequency measurement of requests
from the system scope as well as requests towards the controlling logic decision function.
Monitoring subflows for logging running container numbers are also included.

4.7.3. Pattern examples of usage

In order to use the Request Aggregator, the developer needs to utilize the respective PHYSICS node
as the inner logic of an HTTP In and Response nodes (Figure 87). In this manner they can set up
whatever input URL they need. What is more, the RA node needs to be properly configured via the
node UI. In this setup, they need to insert the target URL for forwarding the batch of the requests, as
well as which mode to utilize, simple time out, static batch size or model based batch size setting
(more details on these settings are included in the Variations section of this chapter). If the dynamic

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |129

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

model-based size setting is chosen, a relevant existing modelID should also be included in order to
query for the batch setting. Furthermore, an Executor Mode node needs to be used, in order to
indicate that this flow needs to be executed as a service.

Figure 86: Node-RED flow implementation of the Batch Request Aggregator pattern

Figure 87: Example flow for the inclusion of the Batch Request Aggregator

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |130

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.7.4. Pattern necessary adaptations

In order to apply the respective pattern, the main code modification of the typical function (or
microservice) includes its ability to accept an array of the necessary input argument type
(regardless of the argument type i.e. integer, double, array, object etc). Then for each element of this
array it should process each request, while returning an array of responses in the same order the
inputs where received. The pseudo code for the function modification appears in Figure 88.

Figure 88: Example of function adaptation for use with Request Aggregator

4.7.5. Pattern limitations

One limitation of the pattern is in case some information or state needs to be retrieved from an
external repository. Such a case would be for example a function flow in FaaS that retrieves a
different AI model per request from object storage. Given that the array input now is executed in
sequence, rather than in parallel in the case of multiple function containers, the model retrieval is
also executed in sequence which may produce large response time delays. In this case alternate
configurations or adjustments may be made such as:

● Batching together only requests that target the same model ID

● Keeping model repositories in volumes that are attached dynamically to the containers

Furthermore, global context isolation can not be guaranteed and multitenancy issues may exist (if
batching requests from different users). However, the latter may be mitigated if presigned URLs (or
the Valet Key pattern) are used in order to retrieve the tenant’s model from a private repository.

4.7.6. Pattern variations

Different variations for the pattern are based on diverse release logic to determine the conditions
under which the aggregated request batch can be forwarded as one message in the backend layer. It
is evident that the frequency of request arrivals plays a key role in this decision. If for example
requests are sparse, having a large batch size will imply that the first requests need to wait for a

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |131

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

considerable time until the batch is complete, resulting in higher waiting times and overall response
time. On the other hand, if requests are very frequent, having a small batch size will lead to higher
container numbers.

Thus one needs to regulate the parameters of the pattern based on the current conditions of
execution in order to optimize the overall result. Indicative approaches for this case can include:

● a simple timeout period, during which the requests are batched. Each arriving request
checks the elapsed period from the previous checkpoint and, if complete, it populates a
msg.complete field that alerts the next layer to release the batch. Setting the timeout period
as a percentage of the typical response time in single request scenarios can help predict the
final response time. For example, a 10%*(averageResponseTime) timeout period will result
in only 10% according increase in the final experienced response time, compared to the
response time of the service under sparse load.

● a set batch size that needs to be completed before the batch is released. However, in this
case the batch size needs to be dynamically regulated during runtime, so that it is set to 1 if
the request frequency is low or higher if the frequency is high. The control of the batch size
can be based on various methods, such as neural networks, as investigated in D4.1. These
need to create a model of the response time, that will be fed with the current conditions of
the system (i.e. request arrival frequency) and direct the needed metric (e.g. batch size or
timeout interval. An example form of such an ANN model appears in Figure 89. Having the
response time as the output is needed primarily for validation reasons.

Figure 89: Model Structure for Usage with the Request Aggregator Batch Regulation

4.7.7. Pattern experimentation outcomes

For the experimentation, the initial service implementation of the Model Query operation of the
Performance Evaluation Framework of T4.2 was used that appears in Figure 90. This is a
performance estimation service that has created ANN-based performance models, stored in a
container volume, and enables the enquiry of these models through a REST endpoint. Whenever a
request is received, an equivalent container is launched in order to serve the request, run the
environment and give back the prediction. The environment is based on the GNU Octave numerical
computation tool, an open source equivalent of Matlab. Based on the structure and operation, this
service is a hybrid between serverless and microservice environments (REST endpoint and
equivalent container launch for serving a request). In principle, any service that includes large

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |132

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

preparation overheads compared to the actual useful computation is a target. Such example services
are typically AI-based ones (such as model inference) or approaches that create a large number of
requests (e.g. Monte Carlo methods) and are based on heavyweight libraries or frameworks. Given
the fact that the pattern acts as a preprocessing layer, it can be applied in both typical microservice,
threadpool based servers (in order to reduce the number of concurrent threads in the server) as
well as in front of the function invocation gateway (in the case of serverless architectures).

Figure 90: Target Service for Investigation of Benefits of the RA Pattern

In order to test the performance and benefits of the pattern, a series of experiments were
performed, in order to stress the system and observe the altered behavior. The resource was a single
VM node (4 CPUs, 10GB RAM). No extra resources were made available to the service load in order
to evaluate the effect of the pattern without the need to increase the resources. As the main system
performance metric, the response time of the service to the various request scenarios and
frequencies was considered.

Initial Investigation of Batch Size and Request Period on Response time
Initially a set of separate measurements is performed in order to investigate the effect of the batch
size on response times. For this reason a number of different periods (every 0.01, 1 and 5 seconds)
of incoming requests and an according diverse batch size (1, 5, 10, 50) is investigated in order to
observe their effect on the average response time. The results appear in Figure 91.

Figure 91: Investigation of Batch Size and Inter-arrival Period on the Response Time Average

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |133

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The timeout is set to 120000 milliseconds, so the respective values in the graph indicate an
unresponsive system due to resource contention and high container numbers. The typical mode is 1
container per request without the usage of the pattern. The aggregated mode with a batch size of 1
applies again 1 container per request but this time through the pattern, in order to investigate
delays inserted by the pre and post processing layers.

From the measurements it can be portrayed that the pattern includes some delay due to the request
management layer (when comparing typical versus aggregated mode of 1 batch size) in the area of
~ 1 second (or <10% of the total response time). But also, the benefit from the pattern application
is portrayed, in the case of high frequency requests (inter-arrival period of 0.01 seconds). In this
case the typical system that was previously unresponsive, when applying the aggregation mode
with a sufficiently large batch size (~50) manages to stabilize its behavior as well as maintain an
average response time that is very close to the average of a single request (10.763 seconds of
average response in a period of 0.01 seconds and batch size of 50 versus 10.046 seconds of a typical
mode for 1 request every 5 seconds). On the other hand, once the period between requests starts to
get higher, the drawback of the pattern is portrayed, given that it needs to wait a large amount of
time until the batch size is complete.

Runtime Container Numbers for gradually increasing request frequency

In order to investigate the overall performance of the pattern, a series of measurements was
performed, applying the timeout variation. Overall the pattern was tested under a scenario in which
the request inter-arrival period was gradually reduced, starting from 10 seconds and being reduced
to 5,1, 0.5, 0.1 and 0.01 seconds of inter-arrival. Each setup was set to run for 15 minutes, unless the
platform started to get saturated from container numbers in which case the experiment was halted.
The two main variations that were tested were static delays of 500 and 1000 milliseconds before
releasing the batch, which is approximately 5% and 10% of the average response time in a single
request. During this time the framework accumulated requests coming in. The results of the
experiment are presented in the following figures and are compared to the typical, no-batch
implementation. It is indicative that as the experiment progresses and frequencies increase, the
batch size (accumulated messages during the timeout interval) increases (Figure 92).

This enables the pattern to maintain a constant rate (~20 active containers) of container generation
(Figure 93) even at high frequencies (as indicated by Figure 94), in the 10% timeout case (1000
milliseconds of waiting for gathering and batching requests). The no-batch implementation quickly
gets saturated (at around sample ~1500 of the experiment), as indicated also from the response
times that reach the request timeout limit (Figure 95), reaching very quickly the saturation point of
around 80 active containers. This is mapped to a frequency of around 2 messages per second
(Figure 94). The 5% timeout is still not sufficient, although it gets saturated a bit later (around
sample 5000 of the experiment), achieving a frequency of around 10 messages per second.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |134

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 92: Average batch size of requests (Y axis) in the system as the experiment progresses (X
axis:sample number of experiment)

Figure 93: Average number of containers (Y axis) in the system as the experiment progresses (X
axis:sample number of experiment)

Figure 94: Average frequency of requests (Y axis) in the system as the experiment progresses (X
axis:sample number of experiment)

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |135

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 95: Response time of requests (Y axis) in milliseconds as the experiment progresses (X
axis:sample number of experiment)

4.7.8. Pattern publication means

The pattern implementation is available as a subflow in the PHYSICS environment as well as an
individual flow26. A relevant publication [51] has also been derived from this pattern.

4.8. Cryptography Pattern

4.8.1. Pattern template description

The template description for the Cryptography Pattern appears in Table 16.

Table 16: Template Description for the Cryptography Pattern

Pattern name Cryptography,

Relation to
Requirements

Req-3.4-Encryption, Req-3.4-SecureComms, Req-6.2-Privacy

Source of pattern All UCs

Pattern Context Basic cryptographic functionality to be used for data encryption.

26 https://flows.nodered.org/flow/a97ec190bbf75cec594092895d39c01d/in/HXSkA2JJLcGA

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |136

https://www.zotero.org/google-docs/?kTirHC
https://flows.nodered.org/flow/a97ec190bbf75cec594092895d39c01d/in/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Pattern Underlying
Problem

Utilization of cryptography can be complicated and can create security issues if not
correctly executed.

Pattern Usefulness/
Objective

Provide easy to deploy and use encryption/decryption functionalities.

Schema

Prerequisites To deploy the function with a strong cryptographic key in a secure manner.

Condition of
application

N/A

Input parameters The data to be encrypted or decrypted on the payload (msg.payload.data) of the
HTTP request and the function (encryption/decryption) in the
msg.payload.function.

Output parameters The data that was encrypted or decrypted on the payload (msg.payload.data) of the
HTTP request.

Included
functionality

The encryption and decryption of the specified data.

Pattern limitations The cryptographic key is set during deployment time of the function, this creates
the need for a secure method to deploy this key.

Linked to Pattern OW Skeleton

Indicative Domains
of Applicability

Data protection

4.8.2. Pattern implementation details

The pattern is implemented using the encryption and decryption node of the
node-red-contrib-crypto-js package using AES encryption (Figure 96).

Figure 96: Encryption/Decryption Flow Implementation

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |137

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The encryption key is deployed with the instantiation of the flow in the ${KEY} environment
variable. The triggering message is then first checked for what functionality is requested
(encryption or decryption) and it is then processed so that the data is processed correctly. Finally,
when the function is executed, the reply message is compiled and sent as an http response.

4.8.3. Pattern examples of usage

The two basic examples are the encryption and decryption use cases. Whenever someone needs to
encrypt or decrypt their data, they can utilize this pattern to do so.

4.8.4. Pattern necessary adaptations
N/A

4.8.5. Pattern limitations
The pattern requires that the key is deployed as an environment variable (${KEY}), extra care must
be taken when doing so.

4.8.6. Pattern variations: Encrypted Storage

One variation of the cryptography pattern should be created that includes a basic
cryptographically-protected storage functionality to be used for data encryption and secure storage.
Utilization of cryptography in conjunction with the storage of the encrypted data can be
complicated and can create security issues if not correctly executed. The purpose of this variation is
to provide easy to deploy and use encrypted storage functionalities. The extended diagram of the
cryptography pattern in this case is depicted in Figure 97.

Figure 97: Diagram of the Encrypted Storage variation

The input parameters include the file name (msg.payload.value.filename) and/or data to be
encrypted on the payload (msg.payload.value.data) of the HTTP request and the function
(encryption/decryption) in the msg.payload.value.function. The output responses include The file
name (msg.payload.filename) that was stored or the decrypted data on the payload

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |138

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

(msg.payload.data) of the HTTP request. The cryptographic key is set during deployment time of the
function, this creates the need for a secure method to deploy this key.
Like the cryptography pattern, this pattern is implemented using the encryption and decryption
node of the node-red-contrib-crypto-js package using AES encryption (Figure 98).

Figure 98: Encrypted/Decrypted Storage Variation of the Cryptography Pattern

The encryption key is deployed with the instantiation of the flow in the ${KEY} environment
variable. The triggering message is then first checked for what functionality is requested
(encryption/store or fetch/decryption) and it is then processed so that the data is processed
correctly. Finally, when the function is executed and the data is either encrypted and stored or
fetched and decrypted, the reply message is compiled and sent as an http response.

4.8.7. Pattern publication means

The pattern is available in the PHYSICS palette of the environment as well as an individual flow in
the PHYSICS repository.

4.9. Custom Anonymization Pattern

4.9.1. Pattern template description

The template description for the Custom Anonymization Pattern appears in Table 17.

Table 17: Template Description for the Custom Anonymization Pattern

Pattern name Custom Anonymization

Relation to
Requirements

Req-3.4-Privacy

Source of pattern All UCs

Pattern Context Provide basic data anonymization functionality.

Pattern Underlying
Problem

The complexity of the utilization of anonymization and its correct implementation.

Pattern
Usefulness/
Objective

Provide easy to use and deploy anonymization functionalities.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |139

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Schema

Prerequisites Potentially modify some of the functionalities for each sensitivity level so that it
works according to the needs of the use case.

Condition of
application

N/A

Input parameters The data to be anonymized in msg.payload.data and the sensitivity level in
msg.payload.sensitivity.

Output parameters The anonymised data in msg.payload.data.

Included
functionality

A multi-level sensitivity anonymisation functionality.

Pattern limitations It does not have an automated analysis tool for the dynamic detection of sensitive
data. The user sends the data and all of it is anonymised according to the declared
sensitivity.

Linked to Pattern N/A

Indicative Domains
of Applicability

Data privacy

4.9.2. Pattern implementation details

The function flow (Figure 99) utilizes the digest node of the node-red-contrib-crypto-js package
using SHA512 function. Based on the declared sensitivity the data is either hashed, grouped in a +/-
10 groups or replaced with an asterisk. If there is no sensitivity, then the data is left as is. After the
processing of the data, the response is processed and returned anonymised in an http response.
Each function can be customized so that the desired function is executed.

Figure 99: Implementation Flow for the Custom Anonymization Pattern

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |140

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.9.3. Pattern examples of usage

This pattern is a custom anonymisation function that acts upon the entire input data according to
the specified sensitivity of the data. There are already defined functions that anonymize the data,
but according to the needs of the user, these functions can change to create custom functionalities
depending on the need of the use case. After deployment, all the user needs to do is to provide the
data to be anonymized and its sensitivity.

4.9.4. Pattern limitations

There is not an automated data analysis for the identification of sensitive data. Thus the sensitivity
of the input data is declared manually and the function is applied on the entire data input.
Furthermore, the categorize/group function only accepts numbers since by their definition, only
numbers can be grouped in +-10 groups. Further adaptations will be investigated to incorporate
additional data types, this issue is solved by the presidio anonymization pattern.

4.9.5. Pattern variations: Presidio anonymization pattern

In order to support and provide basic data anonymization functionality with automated sensitive
data detection, a variation of this pattern was created (Figure 100). The goal is to provide easy to
use and deploy anonymization functionalities that automatically detect types of sensitive data and
act on them according to a set of rules. To use this pattern a presidio27 analyzer and presidio
anonymizer servers (open source tool) need to be running and their IPs recorded inside the
corresponding nodes.

Figure 100: Presidio Anonymization Pattern diagram

The data to be anonymized are included in the msg.payload.value.data and the anonymisation rules
in msg.payload.value.anonymizers (in JSON format according to the presidio documentation). The
anonymized data are included in the msg.payload.data of the output. This pattern improves upon
the custom anonymization pattern by utilizing the presidio analyzer to automatically identify all the
types of sensitive data in an input and anonymize only them using the presidio anonymizer. The
ideal use case for this pattern is to feed it with any size of data and the rules that specify how types
of data are handled (dates, names, credit cards etc.) and the pattern will return the data with only
the sensitive types anonymized.

27 https://microsoft.github.io/presidio/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |141

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

This pattern requires that the presidio analyzer and anonymizer are deployed and accessible as http
servers. The presidio analyzer first checks the entire input data for sensitive data (Figure 101), after
this, according to predefined rules, each data type is processed accordingly. There are readily
available functions from presidio but this can also be extended with the definition of custom lambda
anonymization functions.

Figure 101: Presidio Anonymization Implementation Flow

From the client side of this pattern, there should be a definition of the rules that handle the different
data types identified in the input data. The anonymization rules are defined in JSON format which
requires a little more complexity from the caller.

4.9.10. Pattern publication means

Both patterns are available in the PHYSICS palette of the environment as well as individual flows in
the PHYSICS repository.

4.10. Digital Annealer Quantum-Inspired Optimization Pattern

4.10.1. Pattern template description

The template description for the Optimizer Pattern based on the Digital Annealer Unit (DA) appears
in Table 18. The DA is designed to solve combinatorial optimization problems at high-speed and to
find very good solutions near the global optimum. For this, the combinatorial optimization problem
has to be formulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem. The same
QUBO formulation can be used on Quantum Annealer or Quantum Gate Computers as soon as they
are available to solve problems of such a size. You can find more information about the method in
this and the connected papers [52] . In this section we provide an example how such a QUBO
problem should be formulated and then how it can be solved using DA. A similar process should be
used based on other problems of interest. The QUBO formulation is problem specific and,
depending on your constraints or the weighting of the preliminary factors, not necessarily unique.
This section can be used to get a first idea of the underlying approach. If you want to know more,
you can find a more detailed Tutorial with a lot of different examples from academia to
industry-related in the Digital Annealer Tutorial [53].

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |142

https://www.zotero.org/google-docs/?WocLS9
https://www.zotero.org/google-docs/?ihTBtP

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Table 18: Template Description for the Digital Annealer Optimizer

Pattern name Digital Annealer Quantum-Inspired Optimization Pattern

Relation to Requirements Req-5.4-optimization

Source of pattern N/A

Pattern Context Solving Quadratic Unconstrained Binary Optimization (QUBO) pattern by
using Fujitsu’s Digital Annealing Unit.

Pattern Underlying Problem Using the Digital Annealing Unit can be complex. This flow should ease the
process to call the Digital Annealing Unit API in the correct steps. It also
provides the basis for further patterns.

Schema

Pattern Usefulness/
Objective

This flow should ease the usage of a Digital Annealing Unit to solve a
Quadratic Unconstrained Binary Optimization problem.

Prerequisites If the problem fits into a 1024² matrix, no prerequisites are necessary. If it’s
bigger or you want to use all features of Digital Annealer V3, credentials
must be available for using the DAU.

Condition of application N/A

Input parameters Quadratic Unconstrained Binary Optimization problem

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |143

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Output parameters Optimised solution

Included functionality Solving a Quadratic Unconstrained Binary Optimization problem.

Pattern limitations The optimization problem can be solved with a DAU, which is available in
different versions: Version-2 with Annealing or Parallel Tempering,
Version-3, CPU emulator). Maximum QUBO request body is at 1024² bits
for the CPU Emulation solving method.

Linked to Pattern N/A

Indicative Domains of
Applicability

All

4.10.2. Pattern implementation details

The pattern shows some of the first functionalities of Digital Annealer at the example of an typical
assignment problem: In collaborative work environments or shared workspaces, there often arises
the need to distribute tasks or responsibilities among two individuals or teams efficiently. This
scenario can be likened to the classic “Two Persons Assignment” problem, where a set of items,
representing tasks or projects, must be allocated to two persons in a manner that minimises the
difference in the workload or items assigned to each person. Consider a co-working space with two
freelancers, who share various projects and responsibilities. To ensure fairness and productivity, it
is crucial to optimize the allocation of tasks between them. This is where the “Two Persons
Assignment” pattern proves invaluable. Other problems which need a load balancing can also be
formulated as a two-person assignment pattern.

The pattern flow solves the two-person-assignment as an example and provides the basics for other
QUBO optimization patterns. The goal of the studied example is to divide a set of items (given as a
list of values) between two persons in such a way that the difference in the sums of the assigned
items is minimised.

The pattern can be used to solve the QUBO problems. The optimization could be performed using
Digital Annealer Unit API (Figure 102) or using a CPU solver, but only for QUBOs with a size less
than 1024 bits. A concrete explanation of the solving parameters is explained in the following
subsection.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |144

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 102: Fujitsu Digital Annealer Unit

4.10.3. Pattern examples of usage

This is an example in how to use the flow to solve a QUBO (here the two-person assignment) using
the Quantum-inspired annealing approach.

A. Define Solver parameters:

In this step, the flow pattern user specifies the parameter for solving the optimization problem. The
parameters to specify are:

· Solver device (DA or CPU):

o DA allows the user to solve QUBO problems using the Digital Annealer Units in
different versions and with different features. This method requires an API key
to access the DA cloud service. (Please contact the Fujitsu DA team to get
credentials.)

o CPU is an emulator of the DA solver. The CPU could only solve QUBO problems a
maximum of 1024 bits.

o CPU is an emulator of the DA solver. The CPU could only solve QUBO problems a
maximum of 1024 bits.

· Solver version (V2 or V3):

o V2: Version 2 of Digital Annealer supports QUBO problems with up to 8192 bits.
For V2, the user could choose between two solving methods DA2 (Digital
Annealing) or DA2PT (Parallel Tempering).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |145

mailto:digital.incubation@fujitsu.com
mailto:digital.incubation@fujitsu.com

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

o V3: Version 3 of Digital Annealer introduced the Digital Annealer System (DAS),
which integrates one or multiple Digital Annealer Units (DAU). This system
automatically decomposes big QUBO problems into smaller subproblems, which
can be solved on the Digital Annealer Units. The results of the subproblems are
used to create solutions for the full problem. This concept allows us to overcome
limitations in the number of bits that can be supported by a hardware unit like
DAU. The Digital Annealer System supports QUBO problems with up to 100,000
bits.

· Solver method (DA2 or DA2PT, only for solver version V2):

o DA2: The Simulated Annealing Algorithm is a general-purpose metaheuristic
algorithm to solve NP-Hard optimization. Simulated Annealing is conceptually
based on metallurgical annealing where a crystalline solid is heated and then
allowed to cool very slowly until it achieves its most stable lattice energy state. If
the cooling schedule is sufficiently slow, the final configuration results in a solid
with best structural stability. Simulated Annealing establishes the connection
between this type of thermodynamic behaviour and the search for a global
minimum for a discrete optimization problem. The algorithm was set up into a
ASIC architecture, to generate the high solving speed.

o DA2PT: Parallel Tempering executes the optimization on multiple temperatures in
parallel on several replicas to find the best solution. Each replica can exchange
the temperature assigned to it with a temperature of a neighbouring replica
based on a Metropolis criterion. This method thus enables a global search for an
optimum. In addition, the Digital Annealer can automatically calibrate
algorithmic convergence parameters while using the parallel tempering
approach. This is useful, for example, when no calibration of convergence
parameters of a chosen approach is desired for a particular QUBO problem. A
more detailed description can be found in the Digital Annealer Tutorial in
section M 2 [53].

Figure 103: Specifying the global solver parameters node-RED flow implementation

After specifying the global parameters, the user specifies the parameters related to the chosen
solving method.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |146

https://www.zotero.org/google-docs/?Hv24Fh

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 104: Specifying the parameters relative to the chosen optimization solving method

· Version 2 solving and Parallel Tempering optimization (DA2PTSolver):

When using this API for the first time, specifying DA2PTSolver is recommended since scaling
and rounding is enabled and this solver does not require parameter tuning related to a
temperature schedule. If it takes a long time to find an optimal solution or an optimal solution
cannot be found even if DA2PTSolver is used, consider trying DA2Solver.

- number_iterations (integer): The number of searches per anneal. Specify an integer from 1 to
2000000000. (Default: 2000000)

- number_replicas (integer): The number of replicas. The number of runs of annealing in parallel
at initialized different temperatures. Specify an integer from 26 to 128.

Please be aware, automatic tuning rarely leads to optimal speed or the best results. Which
parameters can be changed, are described in the next section.

· Version 2 solving and Annealing optimization:

- expert_mode (boolean): Specify either true or false (default: false), depending on whether
enabling or disabling Scaling and Rounding and the manual setting function for each parameter
(Parameter Setting).

o When "true" is specified:

§ Scaling and Rounding: Disabled

§ Parameter Setting: Enabled

o When "false" is specified:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |147

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

§ Scaling and Rounding: Enabled

§ Parameter Setting: Disabled

- number_iterations (integer): The number of searches per anneal. Specify an integer from 1 to
2000000000. (Default: 2000000)

- number_runs (integer): The number of repetitions of annealing. Specify an integer from 16 to
128.

- offset_increase_rate (float): The energy offset value is increased sequentially by multiples of
offset_increase_rate when there is no candidate for the new state. Specify a value from 0 to
2000000000. Can be specified only when "true" is specified for the expert_mode parameter.

- temperature_decay (float): Multiplier for changing the temperature during annealing. The
range of possible values depends on the temperature_mode specification. Can be specified only
when "true" is specified for the expert_mode parameter.

- temperature_interval (integer): Temperature change interval during annealing. Specify an
integer equal to or greater than 1. Can be specified only when "true" is specified for the
expert_mode parameter.

- temperature_mode (string): Annealing temperature change model. Specify one of these values:
"EXPONENTIAL," "INVERSE," or "INVERSE_ROOT." (Default: EXPONENTIAL). Specifying
"EXPONENTIAL" is recommended. The new temperatures for each temperature change model
are calculated as follows (T0=temperature_start):

o EXPONENTIAL: Tn+1 = Tn × (1 - temperature_decay)

o INVERSE: Tn+1 = Tn × (1 - temperature_decay × Tn)

o INVERSE_ROOT: Tn+1 = Tn × (1 - temperature_decay × Tn × Tn)

Specify a value for temperature_decay so that the right side of the equation for each mode is equal
to or greater than 0. The ranges of possible values for each mode are:

o EXPONENTIAL: 0≦ temperature_decay＜ 1

o INVERSE: 0≦ temperature_decay＜ 1 / temperature_start

o INVERSE_ROOT: 0 ≦ temperature_decay ＜ 1 / (temperature_start ×
temperature_start)

If a smaller value is specified for temperature_decay, the annealing temperature change becomes
slower. Can be specified only when "true" is specified for the expert_mode parameter.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |148

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

- temperture_start (float): Annealing start temperature. Specify a value greater than 0. Can be
specified only when "true" is specified for the expert_mode parameter.

- solution_mode (string): Optimal solution return mode. Specify "COMPLETE" or "QUICK."
(Default: COMPLETE)

o When "COMPLETE" is specified: All solutions for the number of annealing
executions specified with number_replicas are returned. The same solutions are
consolidated into one and returned with the total rate of appearance frequency set
for "frequency."

o When "QUICK" is specified: Among all the solutions for the number of annealing
executions specified with number_replicas, only one solution with the lowest
energy (optimal solution) is returned.

- Please be aware that the specification of the parameters has a big impact on the solution
quality. So please try different values or learn more about them in our Digital Annealer
Tutorial Section M 6 and the corresponding examples [53].

· Version 3 solving:

- time_limit_sec (integer): Maximum running time of DA in seconds. Specifies the upper limit of
running time. The unit is seconds. The calculation is terminated when the running time reaches
the upper limit time specified by time_limit_sec. Specifies an integer from 1 to 1800. (Default:
10)

- target_energy (double): Threshold energy for fast exit. Specifies the target energy value. If not
specified, the calculation will be performed without setting the target energy value. When the
minimum energy value reaches the target energy value, the calculation is terminated even if the
running time does not reach the upper limit time. Specifies a value from -2126 to 2126. (Default:
disabled)

- num_run (integer): The number of parallel attempts of each group. Specifies an integer from
1 to 16. (Default: 16)

- num_group (integer): The number of groups of parallel attempts. The num_run x num_group
specifies the number of parallel attempts. Specifies an integer from 1 to 16. (Default: 1)

● num_output_solution (integer): The number of output solutions of each group.
num_output_solution x num_group specifies the number of output solutions. Specifies an
integer from 1 to 1024. (Default: 5)

● gs_level (integer): Level of the global search. In the global search, the search starting point
with local solution group escape is determined, and the constrained search combining
various search methods is repeatedly executed as a processing unit. The higher the value,

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |149

https://www.zotero.org/google-docs/?xxKOkD

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

the longer the constraint exploitation search. Specifies the level of the global search. Lower
level is weak on Global Search. Specifies an integer from 0 to 100. (Default: 5)

● gs_cutoff (integer): Global search cutoff level. Specifies the convergence judgment level for
global search constraint usage search. The higher the value, the longer the period during
which the constraint-based search energy on which convergence is based is not updated.
Convergence assessment is turned off at 0. Specifies an integer from 0 to 1000000.
(Default: 8000)

● penalty_auto_mode (integer): Coefficient adjustment mode. Specifies the coefficient
adjustment mode for constraint terms.

o 0: behavior with fixed value specified by penalty_coef

o 1: internally autofit with penalty_coef as initial value

Specifies an integer 0 or 1. (Default: 1)

- penalty_coef (integer): Coefficient of the constraint term. Specifies the coefficient of the
constraint term. Specifies an integer from 1 to 9223372036854775807. (Default: 1)

- penalty_inc_rate (integer): Parameters for automatic adjustment of constraint terms. Specifies
the parameter for automatic adjustment of the constraint term in the global search. Specifies an
integer from 100 to 200. (Default: 150)

- max_penalty_coef (integer): Maximum constraint term coefficient. Specifies the maximum
constraint term coefficient. Set to 0 for no maximum value. Specifies an integer from 0 to
9223372036854775807. (Default: 0)

- Please be aware that the specification of the parameters has a big impact on the solution quality.
So please try different values or learn more about them in our Digital Annealer Tutorial Section
M 6 and the corresponding examples [53].

B. Define the QUBO parameters:

Figure 105: Specifying the QUBO parameters Node-RED implementation

In this step, the user defines the QUBO formulation of the optimization problem in the create_qubo
function. Figure 106 shows for example the QUBO formulation of the two-persons assignment

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |150

https://www.zotero.org/google-docs/?6rK5up

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

optimization problem. Using the function set_qubo_variables, the model user defines the list of
values to split as a list.

Please note that the functions in this step are specific to the two-persons assignment optimization
problem. When using the model to solve other QUBOs, the QUBO formulation must be defined in
create_qubo and the QUBO parameters must be given in a new block set_variable.

Figure 106: QUBO formulation of the two-persons assignment in Node-RED

C. Checking solver availability:

Before starting the optimization process, in this step of the flow user checks the availability of the
solving device (CPU server, Digital Annealer Service) by sending a health check request. Once the
response has been returned and the message "CPU/DA solver available" is displayed, the QUBO
solver can be launched.

Figure 107: Checking solver availability Node-RED implementation

D. Solve the QUBO and show the results:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |151

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 108: Solving the QUBO Node-RED implementation

During this step, the QUBO is solved using the annealing approach. The solution is returned as a
JSON file (see Figure 109). The QUBO response is described as follow:

- result_status (boolean): Processing result status (true or false).

- solutions: Array of QuboSolutions

o energy: Energy of the optimal solution

o frequency: Appearance frequency of the optimal solutions with the same configuration

o configuration: Value for each variable x (true or false)

- timing: List of timings:

o cpu_time: Time for using CPU (Unit: millisecond)

o queue_time: Waiting time for processing (Unit: millisecond)

o solve_time: Time for processing by solver (Unit: millisecond)

(The wait time for other processes is also included.)

o total_elapsed_time: Total time required to find an optimal solution (Unit: millisecond)

o anneal_time: Time for processing with the Digital Annealer hardware (Unit: millisecond)

Figure 109: Response Body of a QUBO solution

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |152

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The interpretation of the results is done via the sub-flow "Result interpretation". For example
(two-person assignment), the solution would be two lists showing the items assigned to each
person (person A and person B).

4.10.4. Pattern limitations

· The optimization is done by simulated annealing and therefore a near-by approximation of
the optimized solution.

· To use the Digital Annealer solution method, an API key is required to access the DA cloud
service (please contact Fujitsu DA team to get credentials). The CPU is an alternative free
emulator, but only for small QUBOs.

· The CPU emulator could only solve QUBO with less than 1024 bits. Version 2 of DA supports
QUBO's with up to 8192 bits. The Digital Annealer System (Version 3) supports QUBO's with up
to 100,000 bits.

4.10.5. Pattern experimentation

To test the performance of DA on solving the two-person assignment optimization problem, we
generated a list of 100 random values from 10 to 50 and solved the QUBO using the different solve
parameters. The results which are presented in Table 19 shows the average running time of
repeating the previous procedure 10 times.

Table 19: Average total solving time for the two-persons assignment

Solver
Version

Solver
Method

Solver Device Average total solving time
(ms)

Average annel_time (ms)

V2 DA2PT CPU 48,37 -

DA 298,65 120,71

DA2 CPU 43,23 -

DA 186,1 13,5

V3 - - 10561,4

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |153

mailto:digital.incubation@fujitsu.com

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.10.6. Advanced customization of Digital Annealer Optimizer Pattern

In this section, we investigate how to more customise the Digital Annealer (DA). The customization
is done through extending the JavaScript classes who are responsible to glue Node-Red with DA. The
classes are designed to provide support for definition of a QUBO problem through binary
polynomials, configuration of DA, solving a QUBO problem on DA, and processing the returned
solutions form DA. In this section we provide the implementation details of these classes.

A- BinPol class

This class is used to form a binary polynomial which is used to define a QUBO problem. The
instances of this class will be sent to DA for finding its optimum solution. Figure 110 provides the
overview of the BinPol class.

Figure 110: Overview of the BinPol class

The BinPol offers few methods to construct a binary polynomial (BP).

· Method add_term() is used to add terms to an existing BinPol object.

· Methods add() and multiply() are respectively used to add and multiply two BPs.

· Method power2() raises the current BP to the power of two.

· Method multiply_scalar() is used to multiply the current BP with a given scalar.

· Method clone() clones a new BP from the current BP.

· Method to_json() exports the current BP to a JSON form that can be processed by the solver
class.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |154

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

B- Configuration classes

The classes which are provided as the category for configuration are classes which are used to
configure the interactions with DA, both for version 2 and version 3.
Figure 111 shows the existing classes for configurations.

Figure 111: Overview of classes for Configuration of DA

Here we provide a brief introduction of the implemented classes and their usage. In the coming
subsections we will go deeper into each class.

· Class ConfigQUBO is the abstract base class for all other classes in the configuration
module.

· Class ConfigGeneral is the base class for general configuration of DA (e.g.
configuration of URL of solvers, credentials keys, etc.).

· Class AbstractConfigSolver is the abstract class which is the base class for specific
configuration for ver.2 and ver.3 of DA.

· Class ConfigSolverDA2PT provides the functionalities for Parallel Tempering
solver-mode for version 2 of DA.

· Class ConfigSolverDA2 provides the functionalities for version 2 of DA (no Parallel
Tempering).

· Class ConfigSolverDA3 provides the functionalities for version 3 of DA.

Figure 112 shows the UML diagram which depicts the relationship between the above classes.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |155

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 112: UML diagram for classes in the configuration module

B.1. ConfigQUBO class

This is an abstract class which is the base of all other classes for configuration. Figure 113 shows the
overview of the class.

Figure 113: Abstract base class of all configuration

· Abstract method to_json() converts a configuration class to a JSON representation which is used
for communication with the DA server.

· Abstract methods of configToString() represent the string representation of the JSON object of
the class.

The above methods provide the same functionalities in all sub-classes.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |156

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

B.2. ConfigGeneral class

The ConfigGeneral class provides the base functionalities corresponding with general aspects of
communication with DA service. Figure 114 shows the overall view of the class.

Figure 114: Overall view of the ConfigGeneral class

The class provides configuration for URLs of the DA service as well as the API KEYS which are
required to authenticate and use the service. More concretely the following properties are provided
(can be set/get as well):

· SolverURLv2CPU: specifies the URL of the CPU solver for DA.
· SolverURLv2: specifies the URL for solver service of version 2 of DA.
· SolverURLv3: specifies the URL for solver service of version 2 of DA.
· API_KEY_v2: is the key for authentication and usage of solver service for the version 2 of DA.
· API_KEY_v3: is the key for authentication and usage of solver service for the version 3 of DA.
· ProxyURL: specifies the URL for a proxy service. This is used when the docker of Node-Red
should communicate with solver service through a proxy.

B.3. AbstractConfigSolver class

This is an abstract class for version 2 and version 3 of DA solvers and base of other classes.

B.4. ConfigSolverDA2PT class

ConfigSolverDA2PT is used for configuration of the Parallel Tempering mode of the DA version 2. It
extends the AbstractConfigSolver class. Figure 115 shows the overview of the class.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |157

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 115: Overview of the ConfigSolverDA2PT class

The class provides the following properties (which can be set/get):

· solver_version: returns the version of DA solver i.e. “V2”

· solver_device: specifies if the solver should be “CPU” or “DA”.

o Valid values: “CPU” | “DA”

· number_iterations: specifies the number of iterations used for the solver.

o Default value: 1000

o Valid range: [1, 2*10^9]

· number_replicas: specifes the number of replicas used for the solver:

o Default value: 26

o Valid range: [26, 128]

B.5. ConfigSolverDA2 class

ConfigSolverDA2 is used for configuration of the DA version 2. It extends the AbstractConfigSolver
class. Figure 116 shows the overview of the class.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |158

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 116: Overview of the ConfigSolverDA2 class

The class provide the following properties (which can be set/get):

· solver_version: returns the version of DA solver i.e. “V2”

· solver_device: specifies if the solver should be “CPU” or “DA”.

o Valid values: “CPU” | “DA”

· number_iterations: specifies the number of iterations used for the solver.

o Default value: 1000

o Valid range: [1, 2*10^9]

· number_runs: specifies the number of runs used for the solver:

o Default value: 16

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |159

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

o Valid range: [16, 128]

· offset_increase_rate: specifies the offset_increase_rate of DA

o Default value: 25

o Valid range: [0, 2*10^9]

· temperature_interval: specifies the temperature_interval of DA.

o Default value: 100

o Valid range: [16,128]

· temperature_mode: returns the temperature_mode of DA, in this implementation
“EXPONENTIAL”.

· temperature_start: specifies the temperature_start of DA

o Default value: 1000.0

o Valid range: [0.0, inf)

· temperature_end: specifies the temperature_end of DA

o Default value: 1.0

o Valid range: [0.0. inf)

· solution_mode: returns the solution_mode of DA, in this implementation “COMPLETE”.

· temperature_decay: returns the calculated temperature_decay of DA solver. The calculation is
done through the calculate_temperature_decay() method.

· calculate_temperature_decay(): these methods calculate the temperature_decay of the DA.

B.6. ConfigSolverDA3 class

ConfigSolverDA3 is used for configuration of the DA version 3. It extends the AbstractConfigSolver
class. Figure 117 shows the overview of the class.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |160

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 117: Overview of the ConfigSolverDA3 class

The class provide the following properties (which can be set/get):

· solver_version: returns the version of DA solver i.e. “V3”

· solver_device: returns the solver device for version 3, i.e. “DA”

· time_limit_sec: specifies the time limit of DA solver in seconds.

o Default value: 10

o Valid range: [1,1800]

· number_runs: specifes the number of runs used for the solver:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |161

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

o Default value: 16

o Valid range: [16, 128]

· target_energy: specifies the target_energy of DA solver.

· num_run: specifies the num_run of DA solver.

o Default value: 16

o Valid range: [1,16]

· num_group: specifies the num_group of DA solver

o Default value: 1

o Valid range: [1,16]

· num_output_solution: specifies the num_output_solution of DA solver.

o Default value: 5

o Valid range: [1, 1204]

· gs_level: specifies the gs_level of DA solver

o Default value: 5

o Valid range: [0,100]

· gs_cutoff: specifies the gs_cutoff of DA solver

o Default value: 8000

o Valid range: [0, 1000000]

· penalty_auto_mode: specifies the penalty_auto_mode of DA solver

o Default value: 1

o Valid range: [0,1]

· penalty_coeff: specifies the penalty_coeff of DA solver

o Default value: 1

o Valid range: [1, 9223372036854775807]

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |162

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

· penalty_inc_rate: specifies the penalty_inc_rate of DA solver

o Default value: 150

o Valid range: [100,200]

· max_penalty_coef: specifies the max_penalty_coef of DA solver

o Default value: 0

o Valid range: [1, 9223372036854775807]

C- Solver Class
The solver class is responsible for managing solve requests to DA and getting solution results.
Figure 118 shows the overview of the class.

Figure 118: Overview of the Solver class

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |163

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The class provides the following functionalities and properties.

· The constructor of the class takes two configuration objects of solverConfig and
generalConfig as follows :

o constructor (solverConfig, generalConfig)

§ The solverConfig is an instance of the one of sub-classes of the abstract
class AbostractConfigSolver i.e., an instance of ConfigSolverDA2PT,
ConfigSolverDA2 or ConfigSolverDA3.

§ The generalConfig is an instance of GeneralConfig class.

o The Solver class uses these to configuration to properly communicate with the
correct version of DA solver service.

· API_KEY: returns the key associated with the generalConfig.

· solver_device: returns the associated device for solver i.e. “CPU” or “DA”.

· Base_URL_Solver_Service: is the base part of the URL which provides the solver service.

· URL_*:

o These properties provide the common URLs for solving, querying and getting
solutions on the DA service.

· async asyncPost(messageBody, urlStr)

o Gets a messageBody (string) and asynchronously post it the give URL and returns
the result as a JSON object.

o This method is asynchronous.

· create_message(messageMethod, messageBody)

o This method creates a message with a given messageBody

o The messageMethod can be one of "POST", "GET", "DELETE".

o The created message will be of given type accordingly.

· async delete_job_by_ID(jobID)

o This method requests the DA service for deletion of an already posted job by
given jobID.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |164

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

o It returns a JSON object of the deletion results or raise an exception if an error
occurs.

o This method is asynchronous.

· async get_job_solution_by_ID(jobID)

o gets the solution of an already posted job by given jobID

o it returns a JSON object of the solution or raise an exception if an error occurs.

o This method is asynchronous.

· async delete_all_jobs()

o This method deletes all posted jobs on DA service.

o This method is asynchronous.

· async list_all_jobs()

o This method lists all jobs existing on DA service.

o This method is asynchronous.

· async request_solve(binPol)

o This method requests the DA for solving the given binPol.

o This method returns a JSON object which contains the jobID of the solve request.

o This method is asynchronous.

· async solve_and_get_solution(binPol)

o This method requests the DA to solve the given binPol and waits till the solution is
available.

o This method returns a JSON object containing the solution.

o This method is asynchronous.

· sync_post_solve_and_get_solution(binPol)

o This a synchronous method for requesting the DA to solve the given bibPol and
getting the solution.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |165

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

· cpu_solve_and_get_solution(binPol)

o This is a method which requests the solution of the given binPol on CPU.

· to_json(binPol)

o This method provides the JSON object of the solver with a given binPol.

o This method is used in the other methods which request DA for solving a binPol.

D- Solution Class

This class is used to work with the JSON object of the solution returned by the DA service more
efficiently. Figure 119 provides an overview of the class.

Figure 119: Overview of the Solution class

The class provides the following functionalities/properties.
· constructor(solutionJson)

o The constructor of the class gets the solution JSON object returned from DA service.
· qubo_solution:

o Returns the value of the “qubo_solution” key of the JSON object.
o This property can also be set if the value of “qubo_solution” key is already provided by

other mean than within a JSON object.
· result_status: returns the value of the “result_status” key in a qubo_solution
· num_solutions:

o Returns the total number of solutions returned by DA (the solution of a QUBO problem
might not be unique)

· solutions: returns the value of the “solutions” key within the qubo_solution
o This effectively gets a list of all solutions returned by DA.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |166

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

· timing: returns the value of the “timing” key within the qubo_solution
o This effectively returns the time sent by DA to compute the solution.

· solutionByIndex(index)
o This returns the solution at the index.
o The value of index should be within [0, num_solutions)

· bestSolutionWithIndex()
o This returns an array of the [bestSolution, bestSolutionIndex]
o The bestSolution is the solution with the minimum energy from all the solutions returned
by DA.
o If more than one bestSolution exists, the first one is returned.

E- How to use the JavaScript classes

In this section we give an overview of how to use the JavaScript classes described in the previous
sections. The first step is to load the previous modules and classes. This is done through the
following code snippet (Figure 120):

Figure 120: Loading of Requirements for Javascript Classes

Typically, the next step is to define your binary polynomial which you would like to solve. This is
done through the using the BinPol class from its associated module. The following code snippet
(Figure 121) shows how to define the two-person example discussed earlier:

Figure 121: Problem Definition for the two-person Assignment

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |167

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

In the above snippet, what happens is that you need to add proper terms of your QUBO formulation
to the binPol object. This is done typically through methods of add_term(), add(), multipliy() etc.
After defining your binPol object you need to properly instantiate the configuration classes bases on
your targeted DA service, i.e., version 2 (CPU, DA, Parallel Tempering) or version 3. In the following
code snippet, we instantiate the ver.2 of DA using ConfigSolverDA2 class:

Figure 122: Addition of Configuration Information for QUBO Problem

In line 25, we define a general configuration object “confGen” and in line 26, we define the
“confSlvrDA2” for version 2 of DA solver. We may also manipulate and adjust the default properties
of solver (lines 28,29).

Having defined the configuration objects (Figure 123), we can now define a solver object which
properly handles the solve requests based on the chosen configuration:

Figure 123: Definition of Solver Object

Now we can post a (synchronous) solve request for our binPol object as follows:

Figure 124: Retrieval of Result from Solver

DA returns a JSON object containing the result. We can now use the Solution class to properly
handle the result:

Figure 125: Result Post-processing for Solver Output

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |168

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The output of the above snippet is given below:

Figure 126: Final Output of Solver Results

Note that we can principally use the same approach for other versions of the solver configuration
classes.

4.11. Openwhisk Sliding Window Action Monitor

4.11.1. Pattern template description

The template description for the Sliding Window Action Monitor Pattern appears in Table 20.

Table 20: Template Description for the Sliding Window Action Monitor Pattern

Pattern name Sliding Window Action Monitor

Relation to
Requirements

Load Monitoring, Performance

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |169

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Source of
pattern

Logging needs of the UCs, Management needs of the application and platform

Pattern Context Execution in a FaaS cluster is subject to a number of different QoS features.

Pattern
Underlying
Problem

To monitor and document the performance of a FaaS cluster, covering a variety of
different metrics (wait time, init time, execution time etc). Furthermore, logging at the
level of the application is not always straightforward when it comes to failures or other
errors during function execution.

Pattern
Usefulness/
Objective

The pattern allows the developer or platform to monitor the condition of a cluster for a
dynamically set time window in the past, for one specific or all executed functions in
that interval. Furthermore it covers error reporting from function logs, in order to have
concentrated and easily extracted information. Based on this, various criteria can be
applied in order to further automate management processes, either at the application
level or at the platform level.

Schema

Prerequisites Location of the Openwhisk cluster as well as credentials for the user namespace that
needs monitoring

Condition of
application

General monitoring needs

Input
parameters

Openwhisk details as well as window of time to be included and sampling period, action
name (optional) for monitoring

Output
parameters

Average of various reporting statistics
Errors from function logs

Included
functionality

Retrieval of latest activations, calculation of relevant metrics, extraction of main error
log information

Pattern
limitations

The subflow uses a flow variable in order to control starting and stopping, hence only
one OW monitor should be used in each flow.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |170

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Linked to
Pattern

OW Skeleton with Error Catch node, so that inner function errors are retrieved in detail

Indicative
Domains of
Applicability

Application Level Performance, Platform level management

4.11.2. Pattern implementation details

This is a subflow node in order to monitor the latest performance (sliding window) of Openwhisk
actions. The flow pings periodically (based on a set polling period) the target Openwhisk
installation in order to retrieve the last executed actions (based on the time window parameter) and
extract statistics from their execution (Figure 127).

Figure 127: Implementation Flow for the OWMonitor

The configuration (Figure 128) can be applied either via the incoming message fields or via the
node UI.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |171

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 128: Configuration UI of the OWMonitor

Configuration includes:
● the polling time of the monitor (default 30 seconds, msg.pollingPeriod)
● the target Openwhisk endpoint (msg.targetEndpoint)
● credentials for that endpoint (msg.creds) in the form of user:key
● the window of time (in minutes) in the past for which you want to retrieve activation results

(msg.window)
● an optional action name (msg.action), if one wants to filter specific action activations and

monitor only them
The monitor can be stopped via a msg.stop=true message. The subflow uses a flow variable in order
to control starting and stopping, hence only one OW monitor should be used in each flow.

4.11.3. Pattern examples of usage

An indicative usage flow appears in Figure 129. It can be started and stopped via the relevant
triggers.

Figure 129: Example of OWMonitor Usage

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |172

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The outputs are 4:
● output 1-MONITOR is the normal performance report
● output 2-STOP is the notification of the STOP operation
● output 3-ERRORS is used for filtering ERRORS and according logs in the executed functions
● output 4-UNREACHABLE is used when the Openwhisk endpoint is unreachable, either due

to msg.statusCode>200 value in the Openwhisk API call for getting the activation or error
cases such as ECONNREFUSED or ENOTFOUND

The results in Output 1 include the raw data acquired (msg.payload.rawData) in the last window of
time, as well as the moving averages of duration (msg.payload.results.movingAverageDuration), init
time (msg.payload.results.movingAverageInitTime) and wait time
(msg.payload.results.movingAverageWaitTime) of the window. The number of cold starts are also
included (msg.payload.results.coldStarts) as well as the percentage with relation to the total calls
(msg.payload.results.coldStartPercentage). If no activations are found, then the averages return NaN
values. Example outputs are portrayed in Figure 130, in which the overall performance report is
given, as well as the detailed logs of the executions that errored in the last observed window of time.

Figure 130: Output of the OWMonitor Process

Avoiding Spam of Error Notifications/Reports

The OW monitor can be used to detect errors in functions,which for example can be forwarded to
the developer. However one needs to consider how the monitor works based on the rationale of a
time window. So if this time window is large, the output might also contain older activations that
have already been forwarded and dealt with. Furthermore the notification is sent whenever the
monitor is triggered, as dictated by the msg.pollingPeriod field. Thus one needs to configure these

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |173

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

properties accordingly so that there is no spamming (multiple notifications for the same error
message).

For example, if one is interested in a fine grained performance monitor, they can use a low polling
period (e.g. 60 seconds) and a time window of 10 minutes. On the other hand, if one needs to
manipulate the error outputs for debugging information, they may configure the OW monitor logger
with the same value in the window and the polling period. This will ensure that there are no
overlaps of information and only new errors will be propagated in each report. One consideration in
this case is that the msg.window uses minutes while the polling period uses seconds so the
necessary conversion needs to be applied.

4.11.4. Pattern publication means

The OW Monitor subflow is available
● at the Node-RED flows repository:

https://flows.nodered.org/flow/a86475720659b3ed9eb5024052d94b1d/in/HXSkA2JJLcG
A

● As an npm node: https://www.npmjs.com/package/node-red-contrib-owmonitor

4.12. High Availability Routing Pattern

4.12.1. Pattern template description

The template description of the High Availability pattern appears in Table 21.

Table 21: Template Description for the High Availability Routing Pattern

Pattern name High Availability Routing

Relation to
Requirements

Ability to switch between different available Openwhisk locations based on monitored
conditions

Source of
pattern

Smart Manufacturing UC, Smart Agriculture UC

Pattern Context In order to enhance aspects such as availability or performance of an application, more
than one locations may be available in the cloud/edge continuum. Hence a way needs to
exist in order to decide in real-time towards which location the requests will be
forwarded. This decision should also adapt to the current conditions of execution in
order to satisfy user requirements. For example, the Smart Manufacturing needs to
define a default internal location for execution of the functions. However if that location
is unavailable to switch to the main Cloud installation, so that no downtime appears in
the production line. On the other hand, the Smart Agriculture UC needs by default to run
the simulations on the central cloud for scalability reasons, but if for some reason the
connection between the edge and the cloud is lost, to be able to run a limited simulation
version on the edge just to maintain some level of results production.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |174

https://flows.nodered.org/flow/a86475720659b3ed9eb5024052d94b1d/in/HXSkA2JJLcGA
https://flows.nodered.org/flow/a86475720659b3ed9eb5024052d94b1d/in/HXSkA2JJLcGA
https://www.npmjs.com/package/node-red-contrib-owmonitor

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Pattern
Underlying
Problem

The process should be based on a continuous monitoring approach. Furthermore,
different users may have different requirements, hence the pattern should adapt to
different needed metrics. Also the pattern should be able to be dynamically adjusted if
at some point the redirection needs to change.

Pattern
Usefulness/
Objective

The pattern integrates the usage of the Openwhisk monitoring subflow in order to
enable the selection based on all the available metrics (success percentage, cold starts,
wait time limits, duration etc). The user can set limits for the desired metric and the
pattern redirects requests towards the secondary location if the limits are violated.
Periodically it switches back to the main endpoint in order to check the status and
redirects the traffic to check the status. The user can define the ratio of traffic directed
towards the primary and the secondary endpoint.

Schema

Prerequisites The pattern can be included in the invocation flow towards the function.

Condition of
application

In case of more than one available locations .

Input
parameters

Selection of the metric and the target value upon which the redirection will be
performed, as well as the ratio of redirection.

Output
parameters

Invocation is redirected to the active output (primary or secondary) based on the
defined ratio.

Included
functionality

POST /endpoints (to update or set ratio of redirection)
GET /endpoints

Pattern
limitations

N/A

Linked to
Pattern

Generic use, it needs as input the output of the Openwhisk monitoring subflow created
from the PHYSICS project

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |175

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Indicative
Domains of
Applicability

Availability and performance management

4.12.2. Pattern implementation details

The implementation is based on a Node-RED subflow that is fed by both the incoming messages as
well as monitoring information from the PHYSICS Openwhisk Sliding Window monitor subflow
(Figure 131).

Figure 131: Integrated Use of Router with the OWMonitor

The user needs to select through the subflow UI the following parameters:
● redirection metric: one of the monitored parameters of the Openwhisk monitoring subflow,

i.e. wait time, init time, duration or success percentage
● redirection value is the target value above or under which the redirection should occur
● comparison logic through the boolean redirectIfLarger parameter. This is used to define the

comparison between the target value and the current value. So if redirectIfLargeris set to
true, the redirection will occur if the redirection metric is larger than the redirection value

● primary ratio may be used to define whether the redirection will be of a fallback nature or a
shared traffic option. Thus a default value of 0 will redirect all traffic to the secondary
output.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |176

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● A non zero value will probabilistically redirect the according percentage of requests to the
primary endpoint and the remaining ones to the second output.

Figure 132: Configuration UI for the Router

It uses flow variables in order to store the latest monitored metrics (Figure 133). These variables
are updated based on the polling period set in the OW monitor subflow. The redirection applies only
for these periods that the rule set by the developer is violated. In case it does not, the traffic is
directed towards the main endpoint.

Figure 133: Implementation Flow for the Router

If the response from the Openwhisk environment is in the area of 50X (system not available) all the
traffic will be automatically redirected to the secondary endpoint. The subflow defines 3 endpoints
for dynamic management of the ratio:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |177

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● POST /endpoints for setting a new ratio for the amount of traffic that should be redirected.
The ratio can also be defined at runtime through a POST /endpoints method with a body
like the one shown in Code 6

{

"endpoints":[

{

"endpoint":"primary",

"percent":90

}

]

}

Code 6: POST /endpoints payload for setting a new ratio for the amount of traffic

This will override the set value in the UI and can be used for runtime adaptation in order to support
e.g. the implementation of Circuit Breaker approaches:

● GET /endpoints to retrieve the current set ratio
● DELETE /endpoints in order to reset the ratio. If applied, then the UI values will be

reasserted.

4.12.3. Pattern examples of usage

In the aforementioned UI screenshot configuration, 30% of the requests coming in at the Test Msg
inject node will be forwarded to the redirection endpoint if the wait time of the default Openwhisk
location exceeds 500 milliseconds. The remaining 70% will be forwarded to the primary endpoint
output. If the wait time is under 500 milliseconds, all of the messages will be directed towards the
primary output. The decision will be updated each time new metrics from the OW monitor come in.
This is configurable in the OW monitor subflow (polling period option). In case of inability to reach
the default Openwhisk endpoint (indicated by a relevant failed value in the incoming
`msg.statusCode` property of the OW monitor output) the Router switches by default to the
redirection output. Thus if the normal message that needs to be routed has a `msg.statusCode`
property, it should be removed before feeding into the Router node.

Furthermore, the combination of the OW monitor and the Router were also used in the context of
D4.2 and the experiment on the runtime adaptation described in that document. In that case the
Router was stripped down of the comparing logic and integrated with the Forecaster Engine in
order to receive the percentages of redirection predicted by the Forecaster. The according adapted
flow appears in Figure 134 while the details of the experiment are included in D4.2.

4.12.4. Pattern limitations

The user of the pattern should take under consideration that oscillations may be observed during
operation. Hence a step wise logic for reducing the ratio could be applied by exploiting the dynamic
POST endpoints for ratio setting.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |178

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.12.5. Pattern publication means

All relevant artefacts have been created and uploaded in the Node-RED flow repository and
included in the project assets repository28.

Figure 134: Integrated Usage Between Router, OWMonitor and Forecaster fromWP4

4.13. Semaphore Node Pattern

4.13.1. Pattern template description

The template description for the Distributed Lock pattern appears in Table 22.

Table 22: Template Description for the Split Join pattern Pattern

Pattern name Semaphore Service

Relation to
Requirements

Synchronization needs in arbitrary workflows with distributed clients

Source of
pattern

Workflow Orchestration

Pattern Context Two or more functions that need to synchronize to proceed with an operation in an
isolated or coordinated manner

28 https://flows.nodered.org/flow/359b15796c59e574de354e7f243ed3c4/in/HXSkA2JJLcGA

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |179

https://flows.nodered.org/flow/359b15796c59e574de354e7f243ed3c4/in/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Pattern
Underlying
Problem

In many cases, distributed parts of an application execution may need to be
synchronized or mutually excluded with relation to a given action. This in typical system
programming is performed through semaphore/thread libraries or even higher level
abstractions offered from common languages. However, in a distributed function
context, these mechanisms are not available between code that may potentially be
running in different functions or, even if it is in the same function, different function
instances may execute on different containers.

Pattern
Usefulness/
Objective

The pattern aims to exploit the ability of node.js not to interrupt function execution, as
long as no node.js worker threads or asynchronous operations are used. Thus the access
to a common resource such as a flow or global variable in a Node-RED flow is
guaranteed to be performed at any given time only by the executing function. To this
end it exposes a CRUD approach on semaphore creation, achievable through REST APIs.

Schema

Prerequisites The pattern needs to be applied as a service.

Condition of
application

In case of distributed clients that need to enter a critical section or coordinate their
execution.

Input
parameters

Semaphore name to perform the CRUD operation, type of operation (down to obtain the
lock, up to release the lock).

Output
parameters

Depends on the method used, can be success/fail on doing the operation as well as
details on the semaphore status (e.g. value after the operation).

Included
functionality

Create or delete a semaphore resource
Raise (up) or lower (down) the value of a semaphore

Pattern
limitations

N/A

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |180

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Linked to
Pattern

Generic use, however the specific pattern can collaborate with the SJ one. The split join
pattern for example can reduce the rate of creating containers based on a typical
producer/consumer model, in which the available container slots in the testbed are
taken under consideration

Indicative
Domains of
Applicability

Parallel computations, Workflow creation, Distributed Application Synchronization

4.13.2. Pattern implementation details

The implementation is based on a Node-RED subflow that creates a semaphore service to act as a
distributed lock/synchronization mechanism (Figure 135). It uses flow variables in order to store
the state of a semaphore. Changes in the semaphore value are uninterruptable at the level of the
node.js process. This is due to the fact that the latter executes them in the single threaded eventloop
and does not interrupt their execution unless an async method or worker thread is used in the
function's implementation.

Figure 135: Implementation of the Semaphore Service

The subflow defines 5 endpoints:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |181

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● POST /semaphore for new semaphore creation. The body should contain name and
initialization value of the created semaphore: {"name":"<semname>","value":1}. The value
needs to be a positive integer. If not positive, a 400 HTTP error code is returned. A positive
float will be converted to integer. If the semaphore already exists, a 303 HTTP error code is
returned.

● DELETE /semaphore needs to have only the name attribute in the body
({"name":"<semname>"}). If the semaphore does not exist a 404 HTTP error code is
returned

● GET /semaphore/value/:name for retrieving the current value. If the semaphore does not
exist a 404 HTTP error code is returned

● POST /semaphore/up for increasing the value by 1 with a body of the semaphore name
{"name":"<semname>"} . If the semaphore does not exist a 404 HTTP error code is returned.

● POST /semaphore/down for decreasing the value by 1 with a body of the semaphore name
{"name":"<semname>"}. If the semaphore is already at 0,a relevant message Semaphore
locked with a 409 HTTP error code is returned. If the semaphore does not exist a 404 HTTP
error code is returned.

4.13.3. Pattern examples of usage

A created semaphore can be used as a lock (if initialized at 1). As in any semaphore related library, it
is the responsibility of the clients of the distributed application to correctly use a call sequence that
will indicate if the client can proceed or not to what is considered the critical section or to correctly
use the up/down methods.

For example, a semaphore locked by one client (with a down at 1, resulting to the value being 0) can
be unlocked by another client that performs afterwards an up from 0 at the same semaphore. There
is no notion of lock ownership by a specific client that performed the initial down. Compared to the
typical semaphore libraries, this implementation does not have the ability to make the calling
process sleep, if the semaphore is locked.

A created semaphore can also be used as a synchronization counter (any initialization value>0 can
be used) in a type of producer/consumer problem. However the lock gets activated at 0, like
commonly in semaphores, thus a reverse semantics semaphore needs to be used. For example
defining the max available slots and then reducing by one for each producer client. An example
producer/consumer implementation using this subflow is included in Figure 136.

4.13.4. Pattern necessary adaptations

The clients need to have the according logic implemented in order to exploit the outcome of the
REST call. Thus in case of not being able to acquire a lock, they should retry until succeeding.

4.13.5. Pattern limitations

The GET method is included only for informative reasons. There is no guarantee that the value
might not change by the time the response is received by the client. In this version a kind of busy
wait and polling of the client is anticipated until getting the lock.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |182

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.13.6. Pattern variations

For the future, a relevant variation may include the ability to have callback URIs of the client and a
queue inside the semaphore, in order to alert them once a lock is freed.

Figure 136: Example Use of the Semaphore Pattern for the Instantiation of a Producer/Consumer
structure

4.13.7. Pattern publication means

All relevant artefacts have been created and uploaded in the Node-RED flow repository and
included in the project assets repository2930.

30 Testing flows for the producer consumer example
https://flows.nodered.org/flow/4ef7edabc7c651334d9104bebc6d65f4/in/HXSkA2JJLcGA

29 Main subflow node:
https://flows.nodered.org/flow/5145332c834610e917776e2835bd8037/in/HXSkA2JJLcGA

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |183

https://flows.nodered.org/flow/4ef7edabc7c651334d9104bebc6d65f4/in/HXSkA2JJLcGA
https://flows.nodered.org/flow/5145332c834610e917776e2835bd8037/in/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.12. Automated Object File Annotator Pattern

4.12.1. Pattern template description

The template description for the Automated Object File Annotator pattern appears in Table 23.

Table 23: Template Description for the Split Join Pattern

Pattern name Automated Object File Annotator

Relation to
Requirements

Preprocessing of data to reduce large queries

Source of
pattern

ETL processes

Pattern Context An object file with data can include arbitrary metadata annotations that describe some
aspect of these data (e.g. min/max of the values inside the object).

Pattern
Underlying
Problem

When large datasets are created, typically through a gradual upload of individual files,
querying of these data or subsequent processing and analysis at some stage may
become too resource intensive, having to filter a very large number of files and data
points within these files.

Pattern
Usefulness/
Objective

The pattern aims to exploit the notification features of common object storage systems
like Minio and AWS S3, as well as the ability to define any custom metadata on top of an
object file, in order to automatically extract annotations for new individual files
contents when the initial files are created and uploaded. Having rich metadata means
that in a subsequent analysis stage, one can query these metadata structures and
directly filter out files that are out of the query range without having to access the
contents of the files. This means that the needs for actual file content access are
significantly reduced. Extracting metadata from the initial small files is much easier
than having to do that on the entire file collection at a subsequent stage.

Schema

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |184

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Prerequisites The pattern needs to be applied as a service. An existing Minio installation needs to
exist and a webhook notification endpoint needs to be configured to target the pattern
service.

Condition of
application

In case of large datasets that are stored in many small files collections.

Input
parameters

Name of the data field for which the metadata need to be calculated. The input to the
pattern is the automatically generated notification from the Minio system whenever a
new object file is uploaded on the monitored bucket.

Output
parameters

Success or fail of adding metadata to the file

Included
functionality

POST/events web hook endpoint

Pattern
limitations

At the moment, the pattern implements a generic example of a csv file format, from
which the developer defines which column name is the one to be used for extracting
metadata. Examples with extracting the minimum and maximum values of that column
are included in the implementation. In case some other form of input file or other form
of metadata calculation needs to be performed, the pattern flow needs to be adapted.
This is reasonable since it falls under the arbitrary application scope and data format.

Linked to
Pattern

N/A

Indicative
Domains of
Applicability

Big Data, Data Analytics, ETL processes

4.12.2. Pattern implementation details

The implementation is based on a Node-RED subflow that creates a POST /events webhook
endpoint for Minio to push the relevant notifications (Figure 137). Following, the flow filters
notification messages based on new objects put but also if they already have the specific metadatum
needed. This is because the flow puts the object again with the new metadata, so it creates a new
notification and thus an infinite loop if this comparison is not made. The user can configure which
metadata field this skip comparison can be performed in the relevant switch node 'if already has
metadata skip'. The user also needs to configure the details of the MINIO instance in the MINIO
nodes.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |185

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 137: Implementation of the Automated Object File Annotator Pattern

4.12.3. Pattern examples of usage

The flow in Figure 137 shows an example of using a csv file with columns id and value and
extracting the min and max of the column name set in the flow UI (default: value). The user can
change this in the function node 'calc and add metadata', where the relevant logic can be adapted.
When the file gets uploaded on the bucket that has been configured to use the specific webhook for
notifications, a new notification will be generated and forwarded to the endpoint. This will trigger
the execution of the flow. Input and output results are included in Figure 138.

4.12.4. Pattern necessary adaptations

Adaptations need to be made if the input file is of different format and also if new metadata
calculations are needed.

4.12.5. Pattern limitations

At the moment the flow needs to retrieve the file object, read the contents and then put again the
object to replace the previous version. In future versions we will exploit the copyObject API method
in order to avoid putting back the overall object but just replacing the metadata.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |186

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Phase Example

Input file

Notification in webhook

Output result (metadata included in Minio)

Figure 138: Example Inputs and Outputs of the Automated Object File Annotator

4.12.6. Pattern publication means

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |187

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

All relevant artefacts have been created and uploaded in the Node-RED flow repository and
included in the project assets repository31.

4.13. Dynamic Orchestrator Pattern Section

4.13.1. Pattern template description

The template description for the Dynamic Orchestrator pattern appears in Table 24.

Table 24: Template Description for the Dynamic Orchestrator Pattern

Pattern name Dynamic Orchestrator

Relation to
Requirements

WorkflowDef, Placement Optimization

Source of
pattern

PHYSICS dynamic scenarios for optimized deployments across hybrid cloud/edge or
multi-cloud environments

Pattern Context Usage of function workflows in hybrid cloud/edge or multi-cloud environments in
which dynamic placement of the functions may be applied or changed at any time. The
Dynamic Orchestrator aims to support the creation of an application that includes
functions (a.k.a. Orchestrator functions) that somehow use other functions in their
process.

Pattern
Underlying
Problem

While the orchestrator function is created at design time, the developer uses endpoints
towards the externally used functions on the test or even production OW environment.
However, during the normal application deployment, PHYSICS can include in its
placement optimization step the distribution of one or more used functions in different
locations if multiple OW clusters are available. Therefore the workflow needs to be
updated with the correct endpoints to use for every invocation to an external function.

Pattern
Usefulness/
Objective

A relevant pattern needs to be applied in order for the orchestrating function to be
made aware of the eventually used locations so that it can function properly and invoke
the used functions in the finally selected endpoints. This operation could be performed
through other means, e.g. proxy functions or services, however this would imply the
insertion of another step in the request, leading to higher response times, as well as
bottlenecks and single points of failure in the system since all relevant requests would
pass from the proxy service.

31 https://flows.nodered.org/flow/f91edbe34663d0e4074d5ab37b65a3e0/in/HXSkA2JJLcGA

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |188

https://flows.nodered.org/flow/f91edbe34663d0e4074d5ab37b65a3e0/in/HXSkA2JJLcGA

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Schema

Prerequisites Semantic Extractor, WP4 Orchestrator (for automated usage inside PHYSICS)

Condition of
application

Usage in a flow that invokes an external action at a multi-cluster environment

Input parameters Name of the external action to invoke. If used independently from the remaining
PHYSICS platform, the incoming message to the Dynamic OW Action needs to include
the action name in the node UI as well as the host location, namespace and credentials
to the external location where the function to be invoked is deployed

Output
parameters

N/A

Included
functionality

The provided pattern adapts the url of the external action invocation to the provided
input

Pattern
limitations

N/A

Linked to
Pattern

Node-RED flow as function

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |189

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Indicative
Domains of
Applicability

Serverless computing environments, cloud application development, workflow
orchestration

4.13.2. Pattern implementation details

The pattern is implemented as a PHYSICS semantic node subflow and appears in Figure 139:

Figure 139: Implementation of the Dynamic Orchestrator Pattern

Its main operation is rather simple, it exploits incoming information from the message in order to adapt
the url to which the function invocation will be performed. The incoming message to the Dynamic OW
Action needs to include the action name in the node UI as well as the following fields in the
msg.payload.value:

● __<action_name>_HOST
● __<action_name>_NAMESPACE
● __<action_name>_CREDS

The subflow includes also the PollToPushConverterFC, so that it directly returns the final result of the
invoked function for the continuation of the workflow. By using that subflow, the developer may create
an arbitrary workflow of various used actions, linked in whatever manner they see fit.

The difficult part in this case is to define how the overall process will be performed automatically. To
enable its automation, one of Openwhisk’s features may be exploited, i.e. the ability to define
parameters to a registered function upon creation or update. An example of such a registration appears
in the following snippet:

wsk action update -i <ORCHESTRATOR FUNCTION NAME> -p __<DYNAMIC ACTION NAME>_HOST
https://openwhisk.apps.ocphub.physics-faas.eu/api/v1/ -p __<DYNAMIC ACTION NAME>_NAMESPACE guest
-p __<DYNAMIC ACTION NAME>_CREDS user:token

Code 7: An example define parameters to a registered function upon creation or update

Then the parameter info is included by default by Openwhisk in each invocation of that action, along
with any other input the user may have defined.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |190

https://openwhisk.apps.ocphub.physics-faas.eu/api/v1/namespaces/

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 140: Example Function Input including Dynamic Parameters of Invocation

Thus in the context of PHYSICS, the Orchestrator component in WP4 needs to pass these parameters in
the orchestrating function container automatically through the respective K8S configuration for all
dynamic actions used in a flow, during their creation. This step happens after the placement
optimization, hence the parameterization of the orchestrator function will include the finally selected
location for the target function.

One final step is needed in the process, the ability of the platform in WP4 to detect which dynamic
actions are used in an app graph. This was the reason the Dynamic OW Action subflow is defined as a
semantic node. Following the typical PHYSICS process, any relevant properties of that node (in this case
the name of the external function to use) get included in the App Graph sent to WP4 as an annotation.
Thus the Orchestrator component in WP4 can find the DynamicActionName tag and configure the
registration of the orchestrator function with the location parameters for the action name that is
included in this tag.

4.13.3. Pattern examples of usage

In the example below (Figure 141), an orchestrating function is created that invokes another function.
The name of the other function needs to be included in the Dynamic OW action UI.

Figure 141: Example Function using the Dynamic Orchestrator Pattern

Assuming that the finally created application will also contain the HelloFunctionV2 (if not then the
HelloFunctionV2 is already deployed and there is no need for the dynamic orchestration), an example
of an app graph appears in Figure 142 that includes the aforementioned orchestrating function, in
which the usage of the second function (helloFunctionV2) is included in the dynamicActionName tag.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |191

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 142: Example of App Graph with Dynamic Action Inclusion

4.13.4. Pattern necessary adaptations

The user needs to include the external function name to invoke.

4.13.5. Pattern publication means

The subflow is available in the PHYSICS collection on the Node-RED flows repository as well as in
the RAMP32.

32 https://flows.nodered.org/flow/7970809f43d73b0a2e7af27f7165420c#

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |192

https://flows.nodered.org/flow/7970809f43d73b0a2e7af27f7165420c#

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.14. Digital Signatures Pattern

4.14.1. Pattern template description

The template description for the Digital Signatures Pattern appears in Table 25.

Table 25: Template Description for the Digital Signatures Pattern

Pattern name Digital Signatures

Relation to
Requirements

Req-3.4-Encryption, Req-3.4-SecureComms, Req-6.2-Privacy

Source of pattern All UCs

Pattern Context Public-key cryptography functionalities for digital data signatures and verification.

Pattern Underlying
Problem

Authentication for data payloads, ensuring that data cannot be renounced or
transactions denied.

Pattern Usefulness/
Objective

Provide easy to interact public key infrastructure functionalities.

Schema

Prerequisites To generate an asymmetric keypair and save it in a secure manner.

Condition of
application

N/A

Input parameters The privateKey when invoking signing operation and signature with publicKey for
verification operation

Output parameters Keypair for key generation, signature for signing operation and verification
response for verifying operation

Included
functionality

Generation of asymmetric keypair, signing payloads and verifying payload
signatures.

Pattern limitations The keys (privateKey or publicKey) can be added to the payload during deployment
time of the function, creating the need to deploy them in a secure manner.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |193

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Linked to Pattern Generic use, data signing, verifying signature of payload

Indicative Domains
of Applicability

Data authentication, Data protection, Non repudiation

4.14.2. Pattern implementation details

The pattern is implemented using the PKI node, of the node-red-contrib-crypto-blue package, which
utilizes the Ed25519 curve for asymmetric key-pair generation, signing payloads and verifying
payload signatures (Figure 143).

Figure 143: Node-RED flow of the Digital Signatures Pattern

The digital signatures keys can be generated by setting the payload function to “generate”, creating a
private key and its corresponding public key (these are stored in the flow context when running the
tests). Signing a payload can be done by setting the payload function to “sign” with the payload
accompanied by the private key that will be used to sign the payload data. Signature verification can
be done by setting the payload function to “verify” accompanied by the signature and the public key
that will be used to verify the data signature. An example output for each function mentioned,
appears in Figure 144.

Figure 144: Example Output of the Digital Signature Node

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |194

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.14.3. Pattern examples of usage

The basic operations of the pattern include the generation of the keypair, the signature creation of a
data payload and its verification (Figure 145). The pattern can be used whenever someone wants to
provide authentication for data in the flow or verify data signatures created from other functions.

Figure 145: Example Usage Flows of the Digital Signature

4.14.4. Pattern limitations

The keys must be provided in the payload in hex format when using the pattern. The keys can also
be configured on the Digital Signatures node by the user directly or a specific msg parameter. The
pattern is meant to be used by a single account as there is the possibility of leaking the private key, if
shared with others.

4.14.5. Pattern publication means

The pattern requires the node-red-crypto-blue [54] module installed and can be found in the
node-red flow repository [55].

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |195

https://www.zotero.org/google-docs/?8p5F2g
https://www.zotero.org/google-docs/?xqtAwd

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

4.15. Smart Contracts Pattern

4.15.1. Pattern template description

The template description for the Smart Contracts Pattern appears in Table 26.

Table 26: Template Description for the Smart Contracts Pattern

Pattern name Smart Contracts

Relation to
Requirements

Req-3.4-Smart Contracts, Req-3.4 Smart Contract Templates

Source of pattern All UCs

Pattern Context Smart Contract functionalities blockchain development and integration.

Pattern
Underlying
Problem

Interacting with smart contracts, enhancing the flow with blockchain transactions.

Pattern
Usefulness/
Objective

Provide an easy service to develop and interact with Smart Contracts.

Schema

Prerequisites Requires an RPC server to be running, a Smart Contract ABI and Bytecode configured
in the pattern and a web3 account accessible by the RPC.

Condition of
application

N/A

Input parameters Contract function name, corresponding function arguments and .

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |196

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Output
parameters

Contract data or transaction, based on the operation requested.

Included
functionality

Call, send and transact with contract functionalities.

Pattern
limitations

Both Smart Contract and web3 accounts must be accessible by the RPC server.

Linked to Pattern Generic use, blockchain smart contract development

Indicative
Domains of
Applicability

Distributed Ledger Technology, Smart Contract development & integration

4.15.2. Pattern implementation details

The pattern is implemented with two service endpoints using the available nodes of the
node-red-contrib-web3-blue package that utilizes the web3 module for smart contract and RPC
interactions. The pattern should be used through an http call either for viewing data in the smart
contract (/call) or sending data to the smart contract (/send), invoking the corresponding function
of the smart contract. Both services require an RPC server, a web3 account and a deployed contract
in place in order to request the services from other flows.

4.15.3. Pattern examples of usage

Users can request or send to deployed smart contracts in a simple manner.

Figure 146: Smart Contract Service Implementation

The “Contract Options” change node takes care of properly aligning the contract node parameters
from the provided payload and then, depending on the URL method invoked forwards to the
corresponding contract action to perform.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |197

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 147: Test Flows for Invoking the Contract Server

The pattern requires at least one Smart Contract to be deployed on the RPC server.

Figure 148: Deployment Playground of Smart Contracts Pattern

Alongside the injector testing nodes, a deployment playground is also provided so that users can
easily create an RPC server instance ,deploy smart contracts and configure their own contracts.

4.15.4. Pattern necessary adaptations

Users should modify and configure their ABI, bytecode and constructor arguments of their Smart
Contracts and then deploy it so that they can access it from the service endpoints.

4.15.5. Pattern limitations

Pattern requires an active RPC instance to be running and reachable and an account that can be
used by that RPC. The pattern comes with a Deployment Playground to help the user in the contract
deployment process but can only store context for the latest deployed contract.

4.15.6. Pattern publication means

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |198

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

The pattern requires the node-red-web3-blue [56] module installed and can be found in the
node-red flow repository [57].

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |199

https://www.zotero.org/google-docs/?zfjNDc
https://www.zotero.org/google-docs/?7lJbna

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

5. GAMIFICATION APPROACH FOR PHYSICS TRAINING

Incorporating gaming elements into software training, also known as "gamification," is a process
that involves the application of game mechanics and artefacts into non-game environments, with
the purpose of enhancing the learning experience and practical knowledge earned. Due to the
interactive nature of this method, retaining of information is generally improved. Users gain from
immediate feedback, which allows them to quickly correct errors and comprehend concepts. In
addition, gamification can foster a healthy sense of competition and provide flexibility, enabling
users to learn at their own pace. These elements can convert learning from a potentially tedious
process into an enjoyable and motivating experience.

However, gamification is not without challenges as there is a possibility that users will prioritise
acquiring rewards over truly comprehending the content, leading to superficial learning. The
inclusion of gaming elements may not appeal to everyone, and some may find them distracting and
creating a balanced gamified experience can be more difficult and expensive than conventional
methods. Additionally, if game elements are not aligned with learning objectives, they may offset the
importance of the training content.

Gamification can be an effective way to engage and motivate learners, especially when traditional
software training methods are perceived as difficult to follow or boring. In the context of PHYSICS,
the development of game mechanics can facilitate quicker onboarding to the project's artefacts and
patterns with increased engagement and better familiarity with the Node-RED ecosystem. To this
end, a game server was developed, employing the necessary mechanics to create a gamified
learning environment for training. The game is served as a web page application with options for
local mode for training and development, online mode enabling online competitions and a future
planned flow/subflow sharing capabilities through a marketplace.

5.1. Game Mechanics

The developed game server employs several game mechanics to make the training experience more
motivating and engaging. These include the following mechanics:

● Points: Users can earn points by completing objectives in the game. These points can be
used to unlock hints for an objective, in case the user is stuck on an objective, as well as
other objectives that might have an unlock cost in order to play them.

● Achievements: Users can earn achievements by completing objectives in the game. These
achievements include a description of what the user has accomplished to get them and
optionally points and a hint on what to do in order to gain the achievement.

● Levels: Users can earn levels (with total earned points counting as experience) by
completing objectives in the game. The levels allow the user to track their progress and
knowledge of the training subjects.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |200

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

● Avatars: When registering for online mode the user has a choice between several avatars.
The avatars are bound to the user’s account while they gain points and level up, allowing for
a more personalised experience when playing the game.

● Badges: Users can earn badges by completing objectives in the game. These badges include a
title , which the user can equip for their avatar, and optionally points and a hint on what to
do in order to gain the badge.

● Objectives: Each objective requires the user to create a certain flow to complete it.
Objectives aim at specific training tasks and can be rewarded with points, achievements,
level or badges.

● Storylines: Users are presented with storylines that are composed of several objectives each.
A storyline is a compact training course, where the user is presented with several tasks to
complete on a specific training subject of a pattern, module or aspect of flow-programming.

5.2. Game Design & Implementation

The gamification approach encompasses various elements, such as the integration of the Node-RED
visual environment and the monitoring of the user's advancement inside the game. The Figure 149
illustrates the architectural components of the gamification approach:

Figure 149 :Gaming Server Architecture

The gamification architecture is comprised of Local and Online Mode with the following
components:

● Local Mode: The necessary components for playing the game locally.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |201

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

○ Portal Server: The Portal Server consists of two components, a NodeJS Express server
that hosts the Game Portal and an embedded instance of the Node-RED environment that
is accessible from the Game. The Portal Server also provides the Game with the
necessary game resources for loading the user interface backgrounds, icons, and
tutorials.

○ Game Portal: The Game is served as an HTML page developed with Twine, an
open-source tool for creating interactive non-linear stories, and SugarCube as the
JavasScript library that handles elements of the UI and the story logic.

○ External Node-RED: The Game can be configured to use an external Node-RED instance
along with any required credentials or authentication token.

● Online Mode: The necessary components for playing the game online with other users.
○ Game Server: The Game Server consists of a NodeJS Express server that receives and

manages socket connections from the Game and connects to the Game Database to
perform CRUD operations on the data stored in the Game Storage..

○ Game Database: The Game Database stores the document records of registered Players,
available Storylines, and online Leaderboards, which are transmitted to the Game via the
Game Server socket connection.5.3. Game Storyline Definition.

Storylines incorporate a gamified training experience for the user to develop their
flow-programming skills, with the purpose of increasing engagement and motivation for the task at
hand. In this gamification context, storylines are training modules pertaining to a particular pattern,
flow, or subflow that require users to complete a number of objectives in order to finish the
storyline. Each storyline is defined in a .yaml file containing the objectives, each with its own hints
and steps to complete it, the rewards for completing objectives, the rules for checking that a user
has completed an objective or is eligible for a reward and the resources (flows, subflows, modules,
payloads, files) required to be loaded for the storyline.

5.3. Game Storyline Structure

A storyline can be structured from a .yaml file adjacent to a “resources” directory that contains any
external resources for the storyline. The file structure of a test storyline is shown (Figure 150):

Figure 150: File structure of a test storyline

The .yaml storyline file structure is comprised of the name, description, rules, rewards, resources and
objectives fields shown in Figure 151:

name: Test Storyline

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |202

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

description: A description for a test storyline with 2 objectives

objectives:

- name: Objective 1

description: Objective 1 Description

rule: Rule A

cost: 0

rewards:

- 100 Points

- name: Objective 2

description: Objective 2 Description

rule: Rule B

cost: 50

steps:

- name: Step 1

step: Do this!

- name: Step 2

step: Do that!

rewards:

- Test Badge

rules:

- name: Rule A

success: Hello Back

failure: Try again

condition: {“in”:[{“var”:”message”},“Hello World”]}

- name: Rule B

success: Well Done!

failure: Not Okay

condition: {“==”:[{“var”:”number”},100]}

rewards:

- name: 100 Points

type: Points

points: 100

- name: Test Badge

type: Badge

title: Beginner

points: 50

resources:

- name: Flow#1

type: Flow

label: Inject Flow

nodes:

- {id: 037cd75a1699311e ,type: debug ,z: 29275a5bc3bc6851 ,name: debug ,active: true ,tosidebar: true ,console: false ,tostatus: false

,complete: payload ,targetType: msg ,statusVal: "" ,statusType: auto ,x: 390 ,y: 140 ,wires: []}

- {id: 66641ea2455a1c26 ,type: inject ,z: 29275a5bc3bc6851 ,name: "", props:[{p: payload}, {p: topic, vt: str}], repeat: "", crontab: "", once: false,

onceDelay: 0.1, topic: "", payload: "", payloadType: date, x: 200, y: 140, wires:[["037cd75a1699311e"]]}

objective: Objective 1

- name: Payload#1

type: Payload

payload:

number: "15"

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |203

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

- name: File#1

type: File

file: file.json

Figure 151: Template Structure of a Gaming Scenario

5.4. Game Storyline Development

The Local Mode of the Game enables the user to create their own storylines by designating the
following properties and attributes:

● Name: Name of the developed storyline.
● Description: Description of the developed storyline.
● Rules: An array of the game logic mechanisms, rules determine the condition by which an

objective can be considered complete or by which a player is eligible for a reward.
● Rewards: An array of rewards such as points, achievements, badges or unlockables.
● Objectives: An array of objectives, defining the training tasks of the storyline. These

objectives can be accompanied by steps on how to complete them and hints that can cost
points to unlock.

● Resources: An array of resources required by the storyline such as flows, subflows, module,
data or files.

Through the "Storyline Development" option (Figure 152), the user is able to create and testplay
storylines. These storylines can then be exported into their respective.yaml files and bundled with
any resources that have been defined. The development of the storyline also includes a testplay
operation for the user to test their storyline by playing through it to see how it turns out.

5.5. PHYSICS Storylines

In the context of the PHYSICS project, a storyline was developed for the 2nd PHYSICS HUA
Hackathon using the OpenWhisk (OW) Sliding Window subflow as shown in Figure 153. It included
two objectives which allowed the user to interact with the OW Sliding Window and were guided
through the steps on how to import and use the subflow. The purpose of this storyline was to enable
the user to play with the subflow through game-based objectives to make the interaction more
hands-on and engaging.

As for all other patterns and subflows found in this document, it is possible to develop and create
similar storylines for the purposes of training users on how to use and exposing them to the
project’s artefacts in a gamified manner. These storylines could be shared using “Online Mode”
enabling other users connected to play them, collaborate to develop new ones or create
competitions with each other.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |204

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Figure 152: Storyline Development UI in the Gaming Server

Figure 153: Execution of the Gaming Server for the Defined Storylines

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |205

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

5.6. Future Steps

Users can access Local Mode in the gaming server's current implementation, where they can play
beginner storylines with simple objectives, interact with Node-RED tutorials and template nodes,
and construct their own storylines. The next phase of the gaming server is to enable Online Mode so
that users can interact, exchange, and trade storylines with each other, in which a flow sharing
marketplace is a planned feature for the next iteration. Users could benefit by trading and sharing
their storylines and flows through a digital marketplace in the form of Non-Fungible Tokens (NFTs),
allowing for monetization of the knowledge, expertise and skills of the Node-RED environment.
Next steps for this gamification strategy include testing and proofing the game mechanics,
developing and deploying storylines, and evaluating the efficacy of the employed game mechanisms.
These evaluations will clarify whether this gamified approach is effective for the PHYSICS project
and could be utilised as an alternative training method.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |206

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

6. ADAPTIVE ELASTICITY CONTROLLERS IMPLEMENTATION AND INCORPORATION

6.1. Introduction- Scope

The elasticity controllers are components integrated at the infrastructure layer by extending the
existing Kubernetes API. The main target for these controllers is to account for additional
application requirements that are not simply based on CPU and Memory metrics, but also
consider/support metrics that help with response time (event driven computation), green
computing (using less energy) or saving deployment cost (using cheaper instances). To accomplish
that, the elasticity controllers need to use a broader view of the cluster and look at a wider set of
metrics than in the standard Kubernetes auto-scalers where only CPU and Memory was being used.
In addition, they need to provide interfaces for the other WP3 components, so that they can be
configured accordingly for each use case.
In the initial phase of the project we evaluated the existing mechanisms, specially focusing on
Kubernetes Vertical and Horizontal pod auto-scalers33. These controllers were looking at the
existing known per pod metrics and could take decisions based on the load on the specific pod
instances. However, this was not sufficient for modern workloads, specially for FaaS ones, and in
PHYSICS we looked into extending it 3 ways:

● Add per pod custom metrics to monitor application specific metrics which can affect the
elasticity policy. This is based on the K8s Scaling on custom metrics34 feature.

● Add scaling which is based on multiple metrics, not only one. This way we can evaluate
multiple configurations and take the maximal one. This is based on the K8s Scaling on
multiple metrics35 feature. Note: This policy may not suit our goal directly since it takes the
“maximal” configuration, so we may need to extend it or use one of the alternatives.

● Add a global view which can affect the elasticity policy based on all the information in the
monitoring system, and on cluster deployment metadata (such as energy consumption,
price, topology and network usage). This additional metadata is modelled in the semantic
model so it can be gathered and accessed by any PHYSICS component (such as the elasticity
controllers). This is based on the K8s Support for metrics APIs36 feature.

After starting working on what metrics to make available (mainly from the OpenWhisk side) and
how to consume this, we discovered the upstream project Kubernetes-based Event Driven
Autoscaler (KEDA)37. This project is much more aligned with what PHYSICS wanted to address, as it
focuses on Event-Driven actions, which aligns better with FaaS use cases. With KEDA the container
scaling is based on the number of events to be processed, rather than CPU or memory thresholds. In
addition, it is fully integrated with Kubernetes (through CRDs, the same approach we followed for
PHYSICS components, as detailed in D5.2), lightweight, and works alongside the standard

37 https://keda.sh/

36https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metri
cs-apis

35https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#scaling-on-multipl
e-metrics

34https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#scaling-on-custom
-metrics

33 https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |207

https://keda.sh/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-metrics-apis
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#scaling-on-multiple-metrics
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#scaling-on-multiple-metrics
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#scaling-on-custom-metrics
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#scaling-on-custom-metrics
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Kubernetes components like the HPA. It provides a nice way of extending its functionality without
overwriting or duplication.
We studied this new project evolution, including evaluation of its community
(https://keda.sh/community/) and features, and decided to adopt it as our API. The main benefits
are:

● Don't reinvent the wheel, and reuse what is already done. This makes us saving a lot of time
and effort, as well as increasing the chances of making a bigger impact by contributing to it.

● KEDA allows explicitly mapping the apps you want to manage (i.e. scale) in an event-driven
way.

● KEDA provides a catalogue of autoscalers, ready to be used and or to be (re)configured for
specific use cases. This means we have a large set of autoscalers already available for us. See
section 6.4 for more details.

6.2. Relation to requirements

One of the goals of the PHYSICS project is to enable a simple environment for developing SaaS
applications which can run efficiently across the cloud continuum from the core of the cloud to the
edge. The efficiency can be measured in multiple axis, for example:

● Time - the application (or the workflows) should complete the execution according to some
time constraints (99.9% of the flows should complete within 800 ms). In some cases, this
may not leave too much freedom in selecting the resources on which the flow executes, but
in some cases it means we should not use the fastest possible resources and instead use
other resources which consume less power, cost less, reduce network bandwidth or a
combination of all -- this highlights the need for using other metrics different than cpu and
memory for taking the scaling decisions.

● Power - when we want to optimise flows for power consumption, we can use resources
which use less power as explained above, but other techniques may involve reducing
network bandwidth (which can be a power consuming hog, especially when using cellular
networks in rural areas which are not covered in high density -- this also highlights the need
for other inputs, as well as the work in Kepler related to energy metrics detailed in D5.2.

● Cost - in some cases (especially when using public clouds) we can choose resources with
different pricing schemes and different QoS plans - in cases where high QoS is not
mandatory (for example for very short executing flows or functions) we can select cheaper
resources which reduce the cost of ownership and keep the QoS at the user needs -- this
again highlights the need for different metrics and specific purpose scalers that account for
them.

The goal of the adaptive elasticity controller is to be able to take all such considerations into account
when deciding to scale the applications and even the system itself (i.e., scaling the Kubernetes
cluster to for instance save energy or cost).

6.3. Component/Subsystem Design

The main flow of operations of elasticity controllers is depicted in Figure 154, where we detect (or
predict) changes in the workload or the system (Event-Drive) which triggers the autoscaler logic.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |208

https://keda.sh/community/

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

This logic is in charge of deciding the actions to be taken in response to those events, and trigger the
new configuration -- either directly or through other controllers.

Figure 154: Elasticity Controller Flow of Operations

As described, the elasticity controllers need to have access to several data sources. The initial design
(depicted in Figure 155) already accounted for this, where the next different sources of information
were being used by the elasticity controller to create the new deployment plan and leverage the K8s
horizontal pod autoscaling APIs.

● Existing cluster configuration and the workloads on each node. This comes from K8s cluster
manager and from the statistics in Prometheus.

● Time estimation for running functions on different platforms. This information is a
combination of information from the semantic model and the statistics gathered by the
platform

● Power estimations of different platforms (compute and network). This information comes
mainly from the semantic models, obtained though Kepler (more information in D5.2)

● Cost of different nodes in the cloud - this information would come from the cloud provider.

Figure 155: Elasticity Controller Relation to PHYSICS Architecture

As highlighted before, in the second phase of the project we shifted the design and adopted the
KEDA project as the main framework for elasticity controllers. We took this decision due to:

● Project being perfectly aligned with PHYSICS intention about supporting
○ Event driven scaling decisions
○ Kubernetes integration

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |209

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

○ Configurable options for each use case -- provided through the Kubernetes
integration

● The architecture of KEDA (see Figure 156) mapping really well with our initial design
(Figure). As you can see the concepts are very similar:

○ There is an external event which triggers the scaler.
○ It is integrated with Kubernetes through the ScaleObject CRD
○ It grabs (and provides) metrics that integrate (fed) the Horizontal Pod Autoscaler

Figure 156: KEDA Architecture (taken from https://keda.sh/docs/2.11/concepts/#architecture)

6.3.1. KEDA overview

KEDA extends the Kubernetes API through Custom Resource Definitions. This new object, named
ScaledObject, is offered as the new API for the end users to configure the scaler to use and the
resources to scale based on it.
KEDA has 4 main components which perform the key roles within Kubernetes to manage scaling:

● The "Scaler" component is the specific scaler to use.
● The "Controller" (which corresponds to the keda-operator) is in charge of scaling to and

from zero when there are no events.
● The "Metrics adapter" is in charge of exposing rich event data (e.g., queue length or stream

lag) to the Horizontal Pod Autoscaler to drive the scale out from 1 to N.
● The “Admission Webhooks” are in charge of ensuring proper configuration is applied such as

preventing multiple Scale Objects pointing to the same target.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |210

https://keda.sh/docs/2.11/concepts/#architecture

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

6.3.2. Benefits from using it

There are several benefits due to using KEDA as the base for our elasticity controllers:
● It is event-driven
● It has a large catalogue38 (50+) of build-in scalers, and it is easily extensible to add more
● It allows to manage different type of workloads as it can manage deployment, jobs and even

custom resources
● It allows scaling to 0, with it is a plus for saving energy
● Great community behind it

6.3.3. Elasticity controllers options

Thanks to the above explained features and benefit from KEDA, we designed a different set of
autoscalers that can be implemented thanks to the information made available by other PHYSICS
components.

Table 27: Indicative Scaler Strategies

Scaler Optimization
function

Description Scaling Object Metrics used

Scaler 1 Energy All KEDA scalers allow scaling to 0, which
optimises energy consumption when there
is no events

Pods
(deployments)

No events

Scaler 2 Energy If the amount of energy usage is high but
resource usage is not that high, it can be
scaled down to save some energy and
compact the pods, as usually higher cpu
usage is more efficient than low (base on
KEDA Prometheus scaler39

Nodes Kepler,
Prometheus,
Semantic

Scaler 3 Cost Scale the number of nodes of the cluster
depending on the cost of the (spot)
instances. Set a target maximum and
automatically scale between a min and
max amount, depending on cost over time

Node External API
(cloud
provider
costs)

Scaler 4 Performance Scale the number of nodes of the cluster
depending on the number of functions
over time (based on KEDA kubernetes
workload scaler [])

Node Number of
functions

Scaler 5 Performance Scale the number of OpenWhisk invokers
depending on the number of functions
over time (based on KEDA kubernetes
workload scaler too)

OpenWhisk
Invokers

Number of
functions

39 https://keda.sh/docs/2.11/scalers/prometheus/

38 https://keda.sh/docs/2.11/scalers/

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |211

https://keda.sh/docs/2.11/scalers/prometheus/
https://keda.sh/docs/2.11/scalers/

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Scaler 6 OpenWhisk
waiting
(queue) time

Scale the number of OpenWhisk invokers
depending on the length of the OpenWhisk
kafka queue, so that there are more
consumers creating pods for functions
(based on KEDA Apache Kafka scaler).

OpenWhisk
Invokers

Kafka
messages

Scaler 7 OpenWhisk
waiting
(queue) time

Similar to the previous one. Scale the
number of OpenWhisk invokers depending
on the OpenWhisk kafka delay start metric,
so that there are more consumers creating
pods for functions or more nodes for them
(based on KEDA Prometheus scaler).

OpenWhisk
Invokers or
Nodes

OpenWhisk
metrics from
Prometheus
40

6.4. Component Implementation

Out of the above list, we have implemented the next 2 as part of the PHYSICS project (Scaler 4 and
6), due to being more OpenWhisk specific. Note the algorithms themselves for the other could be
pretty straightforward though some more advanced techniques could be implemented for more
specific purpose applications -- such as using the available data together with Machine/Reinforce
Learning techniques for taking more predictive actions (instead of reactive).
KEDA was installed in the cluster through the Custom Metrics Autoscaler41 which is built on top of
the OpenShift Container Platform horizontal pod autoscaler (HPA).

6.4.1. Scaling Kubernetes cluster depending on number of OpenWhisk functions (Scaler 4)

This scaler is based on the Kubernetes Workload but targeting nodes instead of pods as the entity to
scale. The main idea of this scaler is to scale the number of Nodes depending on the number of
functions. More specifically, we want to make sure the memory is sufficient, so it is adjusted in such
a way that the image side used for the nodes is considered.
In our (AWS) environment, based on OKD, we use ClusterAPI to manage/create/scale the cluster
nodes. This defines the nodes as a set of machines, which can be easily scaled, in the same way as
you scale the number of pods of a replica set:

$ oc get machinesets -A
NAMESPACE NAME DESIRED CURRENT READY AVAILABLE

41https://docs.openshift.com/container-platform/4.13/nodes/cma/nodes-cma-autoscaling-custom-rn.h
tml

40 https://github.com/apache/openwhisk/blob/master/docs/metrics.md

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |212

https://docs.openshift.com/container-platform/4.13/nodes/cma/nodes-cma-autoscaling-custom-rn.html
https://docs.openshift.com/container-platform/4.13/nodes/cma/nodes-cma-autoscaling-custom-rn.html
https://github.com/apache/openwhisk/blob/master/docs/metrics.md

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

AGE
openshift-machine-api ocphub-t4rh8-submariner-gw-eu-north-1a 1 1 1 1

643d
openshift-machine-api ocphub-t4rh8-worker-eu-north-1a 4 4 4 4

647d

Code 8: Replica Set Details

Thus, in our case the object to scale is the machines belonging to the machineset
ocphub-t4rh8-worker-eu-north-1a. Note the information about the CPUs and Memory for the AWS
flavour used are also in there

$ oc get machinesets ocphub-t4rh8-worker-eu-north-1a -n openshift-machine-api -oyaml | head
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
annotations:

machine.openshift.io/GPU: "0"
machine.openshift.io/memoryMb: "16384"
machine.openshift.io/vCPU: "4"

Code 9: Target of Scaling

Then, the trigger specification42 must be configured appropriately based on the default memory
associated with functions (OW default configuration parameter) and the memory available per node
-- also considering other workloads/status of the cluster to better accommodate. For instance it is
not the same cluster that is dedicated for FaaS, that another one that is shared for different use
cases. Here we focused on the first one.

The main value to adjust is "value", which is the relation between the number of pods which match a
specific selector (i.e., label) and the number of pods of the workload to scale. In our case the
podSelector/labelSelector points to the OpenWhisk generated pods, and the workload to scale is the
above mentioned machineset (i.e., a Kubernetes CRD).

So, in our case we forced a specific label in the OpenWhisk created pod. Note this is directly
applicable for Knative ones too. In fact, it can even be applied to both if the same label is used -- the
scaler will account for functions/pods created by either OpenWhisk and Knative.
Then we defined the scaleTargetRef (the object to scale), pointing to the desired machine set as the
scaler supports scaling custom resources as long as they implement the scale subresource, and this
is the case for machinesets.

Finally, we decide on the right value for "value" and the scale limits. We want to always have
machines ready (so no scaling to 0), as there are other workloads/pods in the system, such as
PHYSICS components, and we also wanted to have a limit (as we are paying for the AWS servers and

42 https://keda.sh/docs/2.11/scalers/kubernetes-workload/#trigger-specification

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |213

https://keda.sh/docs/2.11/scalers/kubernetes-workload/#trigger-specification

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

we want to limit the costs). In our case we set a limit between 3 and 6. And then selected the right
target value for us, which was around 15. This means we target to have up to 15 functions per node,
to ensure we don't hit memory issues.

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
name: function-node-scaler

spec:
scaleTargetRef:
name: ocphub-t4rh8-worker-eu-north-1a
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

minReplicaCount: 3
maxReplicaCount: 6
triggers:
- type: kubernetes-workload
metadata:
podSelector: 'function=physics'
value: '15'

Code 10: Setting of Functions per Node Elasticity Metric

6.4.2. Scaling OpenWhisk invokers or Kubernetes cluster depending on Kafka queues
(Scaler 6)

The main target metric within the KEDA Apache Kafka scaler is the queue lag (or queue size), the
number of messages the consumer is behind the producer. Let us picture a scenario in which some
OpenWhisk Kafka producers produced 10000 messages into a partition and some OpenWhisk Kafka
consumers consumed 9800 of them. In that case, the consumer lag is 200 messages.
In this scenario the KEDA Apache Kafka scaler trigger specification43 (when to scale) points to the
OpenWhisk Kafa instance and corresponding topic. The lag threshold can be adjusted to make the
auto-scaling more or less granular and reactive. The scale target reference (what to scale) points to
OpenWhisk invokers deployment. By setting the minimum replica count to 0 the deployment will
consume no resources in the absence of function invocations to favour energy savings.
By default, the number of replicas will not exceed:

● The number of partitions on a topic when a topic is specified;
● The number of partitions of all topics in the consumer group when no topic is specified

The resulting KEDA Scaled Object. Note that the topic is intentionally unspecified, in order for total
offset lag to be calculated considering all topics within the consumer group. By default, OpenWhisk
creates one topic per invoker.

apiVersion: keda.sh/v1alpha1

43

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |214

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

kind: ScaledObject
metadata:
name: kafka-openwhiskinvoker-consumer-scaledobject

spec:
minReplicaCount: 0
maxReplicaCount: 5
cooldownPeriod: 5
pollingInterval: 10
scaleTargetRef:
name: owdev-invoker
apiVersion: apps/v1

kind: StatefulSet

triggers:

- type: kafka
metadata:
ootstrapServers: owdev-kafka.openwhisk.svc:9092
consumerGroup: invoker0
lagThreshold: '5'
offsetResetPolicy: 'latest'

Code 11: Setting of Elasticity Metric based on Queue Size

Note developing Scaler 7 will be pretty similar to this one, but looking at delay at the kafka queue,
obtained through prometheus (openwhisk.histogram.kafka_<topic name>.delay_start - Time delay
between when a message was pushed to Kafka and when it is read within a consumer), instead of
being triggered by the queue length.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |215

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

7. CONCLUSIONS

This deliverable presents the work done in WP3 from M4 to M33. The main goal of the first period
(M4-M13) was to go from the initial design in WP2 to a detailed set of processes that are needed for
establishing the Visual Design Environment, the entry point for the application development in
PHYSICS, and the first component prototypes of WP3. This includes the ability to support and
implement the main design, development and deployment process of an application, starting from
the Node-RED visual editor and concluding to producing the needed deployment artefacts as well as
the definition of the application graph to be forwarded to WP4 for the actual deployment. The
specific process has been supported by relevant semantics as well as decoupled DevOps process
pipelines, in order to create a modular and extensible environment covering aspects such as image
building, custom image uploading, performance analysis of functions.

The goal of the second period (M14-M33) included the testing and stabilisation of the environment,
as well as incorporation of user feedback and extension to new features and functionalities. At the
end of the project, the PHYSICS Design Environment includes many new functionalities, including
centralised login, enhanced visualisations and testing modes, increased logging and build
management processes, along with a migration to a more centralised, SaaS-like design.

Furthermore, the PHYSICS Design Environment offers a set of extended functionalities, coming
from the semantic domain, in order to empower the developer to easily declare a number of
parameters and options that may affect the placement, deployment, operation and configuration of
their applications. Two different means of embedding semantics have been designed, through code
or flow level annotators, that accompany the main semantic structure of the workflow specification
of Node-RED. A relevant ontology has been also defined in order to model the PHYSICS related
concepts at the application side, integrating with the Reasoning Framework of T4.1.

The Design Environment comes with a package of PHYSICS developed patterns that can be reused
and parameterized based on the developer needs and application goals. The patterns aim to aid the
developers in wrapping code around the Openwhisk specification, utilising the Node-RED
environment as an application level orchestrator, handling context in different ways, optimising
function execution, providing anonymization and security functionalities among others, as well as
doing an easier transition to a function-oriented implementation principle. The patterns have also
incorporated aspects like routing capabilities, cluster monitoring means, automated annotation
processes as well as optimization functions available at the application level. Pattern creation and
development has been performed by taking into account from early on the application needs and
expressed scenarios in D6.3, so that there is a higher level of guarantee that they will be valuable to
the use cases of the project, as well as feedback from them following the end of the first iteration of
the project in M18. Furthermore, presentation, configuration and usage examples for each pattern
are given as a guide for the developers, as well as limitations, potential problems and performance
tradeoffs. These patterns can be used not only within the PHYSICS project but also in the wider
Node-RED community, since they represent functionalities that are needed in multiple scenarios
and can be dragged and dropped in any Node-RED environment.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |216

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

For the adaptive elasticity controllers, an approach based on the KEDA tool has been extended and
adapted to the FaaS paradigm, including the ability to define scalability actions based on different
metrics and events. As a conclusion the PHYSICS Design Environment is a solution that can
significantly abstract and automate a number of processes and tasks relevant to the usage and
operation in a FaaS manner. The level of abstraction achieved is considered critical for interacting
with the envisioned end users of the tool, targeting primarily professionals that may be in the IT
domain but do not have a strong development background (i.e. not targeting full-stack or back-end
developers but focusing more on roles like data scientists, scientific engineers etc). Furthermore,
the integration and streamlining of different processes (e.g. Annotations, performance analysis etc)
aids in giving the necessary information to the following WPs (platform and infrastructure
management) in order to successfully address the high level objectives of the project, in terms of
optimised placement, management and operation of a FaaS cluster.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |217

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

REFERENCES

[1] D. Neri, J. Soldani, O. Zimmermann, and A. Brogi, “Design principles, architectural smells and
refactorings for microservices: a multivocal review,” SICS Softw.-Intensive Cyber-Phys. Syst., vol.
35, no. 1–2, pp. 3–15, Aug. 2020, doi: 10.1007/s00450-019-00407-8.

[2] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice Architecture: Aligning
Principles, Practices, and Culture. O’Reilly Media, Inc., 2016.

[3] martinekuan, “Cloud design patterns - Azure Architecture Center.” Accessed: Sep. 22, 2023.
[Online]. Available: https://learn.microsoft.com/en-us/azure/architecture/patterns/

[4] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A Preliminary Review of Enterprise Serverless
Cloud Computing (Function-as-a-Service) Platforms,” in 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Dec. 2017, pp. 162–169. doi:
10.1109/CloudCom.2017.15.

[5] C. Abad, I. T. Foster, N. Herbst, and A. Iosup, “Serverless Computing (Dagstuhl Seminar 21201),”
Dagstuhl Rep., vol. 11, no. 4, pp. 34–93, 2021, doi: 10.4230/DagRep.11.4.34.

[6] G. Kousiouris and D. Kyriazis, “Functionalities, Challenges and Enablers for a Generalized FaaS
based Architecture as the Realizer of Cloud/Edge Continuum Interplay:,” in Proceedings of the
11th International Conference on Cloud Computing and Services Science, Online Streaming, ---
Select a Country ---: SCITEPRESS - Science and Technology Publications, 2021, pp. 199–206. doi:
10.5220/0010412101990206.

[7] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A mixed-method empirical study of
Function-as-a-Service software development in industrial practice,” J. Syst. Softw., vol. 149, pp.
340–359, Mar. 2019, doi: 10.1016/j.jss.2018.12.013.

[8] F. Amato and F. Moscato, “Exploiting Cloud and Workflow Patterns for the Analysis of Composite
Cloud Services,” Future Gener. Comput. Syst., vol. 67, pp. 255–265, Feb. 2017, doi:
10.1016/j.future.2016.06.035.

[9] P. Giampa and M. Dibitonto, “MIP An AI Distributed Architectural Model to Introduce Cognitive
computing capabilities in Cyber Physical Systems (CPS).” arXiv, Mar. 29, 2020. doi:
10.48550/arXiv.2003.13174.

[10] “Cloud-native, event-based programming for mobile applications | Proceedings of the
International Conference on Mobile Software Engineering and Systems.” Accessed: Sep. 21,
2023. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/2897073.2897713?casa_token=7GsWSFzLbv4AAAAA:n3
A5hCazri-EjEl5Or7Zh1pa1NWH5t3Dd6adTrzHPuVvxUT2U9sBzlgsKl9HSRpwD_e3qgN3ng

[11] “Apache OpenWhisk is a serverless, open source cloud platform.” Accessed: Sep. 21, 2023.
[Online]. Available: https://openwhisk.apache.org/

[12] D. Barcelona-Pons, P. García-López, Á. Ruiz, A. Gómez-Gómez, G. París, and M.
Sánchez-Artigas, “FaaS Orchestration of Parallel Workloads,” in Proceedings of the 5th
International Workshop on Serverless Computing, in WOSC ’19. New York, NY, USA: Association
for Computing Machinery, Dec. 2019, pp. 25–30. doi: 10.1145/3366623.3368137.

[13] S. Sengupta, “Faas-flow - Function Composition for OpenFaaS.” Sep. 18, 2023. Accessed: Sep.
21, 2023. [Online]. Available: https://github.com/s8sg/faas-flow

[14] E. Bisong, Building Machine Learning and Deep Learning Models on Google Cloud Platform: A
Comprehensive Guide for Beginners. Berkeley, CA: Apress, 2019. doi:
10.1007/978-1-4842-4470-8.

[15] “Workflows Tutorial (2nd gen) | Cloud Functions Documentation | Google Cloud.”
Accessed: Sep. 22, 2023. [Online]. Available:
https://cloud.google.com/functions/docs/tutorials/workflows

[16] “node-red-node-openwhisk.” Accessed: Sep. 22, 2023. [Online]. Available:

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |218

https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

http://flows.nodered.org/node/node-red-node-openwhisk
[17] “Triggerflow | Proceedings of the 14th ACM International Conference on Distributed and

Event-based Systems.” Accessed: Sep. 21, 2023. [Online]. Available:
https://dl.acm.org/doi/abs/10.1145/3401025.3401731?casa_token=KOeE394nR6UAAAAA:Yul
7zGbfp7ShfzhOqOy7SvGlaoTumEh0VU4tn81Yu6E4F2BJBdU1h9W4kQzVwqnHLHKP2yp8XQ

[18] “Library - Node-RED.” Accessed: Sep. 22, 2023. [Online]. Available:
https://flows.nodered.org/

[19] “Node.js,” Node.js. Accessed: Sep. 22, 2023. [Online]. Available: https://nodejs.org/en
[20] I. Baldini et al., “The serverless trilemma: function composition for serverless computing,” in

Proceedings of the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, in Onward! 2017. New York, NY, USA: Association
for Computing Machinery, Oct. 2017, pp. 89–103. doi: 10.1145/3133850.3133855.

[21] S. Eismann et al., “The State of Serverless Applications: Collection, Characterization, and
Community Consensus,” IEEE Trans. Softw. Eng., vol. 48, no. 10, pp. 4152–4166, Oct. 2022, doi:
10.1109/TSE.2021.3113940.

[22] M. Montagnuolo et al., “Supporting media workflows on an advanced cloud object store
platform,” in Proceedings of the 31st Annual ACM Symposium on Applied Computing, in SAC ’16.
New York, NY, USA: Association for Computing Machinery, Apr. 2016, pp. 384–389. doi:
10.1145/2851613.2851620.

[23] “Nx: Smart, Fast and Extensible Build System,” Nx. Accessed: Sep. 22, 2023. [Online].
Available: https://nx.dev

[24] “Serverless Computing – AWS Lambda Pricing – Amazon Web Services.” Accessed: Sep. 22,
2023. [Online]. Available: https://aws.amazon.com/lambda/pricing/

[25] G. Kousiouris and A. Pnevmatikakis, “Performance Experiences From Running An E-health
Inference Process As FaaS Across Diverse Clusters,” in Companion of the 2023 ACM/SPEC
International Conference on Performance Engineering, Coimbra Portugal: ACM, Apr. 2023, pp.
289–295. doi: 10.1145/3578245.3585023.

[26] G. Kousiouris, T. Cucinotta, and T. Varvarigou, “The effects of scheduling, workload type and
consolidation scenarios on virtual machine performance and their prediction through
optimized artificial neural networks,” J. Syst. Softw., vol. 84, no. 8, pp. 1270–1291, Aug. 2011, doi:
10.1016/j.jss.2011.04.013.

[27] A. Evangelinou, M. Ciavotta, D. Ardagna, A. Kopaneli, G. Kousiouris, and T. Varvarigou,
“Enterprise applications cloud rightsizing through a joint benchmarking and optimization
approach,” Future Gener. Comput. Syst., vol. 78, pp. 102–114, Jan. 2018, doi:
10.1016/j.future.2016.11.002.

[28] V. Ivanov and K. Smolander, “Implementation of a DevOps Pipeline for Serverless
Applications,” in Product-Focused Software Process Improvement, M. Kuhrmann, K. Schneider, D.
Pfahl, S. Amasaki, M. Ciolkowski, R. Hebig, P. Tell, J. Klünder, and S. Küpper, Eds., in Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2018, pp. 48–64. doi:
10.1007/978-3-030-03673-7_4.

[29] A. Pogiatzis and G. Samakovitis, “An Event-Driven Serverless ETL Pipeline on AWS,” Appl. Sci.,
vol. 11, no. 1, Art. no. 1, Jan. 2021, doi: 10.3390/app11010191.

[30] K. Figiela, A. Gajek, A. Zima, B. Obrok, and M. Malawski, “Performance evaluation of
heterogeneous cloud functions,” Concurr. Comput. Pract. Exp., vol. 30, no. 23, p. e4792, 2018, doi:
10.1002/cpe.4792.

[31] R. Cordingly et al., “The Serverless Application Analytics Framework: Enabling Design
Trade-off Evaluation for Serverless Software,” in Proceedings of the 2020 Sixth International
Workshop on Serverless Computing, Delft Netherlands: ACM, Dec. 2020, pp. 67–72. doi:
10.1145/3429880.3430103.

[32] R. Pellegrini, I. Ivkic, and M. Tauber, “Function-as-a-Service Benchmarking Framework,” in

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |219

https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

Proceedings of the 9th International Conference on Cloud Computing and Services Science, 2019,
pp. 479–487. doi: 10.5220/0007757304790487.

[33] J. Manner, M. Endreß, T. Heckel, and G. Wirtz, “Cold Start Influencing Factors in Function as a
Service,” in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion), Dec. 2018, pp. 181–188. doi: 10.1109/UCC-Companion.2018.00054.

[34] D. Jackson and G. Clynch, “An Investigation of the Impact of Language Runtime on the
Performance and Cost of Serverless Functions,” in 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion), Dec. 2018, pp. 154–160. doi:
10.1109/UCC-Companion.2018.00050.

[35] G. Fatouros et al., “Knowledge Graphs and interoperability techniques for hybrid-cloud
deployment of FaaS applications,” in 2022 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2022, pp. 91–96.

[36] “openwhisk/docs/reference.md at master · apache/openwhisk,” GitHub. Accessed: Sep. 21,
2023. [Online]. Available:
https://github.com/apache/openwhisk/blob/master/docs/reference.md

[37] S. Ristov, S. Pedratscher, J. Wallnoefer, and T. Fahringer, “DAF: Dependency-Aware FaaSifier
for Node.js Monolithic Applications,” IEEE Softw., vol. 38, no. 1, pp. 48–53, Jan. 2021, doi:
10.1109/MS.2020.3018334.

[38] “openwhisk/docs/actions-docker.md at master · apache/openwhisk,” GitHub. Accessed: Sep.
22, 2023. [Online]. Available:
https://github.com/apache/openwhisk/blob/master/docs/actions-docker.md

[39] Y. Wang, H. Zhu, J. Wang, J. Liu, Y. Wang, and L. Sun, “XLBoost-Geo: An IP Geolocation System
Based on Extreme Landmark Boosting.” arXiv, Oct. 26, 2020. doi: 10.48550/arXiv.2010.13396.

[40] G. Cretella and B. Di Martino, “A semantic engine for porting applications to the cloud and
among clouds,” Softw. Pract. Exp., vol. 45, no. 12, pp. 1619–1637, 2015, doi: 10.1002/spe.2304.

[41] A. V. Dastjerdi, S. K. Garg, O. F. Rana, and R. Buyya, “CloudPick: a framework for QoS-aware
and ontology-based service deployment across clouds,” Softw. Pract. Exp., vol. 45, no. 2, pp.
197–231, 2015, doi: 10.1002/spe.2288.

[42] P. Jamshidi, C. Pahl, and N. C. Mendonça, “Pattern-based multi-cloud architecture migration,”
Softw. Pract. Exp., vol. 47, no. 9, pp. 1159–1184, 2017, doi: 10.1002/spe.2442.

[43] C. Pahl, P. Jamshidi, and O. Zimmermann, “Architectural Principles for Cloud Software,” ACM
Trans. Internet Technol., vol. 18, no. 2, p. 17:1-17:23, Feb. 2018, doi: 10.1145/3104028.

[44] A. Hachemi, “Software Development Process Modeling with Patterns,” in Proceedings of the
2nd World Symposium on Software Engineering, in WSSE ’20. New York, NY, USA: Association for
Computing Machinery, Nov. 2020, pp. 37–41. doi: 10.1145/3425329.3425339.

[45] “A Process Pattern Model for Tackling and Improving Big Data Quality | Information Systems
Frontiers.” Accessed: Sep. 21, 2023. [Online]. Available:
https://link.springer.com/article/10.1007/s10796-017-9822-7

[46] D. Taibi, N. El Ioini, C. Pahl, and J. R. S. Niederkofler, Patterns for serverless functions
(Function-as-a-Service) : A multivocal literature review. Science and Technology Publications
(SciTePress), 2020. doi: 10.5220/0009578501810192.

[47] G. Kousiouris et al., “Parametric Design and Performance Analysis of a Decoupled
Service-Oriented Prediction Framework Based on Embedded Numerical Software,” IEEE Trans.
Serv. Comput., vol. 6, no. 4, pp. 511–524, Oct. 2013, doi: 10.1109/TSC.2012.21.

[48] A. Iosup, S. Kounev, and K. Sachs, “SPEC Research Group’s Cloud Working Group: RG Cloud
Group,” in Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering, 2016, pp. 127–128.

[49] N. Mahmoudi and H. Khazaei, “SimFaaS: A Performance Simulator for Serverless Computing
Platforms.” arXiv, Feb. 17, 2021. doi: 10.48550/arXiv.2102.08904.

[50] “OpenWhisk.” The Apache Software Foundation, Aug. 31, 2023. Accessed: Aug. 31, 2023.

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |220

https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

[Online]. Available: https://github.com/apache/openwhisk
[51] G. Kousiouris, “A self-adaptive batch request aggregation pattern for improving resource

management, response time and costs in microservice and serverless environments,” in 2021
IEEE International Performance, Computing, and Communications Conference (IPCCC), Oct. 2021,
pp. 1–10. doi: 10.1109/IPCCC51483.2021.9679422.

[52] S. Matsubara et al., “Digital Annealer for High-Speed Solving of Combinatorial optimization
Problems and Its Applications,” in 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan. 2020, pp. 667–672. doi: 10.1109/ASP-DAC47756.2020.9045100.

[53] “Get Started EN,” Fujitsu Deutschland. Accessed: Sep. 22, 2023. [Online]. Available:
https://www.fujitsu.com/de/themes/digitalannealer/get-started/get-started-en.html

[54] “node-red-contrib-crypto-blue.” Accessed: Sep. 22, 2023. [Online]. Available:
http://flows.nodered.org/node/node-red-contrib-crypto-blue

[55] “Crypto-Blue: Digital Signatures Pattern (flow) - Node-RED.” Accessed: Sep. 22, 2023.
[Online]. Available: https://flows.nodered.org/flow/d3df2f5b85e2a44837b7dfb99c30f84b

[56] “node-red-contrib-web3-blue.” Accessed: Sep. 22, 2023. [Online]. Available:
http://flows.nodered.org/node/node-red-contrib-web3-blue

[57] “Web3-Blue: Smart Contracts Pattern (flow) - Node-RED.” Accessed: Sep. 22, 2023. [Online].
Available: https://flows.nodered.org/flow/0590dd348fcde72632333e1912aa0d2b#

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |221

https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI
https://www.zotero.org/google-docs/?vyj8vI

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

DISCLAIMER

The sole responsibility for the content of this publication lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the EASME nor the European Commission is
responsible for any use that may be made of the information contained therein.

COPYRIGHT MESSAGE

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are
free to share (copy and redistribute the material in any medium or format) and adapt (remix, transform,
and build upon the material for any purpose, even commercially) under the following terms: (i)
attribution (you must give appropriate credit, provide a link to the license, and indicate if changes were
made; you may do so in any reasonable manner, but not in any way that suggests the licensor endorses
you or your use); (ii) no additional restrictions (you may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits).

D3.2 –Function and Semantic Continuum Services Design Framework
Scientific Report and Prototype Description V2 Page |222

