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EXECUTIVE SUMMARY

The goal of this deliverable is the description of the PHYSICS projectarchitecture. This is the second version
of the PHYSICS framework architecture foreseen in the project. The PHYSICS architecture is developed as
partof the work package WP2, Requirements, Architectureand Technical Coordination.

The architecture of PHYSICS consists of a set of software components that are developed in three technical
work packages (W3 Functional and Semantic Continuum Services Framework, WP4 Cloud Platform
Services for a Global Space-Time Continuum Interplay and WP5 Extended Infrastructure Services with
Adaptable Algorithms) which correspond to the three foreseen layers of the PHYSICS platform: application
level, platform level and infrastructure level. The PHYSICS architecture has been defined based on the study
of state of the art and the requirements definition and updated after the first integrated version was
produced and tested by the pilots. The architecture is described using a functional view in which the
description of each software componentis provided, as well as the interactions among them. Thisfunctional
description presents for each component its definition, challenges the component has to deal with, input
received and produced output. Hence, it provides the structuring principles that will drive the integration
of the PHYSICS components in a unified platform. As such the PHYSICS architecture will drive integration
activities towards producing the PHYSICS platformand integrating the use cases.

D2.5-PHYSICSREFERENCE ARCHITECTURE SPECIFICATION V2 | 4
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1. INTRODUCTION

The PHYSICS project aims at delivering a complete vertical solution that will offer (a) advanced cloud
application design environments for Application Developers to create workflows of their applications,
exploiting generalized Cloud design patterns for functionality enhancement with existing application
components, easily designed and reused through intuitive visual flow programming tools (Cloud Design
Environment); b) Platform-level functionalities to be easily incorporated by providersin order to translate
the created application workflows into deployable functional sequences, based on the Function asa Service
(FaaS) model, optimizing their placement across the Cloud computing domain and exploiting the
computational space-time continuum as well as advanced semantics for the definition of a global service
graph (Optimized Platform Level FaaS Services Toolkit); c) Provider-local resource management
mechanisms thatwillenable providersto offer competitive and optimized services with extended interfaces
offering local fine grained control of elasticity rules and policies, while applying a holistic set of provider-
local strategies based on a wide set of controlling techniques and tackling key aspects of multitenancy
(Backend Optimization Toolkit). The main features of each of these three toolkits are summarizedin Figure
1.

Service Deployment
Deployment Resource
was Cloud Graph Capabilities

Patterns Optimization Semantics

v Y / Dustributed Shar Adaptive
Semantics Me Controllers
; " Y - Toolkit
Abstracted r z
Workflows to /o ramic Adaptatio Optimized
distributed Faas$ - (Global and Local) service
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apps specification

SO

CSP Cloud Design CSP Optimized
Environment for Platform Level Faa$ CSP Backend Resource Optimization
Applications Services Toolkit

Figure1 PHYSICS design environment and toolkits

In order to achieve these goals the PHYSICS project is structured in seven work packages, W1 Project
Management and Administration, WP2 Requirements, Architecture and Technical Coordination, WP3
Functional and Semantic Continuum Services Design Framework, WP4 Cloud Platfor m Services for a Global
Space-Time Continuum Interplay, WP5 Extended Infrastructure Services with Adaptable Algorithms, WP6
Use Cases Adaptation, Experimentation, Evaluation, and WP7 Exploitation, Dissemination and Impact
Creation. Work packages WP3, WP4 and WP5 (technical work packages) are in charge of developing each
of these toolkits/environments. WP2 main roles are the studying state of the artin each of the fields where
PHYSICS is contributing to, gathering the requirements, and designing the PHYSICS architecture. This
deliverable presents the second and last version of the PHYSICS architecture.
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1.1 Objectives of the Deliverable

The goal of this deliverable is to define the final version of the architecture of the PHYSICS project. The
architecture is defined as a set of views, namely functional view, information view and deployment view3
This deliverable mainly describes the functional view of the PHYSICS architecture, where the software
components are identified as well as theirinteractions. For eachcomponent, a description of the main goals
of the componentis provided, as well as their main inputs and outputs and issues the componentmust deal
with.

This document is relevant for the design of the technical components produced in work packages WP3
(Functional and Semantic Continuum Service Design Framework), WP4 (Cloud Platform Services for a
Global Space-Time Continuum Interplay), and WP5 (Extended Infrastructure Services with Adaptable
Algorithms) as well as for the design of pilots in (Use Cases Adaptation, Experimentation and Evaluation).
The deliverable is also useful for future adopters of the PHYSICS platform either asawhole or the different
toolkits to be developed during the lifetime of the project.

This deliverable presents the second version of the PHYSICS Architecture being part of Phase 3 of the
project. Although this is the final version of the PHYSICS architecture, the deliverable is aliving document
that may be updated as the project progresses. This version of the PHYSICS archite cture reflects the
feedbackreceived from the use cases after the end of the firstiteration of the project in month 18 as shown
in Figure 2.
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Figure2 PHYSICS planning

1.2 Insights from other Tasks and Deliverables

The first version of the architecture of PHYSICS was designed using as input the study of state -of-the-art
analysis and the requirements gathered in deliverable D2.3. State of the Art Analysis and Requirements

3 Software Systems Architecture: Working with Stakeholders using Viewpoints and Perspectives. N. Rozanski, E.
Woods. Addion-Wesley 2012
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Definition v2. This version of the architecturealso takes into consideration the input from the pilots defined
in deliverable D6.4 Application Scenarios Definition v2. Although deliverable D6.4 and this deliverable are
very close in time, they progressed in a coordinated manner. Several meetings were organized to define
the scope and needs of PHYSICS pilots from the PHYSICS platform and define the requirements according
to the pilots. These meetings provided very valuable information for the definition of the PHYSICS
Architecture. Figure 3 shows the dependencies between this deliverable (D2.5) and other deliverables in
the project. The timeline is represented at the top in months (M2 represents month 2) and the different
phases of the project are shown at the bottom of the figure (Requirements, Development, Evaluation...).
This deliverable (shown in ared circle) will provide input for the deliverables in charge of documenting the
design of the toolkits to be developed in work packages WP3, WP4 and WP5, respectively, and the
associated software prototypes, namely deliverables D3.2, D4.2 and D5.2. The second version of the
integration ofthese prototypes willbe documented in deliverables D6.2and D6.6, while the final evaluation
of the PHYSICS toolkits will be documented in deliverable D6.8, concludingthe fourth phase of the project.
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Figure3 PHYSICS deliverables dependencies

1.3 Deliverable Structure

The rest of the deliverable is organized as follows. First, an overview of the different software components
of PHYSICS architecture is presented in Section 2. Then, the functional view of the PHYSICS architectureis
presented in the next section, Section 3. This view is organized in several subsections that correspond to
each of the components to be developed. The interactions among the components of one toolkit are
described in Section 4. Section 5 presents the global view of the PHYSICS platform. Conclusions are
presented in the last section of the document, Section 6.
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2. PHYSICS ARCHITECTURE

2.1 Architecture Overview

PHYSICS consists of three main layers with the goal of enabling seamless application creation, deployment
and operation across distributed and dynamically managed service environments and infrastructures.
Theselayers are depicted in Figure 4 from top to bottom and can be summarized as follows,

e A top-level application developer layer (design environment), that will enable abstracted design,
reusability of code as well as implemented programming patterns in the FaaS model. Existing
components will be wrapped around Faa$ operators.

e Acontinuumdeployment mid-level layer for the support, deploymentand federated execution layer,
including services and functionalities that enables component semantics, services benchmarking
and evaluation, deployment optimization and definition, spanning across different and diverse
providersand services and enabling a seamless execution across.

e A bottom level infrastructure layer, targeting at optimizing the provider-local strategies and
resource management, for the benefit of both the local provider as well as the hosted application
instances.

Eachlayeris developed in one of the respective technical work packages (WP3, WP4 and WP5). The boxes
in the figure represent components whilethe arrows represent dependencies among components. Most of
the components are associated with a single taskin the work plan. The taskassociated with a component is
also depictedin Figure 4.
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Figure4 PHYSICS Software Components
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2.2 Visual Workflow/Design Environment
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Figure 5 Design Environment GUI

Component Description

The PHYSICS Design environment (Figure 5) is the main entry point for the application developer when
interacting with the PHYSICS platform. In this environment, the latter needs to visually design and
implement their application, by creating new code segments, importing existing ones, or re-using generic,
available implementations (in the form of patterns) available from the PHYSICS platform. A key element is
the ability to dictate workflows of operations among these diverse components, that in the end will be
implemented during runtime, so that different elements of the application can be deployed according to
their envisioned operation (i.e., as microservices or as functions, or a combination of the two). The overall
UML use case diagram appearsin Figure 6, Figure 7 and Figure 8.

Except for the overall application creation testing, the developer will also need to test the individual
elements of the flow, either locally (for small function segments) or as a whole (local flows). When the local
integrated flow test is complete, they will also need to do a deployment test in order to ensure that the
implementation is correctly transferred to the platform side. Once the tests are complete, the final
application will need tobe deployed in the production environment.
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The overall architectural diagram of the WP3 entry point for the developer appearsin Figure 9.
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Figure 9 Design Environment Components and Interactions with other elements of the PHYSICS platform

This also includes interactions with the semantic block (Application Semantic Models (Section 2.3),
Inference Engine (section 2.6), the Design Patterns Repository (Section 2.4) and the FaaS Platform
Deployment (Section 2.10).
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The Design Environment is a centralized Ul application that includes and embeds other elements/tabs
offering the aforementioned functionalities with a centralised login to guarantee the security and an
isolated work environment for each user. The central element is the Node-RED environment (Figure 10),
used to develop the application structure. In this, the developer can exploit a palette of existing nodes, that
either offer functionality or a link/interface with an external system (e.g., interaction nodes for creating,
registering and invoking functions on a FaaS platform). Collections of nodes linked in order to implement a
specific functionality can be performed in the form of subflows and reused in different locations of the code
or application. The relevant flows can be uploaded on the Node-RED repository as subflows, or they can
also be packaged as regular Node-RED nodes.

%7 PHYSICS

a Flow 1 Flow 3 H Sequence vi thom vz ie Servioe v Tesang [not L =st + -

Admin Panel * COMERon

Node Fed

Y
L]
2

II aptch locl] S hip

liersl] un ek g e
O SKELE TON nils freis Wi taichion \

v function Execulnr Mode

Figure 10 Design Environment Node-RED implementation

The environment foresees the need to aid in the support of three distinct execution modes. These include
a) native functions created in the environment,b)legacy componentsimported in the application graph as
well as c) arbitrary flows that are created within Node-RED, reutilizingits vast node repository, in order to
offer functionalities, integration or application-level workflow orchestration abilities. Once the developer
has created the relevant functions and workflows, testing of these operations and/or triggering of the
corresponding DevOps processes that are needed to build the respective deployable artefacts are
supported by the corresponding Ul tabs and trigger a relevant build pipeline. During this process, the
created flows are retrieved, and the overall necessary steps coordinated. As an example, functions
developed within the environment need to be adapted/migrated to the FaaS platform runtime, through
means of extracting their code and dependencies and injecting them into one of the available image
templates. This process includes also the availability of baseline processes and skeleton flow s needed to
interact with the FaaS platform. For example, the latter in the case of OpenWhisk assumes that any
registered function artefact exposes two endpoints (an /init method and a /run method) used to initialize
and then execute the function logic. This in turn triggers a second pipeline,that undertakes the registration
of the created action in the test environment. Following that, a manual test can be performed against the
action from the relevant Ul tab (Figure 11) or a third pipeline can be triggered for automated performance
data collection by using the load generation functions stemming from WP4.
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Figure 11 Design Environment test deployed functions

For the external actions’ incorporation, specific tabs are needed through which a developer may declare
external dockerized actions. For this reason, another pipeline is made available for importing custom
images that the developers need to make availablefor action registration.

Further functionalities can be includedin a flow, such as the need for functional annotations at the function
level (e.g., inclusion of external library dependencies, sizing considerations etc.), ability to use semantic
annotator nodes enriching the semantic descriptions of a flow. Upon finalization, the respective flows that
consist of the application graph are passed throughthe Semantic Extractor subcomponentthat transforms
them into instance triples and stores them in the Reasoning Framework (inference engine) of WP4. The
outcome of the process in the Design Environment is to have created and registered different application
blocks on the FaaS platform. In the end, the overall application graph is forwarde d towards WP4, enriched
with a number of features such as annotations used further down the PHYSICS process for functional
adaptation, preferable means of management, non-functional requirements etc.

Main issues to be handled by the component
e Ability to incorporate multiple diverse elements in the application graph (legacy code, function
code, microservices, subflows etc.) and bundle themin a workflow style
Inclusion of code dependenciesin the function nodes
Synchronization between development versions of the code and deployable artefacts, thatinvolves
direct DevOps processes in the context of the Design Environment, as well as registration of the
according artefactsin the FaaS and Orchestration platform

Inputs

e Expected Node-RED node inputs
Readymade patterns from PatternRepository
FaaS platform nodes tohandle interactions and platform operators
Semanticannotation nodes
Any imported Node-RED node or flow from existing repositories (e.g
https://flows.nodered.org/)

e Code segments of different types
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Existing microservices
Legacy code to be embedded in function logic
Arbitrary flows created in Node-RED to be executed alongside the application

Outputs
e Application design graph representation in JSON, annotated with information to be used by latter
stages.

Registered functions and sequences on the FaaS platform.

Deployable artefacts (e.g. container runtimes) of the inputs transformed into functions (especially
for legacy code and Node-RED flows).

2.3 Semantic Extractorand Application Semantic Models

Component Description

The main goal ofthe Semantic Extractor component is to expressthe characteristics of an application graph,
as well asthe constraints and requirements of application components,and describe themin a format that
is widely understandable and can be utilized by other components. A metamodel (the PHYSICS Application
Ontology) provides the types of entities and their relationships, i.e., workflows, functions, resource
requirements, and locality constraints. The workflows defined in the Design Environment component
(Section 2.2), are then fed tothe Semantic Extractor and converted toindividuals that belongto the classes
of the ontology. A workflow is expressed as a dependency graph of functions (nodes), with each function
node or collection of nodes having characteristics, like resource requirements and locality constraints,
imprinted on them as attributes. The resulting Application Semantic Models are mainly used in the
reasoning processes implemented in the Inference Engine component, with the workflows beinga key type
of entity.

The OWL-based ontology describes the overall domain of the application workflows seen in PHYSICS. The
workflow nodes/steps themselves are either functions, in FaaS terms, or middleware dependencies for
other functions. “Workflow pattern”, as well as related terms, such as “workload type” and generic
requirements for them, like the need for a specific kind of device, are to be included in the ontology. Each
patternisessentially an example or template workflow thatis targeted for some specific type of application,
with some predefined requirements and characteristics like maximum distance/cost between function
nodes. Workflows and Workflow Patterns are RDF individuals that adhere to the terms of the OWL ontology.
All the information relatedtoapplication workflows are imprinted in the ontology, so thatit can be used by
the Inference Engine in conjunction with the Service Semantic Models (Section 2.11). The most fundamental
operation to be done, driven by the Semantic Extractor included in Section 2.2, using application models
that adhere to the PHYSICS ontology, is to enrich the application graph with attributes related to the
requirements and constraints, by means of reasoning using this ontology along with the ontology of the
Service Semantic Models, and then match the application graph with the best resources, based on the
imprinted attributes, by means of subgraph matching. The Inference Engine then implements more
sophisticated operations based on this one.

The generation of semantic models via the application ontology/metamodel is based on the RDF js libraries
suite, in order to semantically enrich the workflow models exported by the visual workflow/design
environment. The enrichment is essentially the transformation of the workflow models into a form that
adheres to the PHYSICS application ontology. The transformation is composed of custom logic, with the
traversal ofinputs being done using the JSONata library. The data format usedis JSON-LD, since it is an RDF
representation in JSON, and each JSON-LD document/instance can directly reference the OWL ontologies
thatactas the domain of structures and attributes used in itand can be thought of asan advance d schema.
In essence, the OWL ontology acts as a metamodel, and the JSON representation of the application is
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transformed into JSON-LD that contains individuals of classes expressed in the ontology. The applications
semantic models are linked with the Services Semantic Models (Section 2.11) through the resource

constraints and requirements that workflow nodes have as attributes. The relationship of this component
with other componentsis presented in Figure 12.

Application Metamodels

[Visual Workflow Design}

Resources (Service Environment
Semantic Models) /Flelated domains:\
- Cloud Computing
Resour_ce - Workflows Terms used in
Constraints - Location Visual Application
—Tim_e Composer and in
- QoS requirements FaaS Platform
\ - Privacy /
Inference Engine for
Links to external Ontologies Semantic Matching
A
Y Y
Inclusion as Linking Pmms,prplication Graph Metamodel)
’L as OWL Ontology J As Application Graph Domain
Inclusion as Annotations Application Graphs L P
v defined by the developer
{ Visual Workflow / ]
Design Environment Application pattern suggestions
As Domain
v Application Graph
—_— as JSON-LD
Application Graph Semantic Extractor data input Inference Engine /
for Application Reasoning Framework
Graph for Semantic Matching

Figure 12 Application Semantic Models components

Inthe above schema, the composition and usage ofthe ontology is highlightedin red arrows and boxes, the
semantic transformation / extraction of application graphsis presentedin the yellow arrows and box, and
the grey boxes representcomponents from other tasks. The operation of this componentalso helps prepare

the suggestions of application patterns that are created by the reasoning framework and shown to the
developer via the visual workflow environment.

D2.5-PHYSICSREFERENCE ARCHITECTURE SPECIFICATION V2 | 17



H2020-1CT-40-2020 (RIA)PHYSICS - 101017047

Main issues handled by the component

e Annotating mechanismsatthe function level
Through specialized annotation nodes in node-RED or code level annotations in the visual
design environment

e Expression of the application workflows of PHYSICS as alinked data domain
The Application Graph Metamodelis an inference-capable OWL ontology
Creation of a domain that contains links to external ontologies and related tasks

e Preparation ofapplication workflows for the processes of the reasoning engine
Transformation/Enrichment intoJSON-LD, usingthe application workflows domain

Inputs
e Application description from the design environment
e Resourcerequirements
e Graphrepresentation thatis eventually forwarded to the resource optimizer
Outputs
e Transformed application model/graph that is inference-capable. It is based on the metamodel (a
staticontology) that describes application models
e Application and function requirements and constraints are included as attributes in the application
graph

2.4 Design Patterns Repository

Component Description

The main goal of the Design Patterns Repository is to provide the ability to developers that will use the
PHYSICS platform to use common, already implemented, and compatible with FaaS paradigm, design, and
algorithmic patterns in their applications. These patterns can be either functional, which means they
provide an actual functionality (for example, a Request Aggregator or a Node-RED-flow-as-function
executor), or they can be design patterns that help with application development and provide support
artefacts.
These patterns are primarily implemented as Node-RED flows, a way which provides the flexibility to
maximize their optimization and re-usability in the FaaS platform or in more general contexts through the
Node-RED repository. However, any other language or framework can be used, as long as a relevant
interface node is provided at the Node-RED level. Alternative packaging may include the use of a Docker
image, so that the relevant componentcan be deployed alongside the FaaSapplication and used by it.
The implemented patterns have and will be published in two manners:
o As a subflow structure, directly at the Node-RED PHYSICS collection
(https://flows.nodered.org/collection /HXSKAZ]JLcGA)
€ This mean of publication requires a manual installation of dependencies (other node -red
nodes needed) however it ensures that the users can afterwards adapt the provided
subflows based on their own needs and wishes
e As a packaged node-red node (example at: https://www.npmjs.com /package/node-red-contrib-
owmonitor)
€) This mean of publication ensures better packaging, with included dependencies and
installation, howeverit also means thatthe developers can not change the internal workings
of a pattern

The baseline Node-RED image provided by PHYSICS includes the produced patterns as well as their
dependencies out of the box in any case. A pattern may also need the existence of other services from the
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platform level, such as object storage services, messaging and event management services. In this case, the
existence ofadequate interface nodesin the Design environment willaid the creation of flows that use such
services.

Main outputs of this component are the actual implementation of the identified patterns in an executable
manner, documentation of each pattern which will be available to the Visual Design Environmen t and,
finally, Ul components which will be necessary to the Visual Environment so it can represent each pattern.
These elements are included in the Design Environment in Section 2.2. Where relevant, pattern
documentation includes the instantiation of the pattern semantic description, that may incorporate various
characteristics such as typical pattern applicability use cases, what functional and non -functionalaspects it
enhances (e.g. performance, reliability, cost), configuration parameters for the pattern, as well as other
linked patterns. In many cases in pattern-based development, patterns can act in a complementary or
competitive manner.

Main issues to be handled by the component

e Meansof a patternimplementation and incorporation in an application graph
Should follow the specification of the design environment and of the various execution
modes.

e Ability tolaunch patterns with one ofthe deployable meansid entified in Section 2.2.

e Pattern parameter description and configuration
In many cases patterns come with a parameter set that needs to be configured by the
developer. This may be case specificand may influence the applicability or effectiveness of
the pattern. Examples of such parameters, in the case ofa Retry Pattern, include the number
of retries performed, potential back-off intervals, selection of the option with relation to
what happensifthe call finally fails etc.
In cases of patterns that involve some form of self-adaptation, througharule or an Al model,
parameters would include the location and version of the model to be used or the
configuration of the rule. Examples of such patterns are the Request Aggregator for handling
set batch size for release as well as the Split Join patternfor the granularity of the split of the

incoming payload.
o Subflow
| Packaging
FaaS Application
-
Functional .| Node-RED node » Fattern
Fattern Concept Implementation | Packaging "l MNode Node
b
Supporting
»  MicroService
Image (if neaded)
N - 2 X
¥ h 4
Supporting
MicroService PEF models
Container

Figure 13 General incorporation of a pattern concept in PHYSICS
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Inputs:
e Prototype flows (in Node-RED), function sequences or microservices of pattern implementations.

Outputs
e Documentation of patterns with relation to various aspects such as parameter definition,
configuration, runtime adaptation.
e Reusable and deployable pattern artefacts.
e (ollaboration with deployed models for pattern regulation/configuration from PEF component

2.5 Elasticity Controllers

Component Description

The main goal of this component is to horizontally and vertically scale a PHYSICS deployment based on
various static (e.g., workflows, semantic description) and dynamic (e.g. the load and load prediction, the
system performance metrics) inputs in a performant and economical way. The main idea is not only to use
basic metrics to make thedecisions,butalsotoincludeapplication metrics into consideration (e.g.,response
time or queue length instead of just CPU or memory). This component decides whatisthe number of pods
per replica set, and how these should change when some events occur, in order to meet the user
requirements (e.g., latency and bandwidth) or how much CPU or memory needs to be allocated to them
over time (vertical scaling). The recommendations of the controllers are later realised by the Co-allocation
Strategies component (Section 2.14) calling the APIs provided by the Resource Management Controllers
component (Section 2.13).

The work in this component is based on upstream Kubernetes features for Horizontal4 and Vertical> pod
autoscalers (HPA and VPA). PHYSICS work focuses on detecting the right application metrics for scaling
decisions and making them available through Prometheus, as well as creating its own recommender with
focus on FaaS differentiated features (such as warm containers). Toachieve this the KEDA projecté has been
evaluated for the horizontal use case and a specific scaler will be implemented /enhanced to betteraccount
for the PHYSICS needs. For the vertical scaling, a customised Vertical Pod Autoscaler will be developed to
better account for PHYSICS (FaaS) needs?

Main issues to be handled by the component
e Access to application specific metrics by integration with the metrics monitoring system (i.e,
Prometheus)

e Adaptthe deploymentsovertime to meet their performance requirements
e Identifythe key performance indicators toactuate on them
e Integration ofnew controllers with HPA and VPA, as well as with KEDA
e Make them easily deployable/usable through proper K8s APIs
Inputs

e Application performancemetrics and limits
e Minimalrequired performance goals
e Type of application and scaling type/engine touse

4 https://kubernetes.io/docs/tasks /run-application /horizontal-pod-autoscale/

5 https://docs.openshift.com/container-platform/4.11/nodes/pods/nodes-pods-vertical-autoscaler.html
6 https://keda.sh/

7 https://cloud.redhat.com/blog/how-to-enable-a-customized-vpa-recommender-on-openshift
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e System workload and performance metrics needed for prediction, including low level metric related
to pods

Outputs
e Minimal (or almost minimal) scaled configuration (pods and replica sets) that meets the
performance requirements and uses.

2.6 Reasoning Framework

Component Description

The Reasoning Framework (RF) lies between the three layers of PHYSICS (i.e., application, platform, and
infrastructure), enabling semantic interoperability between these different contexts. It could be perceived
as an interface between the PHYSICS platform’s layers, serving as a central repository for application and
resource metadata while interacting with various platform components that provide or request data. The
RF interprets the latter as graphs and applies semantic inference to create relevant connections between
them. In this way, the RF contributes to the automated, timely, and optimised deployment of the input
applications.

To achieve that, the RF leverages the ontologies developed by the Application Semantic Models (T3.2) and
the Service Semantics component (T5.1) that provide a common language for the various data types of the
platform (e.g., application’s functions and workflows, developer annotations/requirements, QoS (Quality of
Service), performance evaluations, Kubernetes cluster descriptions). Specifically, the input data to the RF
have been translated intotriples according to the relationships definedin the ontologies. At the same time,
the RF provides appropriate endpoints for injecting the individualapplication and service data. To this end,
the RF consists of two components, (i) a server thatimplements the REST endpoints and (ii) a knowledge
base (KB) that facilitates the storage, processing, and reasoningofthe input triples.

The Reasoning Frameworkrelies on the open-source AllegroGraph8, a horizontally distributed, multi-model
(document and graph), entity-event knowledge graph technology that enables the extraction of
sophisticated decision insights and predictive analytics from highly complex, distributed data that cannot
be answered with conventional databases. AllegroGraph provides an architecture through the REST
protocol, while there are APIs for various programming languages, including Python (Graph databases
comparison: Allegrograph, Arangodb, Infinitegraph, Neo4j and Orientdb). This facilitates the enhancement
of machine learning models, typically served by Python-based applications, with features retrieved from
the KB.

Furthermore, RF consists of a Flask-based backend service (Design an MVC model using python for flask
framework development, 2019) that is responsible for exposing specific REST endpoints so that other
platform components (i) ingest application and resource data, (ii) retrieve required information, and (iii)
inferred insights from the AllegroGraph for optimising application design and deployment in terms of cost,
latency, performance and more. Specifically, the design environment posts the application graph to the
Flaskservice that forwards it to the KB. In a similar way, utilising the resource semantics component, each
clusterregisteredin the platform sends its description tothe RF. Depending on the type ofinput data, Flask
guides AllegroGraph to create further relationships at both individual and default graph levels. This
facilitates the timely retrieval of specificdata needed by the platform as well as provides inference on the
possible function allocations.

The architecture follows the microservices approach as both components (i.e., KG and Flask) are
containerized (using Docker?) and integrated as a single service allowing additional services to be added

8 https://allegrograph.com/products/allegrograph/
9 https://www.docker.com
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without affecting the existing component. The interactions mentioned above, along with the internal
architecture of the RF, are depicted in Figure 14.
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Figure 14 Reasoning Framework architecture and interactionswith other components

Main issues handled by the component

RF is responsible for completing the following needs of the Physics platform:
1. Offer reasoning capabilities and semantic inference over the application and resource semantic
descriptions.
2. Filterthe number of candidate services that may be used for the deployment ofa given application
graph, enhancing the optimization process of Global Continuum Placement(T4.3).
3. Provide abstracted querying nodes to:
a. Retrieveapplication graphs from the Semantic Extractor (T3.2).
b. Retrieveinformation aboutthe availableresources from the Orchestrator (T4.5) Hub.
¢. Query the semantic descriptions of the available resources provided by the Service
Semantics component (T5.1).
Retrieve performance metrics from the PEF (T4.2) that will be considered during the
placementand facilitateruntime adaptation.
e. Providerelevantinformation (i.e., list of application graphs, graph name, owner etc.) to the
Design Environment (T3.1) that can be included during the application graph specification.
f. Provide the candidate resources that could be used to deploy the given application to the
Optimizer (T4.3).
Provide the necessary options and executables that need to be defined in the deployment
configuration tothe Orchestrator (T4.5).

Inputs

e Individual application descriptions (e.g., function requirements, functions sequence, location
constraints etc.) provided by the Semantic Extractor in JSON-LD format.

e Individual Cloud/Edge service descriptions (e.g., type, CPU, RAM, location, etc.) provided by
Resource Semantics alsoin JSON-LD format.

e Performance evaluation of the available services for an individual application provided by the
Performance evaluation Framework in JSON format. RF will translate these data into triples and
then create the relevant connections between the graph nodes in the KB (e.g., <evaluationTest1,

hasPerformanceScore, “85%”> <evaluationTestl, appliedln, InferenceFlow>, <azure,
hasPerformance, evaluationTest1>).
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Information related tonew resources registered in PHYSICS (i.e., Cluster name, IP, OW credentials)
provided by the Orchestrator in JSON.
Outputs

e Flow/function potential allocations (i.e., the resources which can host each flow/function of the
given application) tothe Global Continuum PlacementOptimizer.

e Flow/function user-specific annotations to the Global Continuum Placement Optimizer (i.e,
optimization goal).

e (Characteristics of the available resources or Resource Graph (i.e., CPU cores, RAM, architecture,
locality, performance scores)

e Application Graph to the Global Continuum Placement Optimizer that is passed directly to the
Orchestrator along with the final placement decision (DeploymentGraph).

e Deploymentstatus, design recommendationsand relevantinformation to the Design Environment.

2.7 Performance Evaluation Framework

Component Description

The main focus of this componentis to enable informed decision making on various aspects of the platform
and application execution based on retrieved performance evaluation data from the execution of designated
workloads towards target functions.

To this end it needs to be able to trigger relevant executions on demand towards target endpoints (e.g.
function invocation APIs)based on diverse scenarios needed for evaluation. Such scenarios may origi nate
from the nature of the Faa$ platform, including for example the effect of cold/warm /hot container start
consideration, the limitation on function concurrency factors and the relation to burst or trace driven
requests, investigation of scheduling strategies that aim at maximizing context reuse in functions etc. Other
needs for investigation may include the analysis and prediction of function execution time and memory
usage (which could alsobe used for cost estimation) as wellas tailored performance analysis of the reusable
patterns and their parameters available in the Design Environment. As an example, the size ofa Node -RED
flow may influence its performancein relation to the way itis executed (as a function or as a service), along
with other parameters such as hot/cold function execution. Finally, the evaluation of the ability of available
services/resources on typical workloads (e.g., benchmarks or candidate functions) is another goal that may
aid in more informed resource selection during deploymentand runtime management.

Following the above, the component functionalities need to be made available through relevant API
endpoints, whetherthisrelates toload generation triggering or result retrieval, so that they can be tailored
to arbitrary experimentsneeded. Following the datacollection, the relevant QoS descriptions of the Service
Resource or Application model may be populated, therefore this component should also participate in the
definition of the relevant semantic structures and produce results for their population. Given that at any
given point in time it is very difficult to acquire all relevant performance metrics for all possible
combinations of relevant parameters (resource, application, environment etc), this component needs also
to be able to create performance models from a limited number of experiments, so that it can reply to
requests for performance data from configurations it hasnot actually benchmarked. This for example might
be predictions regarding the function execution time of a given configuration and/or otherrelevant metrics.
In patterns thatneed a form of self-adaptation, in ordertoadapt to varying conditionsof execution, relevant
models maybe created in order to support this process, linking the pattern configura tion parameters with
aspects such asthe anticipated trafficand the predicted QoS.

The capabilities of this component may eitherbe triggered by the Global Continuum Placement in the quest
for an optimized deploymenttrade-off. Alternativeusages may alsoinclude the invocation from the Design
Environmentin order to get information on pattern configuration, or by the pattern implementation itself
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during runtime (e.g., for getting the predicted parameters based on the current conditions of execution).
Other uses include the application developer being able to benchmark their created functions or evaluate
the performance implications ofa changed function or workflow structure/implementation.

Given that the component lives and breathes in the FaaS domain, it was considered to change the initial
architecture ofthe main load generation from a cluster-based, Jmeter-containerized execution to a function
based one, based on an implemented Node-RED flow. This alternative design gives a much more modular
approach, enhanced packaging and scalability as well as portability to any available FaaS platform, without
the need to setup and operate separate load generation clusters. Thisaids in having much less complicated
test orchestration, with the main task of the PEF being to launch the function load generators and
concatenate the results in case more than one of them are used.

Furthermore, in order to have a more targeted function performance analysis, it was considered best to
focus directly on the produced functions from the application development and not generic benchmarks
like FunctionBench. This process may be integrated with the main design process of a function. With the
packaging as a function, it is also easier for any platform service to directly invoke the load generation, in
order to test the change in a setup parameter, scheduling used etc.

The subcomponents of this component and the interaction with other components are depicted in the
Performance Evaluation Frameworkdiagram of Figure 15,which has been updated in orderto highlight the
new advancementsin the design.
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Figure 15 Performance Evaluation Framework Diagram and Interactions
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Initially, a REST API layer exposes the main functionalities of the component (test triggering, result
retrieval, model creation and modelusage/inference). Results are retrieved from the clients, for client -side
response times, as well as the FaaS platform (for platform related metrics) and stored in an internal
repository. Following external requests, these dataare queried by the Result Analyzer and returned to the
caller. The Result Analyzer can also be queried by internal components, i.e. the Model Creator, in or der to
retrieve the necessary dataset for model creation, following an external accordingcall. Once the model has
beenvalidated and finalized, it is stored in a model repository, where itis accessible by the final operation
of the Model Inference. In this case the external call provides input arguments for the model and needs the
prediction of the output, based on the model structure.

Given the transformation of the design from a Jmeter based load generator toa Node -RED subflow one, the
new implementation also gives the ability to use the load generation subflow in any NODE-Red environment
againstatarget OW platform. The availability of this subflow as an invocable function already deployed on
the FaaS platform enables alsoits usage more easily in any testing scenario from the platform services.

Main issues to be handled by the component
e Integrate performance evaluation test towards a target function in the typical function development
lifecycle of an application

e Define and design workloads that are representative of testing scenarios, use case needs or
anticipated usage

e Analyse the execution instances of user functions, providing insights with relation to their predicted
execution time, thusaiding in aspects such as schedulingdecisions, placementetc.

e Include and enable the evaluation information to be used by other components in the context of
service selection

e Enablethe on-demand execution of stress tests from various components of the PHYSICS platform
in order to evaluate different strategies in deployment and runtime management

Inputs

e Target functions for benchmarking
e FaaSplatform runtime statistics.
e Triggers for launching tests or other requests.

Outputs
e QoS metrics model definition and metrics.
e Resource and application models QoS instances population with theresults from the measurements
e Performance models and predictors for various aspects such as function runtime prediction, co-
allocation performance degradation, hot/cold/warm start execution, performance of Node-RED
flow function versus service, pattern parameters definition etc.

2.8 Global Continuum Placement

Component Description
The main goal of the Global Continuum Placement component is to perform the decision making to

efficiently select the right compute resources for the placement of the different tasks of the applications to
be executed on a hybrid edge-cloud infrastructure.
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The latest version of the specific component has the ability to scheduleapplication workflows and proposes
a resource allocation and deployment schema for each workflow selecting resources across an
infrastructure composed by different public cloud, on-premises, edge and even HPC clusters of computing
resources, in an optimal and timely manner. Each application workflow will come as a graph of tasks -
functions- (in a FaaS programming model) with particularrequestsin resources (CPU, Memory, Bandwidth,
GPUs, etc), possible constraints (execution only upon one type of infrastructure: edge to satisfy data
sensitivity/locality obligations, etc) and scheduling objectives (energy, latency, data movement
minimization, etc) based on particular scoring techniques. The component considers the computing
resources characteristics (number of total CPUs, amount of available bandwidth, energy, cost, etc) and
availability (remaining amount of memory available for allocation, etc) and matches this with the
application graph needs and specific objective (performance, energy, etc) weights. Based on these inputs,
the latest version of Global Continuum Placement component performs placement respecting the
constraints while aligning with the multi-objective dimension and uses the basic best-fitscheduling policy.
We are currently working on an improved version of this algorithm using Linear Programmingto calculate
optimal placement when considering multiple objectives. Eventually, the user will have the possibility to
select the scheduling algorithm ofits choice, but the component will be able to automatically set the most
adapted algorithm based on the context. Simple policies (such as First Fit or Round Robin) that consider
workflows requests, constraints and single objectives will provide fasterbut non-optimum results whereas
more complex algorithms (based on Linear Programmingor genetic) that consider multiple objectives and
various QoS to address will return optimal or sub-optimal results in a less timely manner. Figure 16
provides the high-level view of the GCP component along with the direct interactions to other Physics
components.
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Figure 16 Global Continuum Placement high-level view and relation to other components
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Internally, this component is composed by: 1) a subcomponent that consumes inputs related to the
application graph expressing the need of resources and constraints coming from the Services se mantic
models along with cluster resources availabilities coming from the Reasoning Framework and the
deployment optimization possibilities coming from the performance evaluation framework; 2) the
scheduling algorithm is expressed as a separate module built within a wrapper with the ability to be
programmed in different programming languages and to be extracted into a simulator in order to
experiment and evaluate its performance, 3) the output subcomponent which provides the scheduling
decision is pushed as a YAML file to the centralised orchestration component. Figure 17 provides the
internal architecture of the GCP component showing the details of its internal subcomp onents along with
the external tools and inputs & outputs.
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Figure 17 Global Continuum Placement component internal architecture

|

Main issues to be handled by the component

e High-level task placement of applications to the compute resources (or services) of the Global
Continuum.

Optimal matching of application functions’ needs to the underlying computeresources availability.

Efficient scheduling of multiple applications on the Global Continuum in a timely manner,
considering different constraints and various solutions for optimizations.

e Dynamic adaptation of task placement decisions based on new parameters, such as performance,
energy, etc.

Inputs
e Application graph decomposed in functions including the resource needs and constraints coming
from the applications semanticmodel (semantic extractor component) in a YAML format
e Deploymentgraph containingthe available and adequate resources (or services) of the hybrid edge-
cloud continuum coming from the Inference Engine (or reasoning framework) in a YAML format
e Deployment optimization possibilities related to the execution of specific tasks coming from the
performance evaluation framework

Outputs
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e Deployment decision schema featuring the global continuum resources selection and task
placement decisions to be transferred to the adaptive platform deployment, operation and
orchestration componentin the form of YAML file.

e Deployment decision schema details to be transferred directly to the local cluster sched uler
componentasa YAML file (this isnot yet supported from the local cluster scheduler component).

2.9 Distributed Memory Service

Component Description

The Distributed Memory Service (DMS) allows sharing data between functions invocations. Functions in
FaaS frameworks are stateless and any data sharing must be done through a remote data store which is
expensive in termsof latency. The DMS  component providesanin-memory distributed state service
that allows functions to store objects out of main memory and share themamong otherfunctions efficiently.
Several issues must be considered in order to achieve good performance in a FaaS scenario. The =~ DMS
should run collocated within the nodes where functions are executed in order to avoid access to remote
data. Since the same function can runin several nodes, data should be replicated. The consistency of data
should be preserved so that, even if functions running on different nodes update the same data, data will
converge (eventual consistency). The  DMS provides a simple interface to access the data: get and put
operations

Figure 18 (top) shows the internal architecture of the DMS. The DMS design is based on Pocket!? ,however,
the storage system used by Pocket, Apache Crailll, is not supported any more (from June 2022). At this point
we are evaluating other alternatives among them KeyDB12 is the most promising for its performance and
built-in replication features. The DMS has three sub-components: one controller, one or more metadata
servers and one or more storage servers. The controller isa subcomponent that allocates storage resources
and decides the data placement and scales the metadata and storage servers. Moreover, itdeploys a resource
monitoring daemon on each node where the DMS runs. This process sends CPU and network statistics to the
controller frequently. The controller uses these metrics to decide which subcomponent mustbe scaled up
or down. The metadata server redirects clients’ requests to the storage server allocated by the controller. It
also sends storage servers capacity utilization statistics to the controller. The metadata server was builton
top of Apache Crail in the previous version of the component and it will be replaced soon. The storage servers
are in charge of storing the data. They can used with different storage media such as: DRAM, NVMe, SSD or
HDD. The next version of this component will not offer different storage servers and data will be mainly
keptin main memory.

Figure 18 (bottom) shows how a workflow that consists ofa sequence of three functions (actions) deployed
in the PHYSICS Platform accesses the DMS. The DMS provides a library wi th the basic functions for accessing
data (get/put) and other functions required tointeract with the DMS. Solid arrowsin Figure 18 represent
the operations for accessing the data from functions, while dashed arrows represent other operations
needed for accessing the datainthe DMS. Blue arrows (steps i, ii,iii) represent the control functions (register,
allocate and assign resources and de-register), and black arrows represent get/put interactions between
the actions and the Distributed Memory System.

Initially, when a workflow (sequence in this case) is invoked the register function is executed (stepi). The
controller registers the sequence with the metadata server (step ii). The controller returns a sequencelD
and areference tothe metadataserver(s). The first time a function issues a get/put operation, the metadata
serveris accessed to obtain the location (IP) of the assigned storage server and a connection (steps 1 and

10 https://www.usenix.org/conference/osdi18/presentation/klimovic
11 https://crailincubator.apache.org/
12 https: //docs.keydb.dev
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2). This IPis stored for future access to the storage server. Next, data is written and read from the storage
server (step 3). When the last function of the sequence (workflow) completes the de-register function is
executed and the resources allocated by the DMS to the workflow are released.
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Figure 18 Distributed Memory System Architecture

Main issues to be handled by the component
The mainrequirements of the Distributed Memory Service are:

e Data consistency
e Support for different cloud providers (AWS, Google Cloud, ...)
e Provide fastdataaccessto functions

Inputs
e The DMSusesthe description ofthe cluster (numberand location of nodes, type and size of available
storage...) where a workflow will be executed.
e Workflow definition: functions part of the workflow in order to share connections.

Outputs
e Theinformation storedinthe DMS.

2.10 Adaptive Platform Deployment, Operation & Orchestration

Component Description

The objective of the Adaptive Platform Deployment, Operation & Orchestration componentis to enable easy
dynamic deployment orchestration, reconfiguration & adaptation of the applications defined in the
deployment graph (aka Global Service Graph). That deployment graphis produced by the Global Continuum
Placement component with all the information present in the application graph previously obtained from
the Reasoning Framework and the optimal placement infrastructure selected from the candidate set
proposed by the Reasoning Framework. Based on the deployment graph definition, the orchestrator
operates the deployment on the different clusters managed by PHYSICS. To achieve this deployment, the
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orchestrator usesa translator component (see Figure 19) that parses the information from the deployment
graph into a definition that is consumed by the Resource Management Controllers (WP5 component
described later in this document).

Application

Workflow

Graph PHYSICS DSL RUNTIME DSL CRD

Deployment TRANSLATOR

Graph

Resource
Graph

Kubernetes

Resources

Kubernetes
AP1

Figure 19 Translator service, part of Adaptive Platform, Deployment, Operation & Orchestration component

This translator service acts as a bridge between the semantic representation language of PHYSICS and the
domain specific language (DSL) of the Resource Manager API (OCM) and cluster native resources
(manifests). The Resource Manager Controllers use a ManifestWork object as an envelope to wrap cluster
native resources and the custom resource definition (CRD) of a workflow in PHYSICS. This PHYSICS
Workflow contains the necessary information to deploy the application functions in the target FaaS
platform. The translator service will be deployed in the PHYSICS hub cluster together with the rest of the
core components of PHYSICS. This translator was named " semantics & placement schema parser” in the first
version of this Reference Architecture.

An additional service named “OW-proxy” will oversee registering the functions in the FaaS platform at the
target “managed” cluster. This servicewill bedeployed in all the target clusters in the catalogue of resources
offered by the PHYSICS platform. This service will deal with the specific API of the FaaS platform to create
the functions (or actions) included in the application workflow and optionally the linear sequence of
functions execution order (Figure 20).
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Figure 20 FaaS Proxy service, part of Adaptive Platform, Deployment, Operation & Orchestration component
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Figure 21 shows the above two services of the component (in red) integrated with the rest of the PHYSICS
components thatareinvolved in the deployment pipeline ofa PHYSICS application workflow.
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Figure 21 Deployment pipeline of a PHYSICS application workflow

'

This component will also implement a service to monitor the QoS (Quality of Service) expected by the
application owner by means of semantic annotations in the application graph (translated into the final
deployment graph). We name this componentas “QoS Evaluator / Alert System.” This service implements
two functionalities: an evaluation loop to periodically check the current metric value with respect to the
defined threshold and an alert system to notify the PHYSICS Hub about any violation of the expected QoS.
This service was named “QoS & QoE Runtime” in the first version of this Reference Architecture.

The evaluation loop functionality will need to connect to the metric time series database storage
(Prometheus) of every target or managed cluster used in PHYSICS to periodically check the current QoS.
Thistime series database and the collection process of metric values (samples) will be implemented by the
metricsystem installed in each managed clusterusing some open-source tool like Prometheus.

Figure 22 shows the flow of the global runtime adaptation loop with the interoperability between several
components of the PHYSICS core platform.
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Figure 22 Global Runtime Adaptation flow

All these services that comprisethis Adaptive Platform Deployment, Operation & Orchestration component
described here are the executor arm of PHYSICS core platform and they are commanded by other
components of PHYSICS that implement/make the smart decision part of the process. In this way this
componentdecouples the technical details tointeroperate with different Resource Manager APIs from the
smart decision support maker components of PHYSICS.

The “Global” runtime adaptation is a concept to separate the two different control planes that can interact
inthe runtime adaptation process. Thereis a global control plane implemented by the PHYSICS Hub cluster
with a global view of what is going on in the deployed application and alocal control plane implemented by
the resource/container orchestrator in the target or “managed” cluster (Figure 23). The last one is
implemented by some Kubernetes flavours.
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Figure 23 The two control planes

These local cluster control planes already implement out of the box monitoring and reactive runtime
adaptations functionalities for the application/workloads deployedin the clusterlike redeploymentin case
of workload failed or horizontal scaling. We customise these capabilities for local runtime adaptation using
PHYSICS components like the Scheduling Algorithms, Co-allocation Strategies and Resource Manager
Controllers.

All the servicesimplemented by this component will expose their functionality usinga REST API interface
following the Open API standard.

2.11 Service Semantic Models

Component Description

The main goal of the Service Semantics Models componentis to capture information on the functional and
non-functional properties of the available cloud resources of a cluster and transform this information to
comply with the semanticrules andrelationships formed in the designed ontology. The ontology is a crucial
part of the component. It comprises the semantic relationships formed between resource individuals at
various levels (Cluster, Cluster Node, Serverless Platform, GPU/CPU/, etc.) and the characteristics of them
(allocatable values, endpoints, versions, location, etc.). This collection of semantics allows the description of
cloud schemata whether they areon premises, either as cloud or edge clusters, or make use of cloud vendor
offerings.

Other than the ontology design, information gatheringis another crucial functionality that the component
includes. In order to alleviate time consuming semantic annotation of resources by domain experts the
component incorporates methods to directly draw information about a cluster in an automated fashion,
when that is possible. The respective methods are designed to be Kubernetes API compatible, being the
most mainstream cluster management software, which also comes withvarious distributions some of which
are well suited to form clusters on the edge. Finally, the process ofinform ation transformation to semantics,
from the raw cluster information to the ontology, is targeted with the use ofa Python service that includes
variousrelevantlibrariessuch as Flaskand Owlready?2.
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In the PHYSICS platform semantics are mainly utilised to enable the application deployment and resource
management/optimization processes by the relevant components. To that end, populated ontologies that
come from the Application Semantic Models component (T3.2), hold information about the requirements
and constraints for application deployment and are compared with theresource properties and capabilities
presented in the populated ontology provided by this component to the Reasoning Framework (T4.1).
Finally, further optimizations are made to select the most efficient deployment schema by the Global
Continuum Placement (T4.2). Essentially, centralised information about all the clusters resides within the
AllegroGraph database thatis part of the Reasoning Framework, and thisis where other components reach
out for the ingestion endpoints (Figure 24).
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Figure 24 Service Semantic Models Architecture and semanticsinteractions

Main issues to be handled by the component

The service semantics component is responsible for tackling the following within the PHYSICS
environment:

1. Modelling of a schema that captures the service semantics,an OWL ontology capable of inference.

2. Automating information gathering, when possible, a service to call and manage information that
comes from Kubernetes API.

3. Interfacestoeasily provide information when noautomated method is available.

4. Information exchange endpointstocommunicatewith all the relevant components.

5. Transformation of the gathered information to ontology individuals and relationships.

6. Creation of various semantic rules that produce inferred knowledge automatically from the

available information.
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Inputs
e The OWL resource ontology modelled within the scope ofthis task.
e Information on resource performance provided from the Performance Evaluation Framework (T
4.3)and/or aggregated metrics from application deploymentmonitoring.

e (OPTIONAL)Manual ontology annotations for a cluster by accessing the endpoint of the respective
service

Outputs
e A populated OWL ontology describing the properties of a cluster, depicted as JSON -LD and to be
ingested by the Reasoning Framework.

2.12 Local Adaptive Scheduler

Component Description

The main goal of the Scheduling Algorithms component is to provide thelocal cluster scheduling capabilities
to enable the execution of functions as parts of FaaS applications. In this context, the component will take
into account specific characteristics and challenges of FaaS applications and will try to perform efficient
sharing of computational resources (CPU, memory, storage, network) taking into account aspects such as
functions’ priorities, dynamic load-balancing and energy efficiency. The local scheduling algorithms are
represented by the 2nd level scheduler taking place locally on each cluster and allows the selection of the
mostadapted resources on each cluster as shown in the high-level example of Figure 25.
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Figure 25 Local Adaptive Scheduling Algorithms and its relation to the Global Continuum Placement for the
2-level scheduling of the continuum
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The currentversion of this componentis mainly a new Kubernetes scheduling policy which minimises the
cold starts of functions. This is particularly important for FaaS applications because their execution time
can be quite small while the download time of the environment (container image) may be large and even
larger than the execution time. So, reducing the download time of containers is important for the FaaS
paradigm. The new proposed Kubernetes scheduler takes intoaccount the existence of Containers’ Layers
and tries to favour the execution of functions on nodes where layers of the containersto be deployed already
exist. For this the particular algorithmneeds to get on one side the available layers on each node (name and
size) and on the other side for each new pod compute a score per node considering the cumulative size of
already available layers. Hence this particular component currently makes use of details coming from the
node container runtime interface and brings this info in the level of Kubernetes in order to enable a
scheduling decision through a new scheduling policy. The new scheduling policy can be selected by a
webhookdefined by the resource managementcontrollers.

Besides the interaction with the resource management controllers, the current version of the local
scheduler does not interact with other components, but this will change in the upcoming versions where
the component will communicate directly with other components to get details related to monitoring, high-
level scheduling propositions, co-allocation,adaptivity, etc.

Each local cluster has the ability to select a scheduler among a group of different available schedulers
defined by a combination of Kubernetes profiles, policies and algorithms. Different schedulers may be
adopted or implementedto cope with issues suchas the cold startoffunctions by selectingresources where
the function’s container has been previously downloaded either completely or atleast some layers of it. We
are currently investigating the usage of energy related heuristics in the policies of the local scheduler. For
this, we consider ways to monitor the energy consumption of the executionsand try to study techniques on
how to minimise it. Another example of scheduler may enable functions to be deployed upon already
deployed containers which implies the need of further isolation among the different functions that may be
deployed on the same container. Other possible scheduling algorithm is the one that considers the
collocation of CPU-bound functions with Memory-bound functions to optimally pack functions and utilise
computing resources on each cluster. Another possibility may be the automated setting of requested
resources and limits of each function based on previous all ocations. This can be automatically adapted on-
the-fly and can even use Machine Learning for optimal adaptation.

Furthermore, since we adopt Kubernetes as the default PHYSICS cluster manager, each clusterwill have the
ability to deploy different scheduling algorithms per deployed function and even allow the simultaneous
usage of multiple algorithms withinthe cluster at each moment.

The upcoming version of local scheduler component will be composed by 1) a subcomponent that will
consume the annotations expressed in the YAML file of the orchestrator including higher level scheduling
preferences and constraints coming from the Global Continuum Placementand the Application semantic
models along with cluster resources availabilities; 2) the scheduling algorithm which will be expressed as
a Kubernetes scheduler packaged in containerized form. The scheduling algorithm may alsobe expressed
as an OpenWhisk scheduling policy to enforce specific aspects related to OpenWhisk FaaS execution. The
latest may allow to keep track of the subflow related dependencies among the functions and possible
subflow constraints, and 3) the output subcomponent which will provide the scheduling decision to be
pushed through the relevant API to the Resource Management com ponent.

Main issues to be handled by the component
e Efficientscheduling of FaaS applications’ functions upon the computational resourcesoflocal
cluster considering resource availability and tasks’ needs.
e Reducingthe cold start of functions execution (container download time)
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e Dynamicadaptation of resource allocations based on possible tasks’ needs change (autoscaling is
not handled in the current version of this component).

Inputs

e Local cluster resource availability status coming from the Resource Management Controllers
through the internal Kubernetes API calls

e (ontainersLayersnamesand size per node

e Usage of containerslayers for the environment of each function tobe deployed on the nodes

e (lobal continuum scheduling decisions forwarded from the Adaptive Platform Deployment,
Operation & Orchestration based on the decision of the Global Continuum Placement in the form of
YAML (thisis not yet supported butitisunder development)

Outputs
e The resultingscheduling decisions favouring nodes that already have layers of the containers to be
deployed. The scheduler which takes this decision is forwarded to Resource Management
Controllers for deployment in the form of Kubernetes scheduling policy.

2.13 Resource Management Controllers

Component Description

The Resource Management controllers area set of controllers and their respective APIs at theinfrastructure
layer that 1) manage and enhance different parts of the heterogeneous, multi-cloud infrastructure; and 2)
provide the needed APIstothe upper layers.

The new Resource Management functionalities are implemented by extending the Kubernetes APIby using
Kubernetes Custom Resource Definition (CRDs) Objects with associated controllers that react to the
information stored on them, following the declarative model established in Kubernetes.

The controllers are working at differentlayers on the infrastructure, from top to bottom:

e OCM - Multi-cluster Management and Orchestration: The Open Cluster Management
(https://open-cluster-management.io) is a community-driven project which focuses on
multicluster management for Kubernetes applications. It offers APIs for cluster registration,
application distribution across them, as well as dynamic placement across the multiple clusters.

e Submariner - Multi-cluster Networking: Work is focused on enhancing the Submarinerupstream
project (https://submariner.io) so that it can work with different Kubernetes CNIs, as well as its
integration with the multi-cluster manager (OCM) so thatit can be easily installed, configured and
used. The Submariner project allows application components in one cluster to reach other
applications (or other components of the same application) located in remote clusters.

e Scheduler webhook: Provides the needed hook to select different scheduler algorithms per pod
(see section 2.12), so that different applications can use different schedulers depending on their
needs. In this case reducing the time for the pods to be started in a given node by using the
knowledge about the existing container image layers.

e (Coallocation webhook: Together with the previous one, it ensures the collocation engine gets
executed before the pod is created, so that the proper hints about affinities/anti-affinities can be
added tothe pod specbefore K8s starts processing it.

e WorkflowCRD: New operator in charge of defining the API (by extending Kubernetes API using
Custom Resource Definitions) tobe used by the upperlayers (WP4 components) for registeringthe
Functionsin a given cluster. Itis used through OCM for multicluster purposes. Besides defining the
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API, it also defines the logic (i.e., controller) for processing the actual registration of the function,
which in turns calls the OpenWhisk proxy to do so. Finally, italso reports the status of the applied
actions so thatthey can be consumed both at the cluster level, as well as in the main (hub) cluster
through OCM. In addition, the information stored in this Workflow CRD object is leveraged by the
collocation engine to take its decisions.

uShift -- Low footprint Kubernetes deployment: There is a need for low-footprint Kubernetes
distributions, specially at the edges, where the computational capacity can be limited and the CPU
architecture can be different (e.g.,, ARM). However, it is not only about being able to create a low-
footprint single node Kubernetes node (e.g., KIND for developers, or k3s), but alsoabout being able
to control them in a centralised way (install, configure, manage) as the number of edges can grow
fast. To tackle this problem, we are working on a new OpenShift/Kubernetes flavour optimised for
edge devices named uShift (https://next.redhat.com/project/ushift). This will be integrated into
the multicluster management (OCM), as well as the networking (Submariner).

Main issues to be handled by the component

e Install, configure and manage a distributed set of Kubernetes clusters of varying sizes (from central
cloudsto small edges)
e Deployapplicationsinasimple, descriptive way on the set of Kubernetes clusters
e Providethe needed APIs for the upper layers to:
Extend K8s API tosupport PHYSICS functions management (registration and execution)
Getmonitoring information about the clusterand application (i.e., functions) status
Manage the clustersin a declarative way
Deploy the applicationsin a declarative way
Allow specific configurations of the applications and/or clusters, such as the scheduler to
use, the isolation techniques through collocation preferences.
Inputs
e C(lusterinformation neededtoinstall/configure anew cluster (subnets,IPs, size, provider,...)
e Set of YAMLs defining the application (workflow CRD) and its extra configurations such as the
specificscheduler touse, location hints, resources needed, ...
Outputs
e Kubernetes clusters installedand managed from a central plain of glass (Open Cluster Management
ul).
e Applications deployed on the selected clusters/nodes with the appropriated/optimized

configuration.
Specificscheduler tobe used by pods set
Collocation engine executed to get the set of affinity/anti-affinity rules defined

2.14 Co-allocation Strategies

Component Description

The Co-allocation Strategies component analyses resource consumption information of the cluster and
applications, application function dependencies and their computational requirements and produces a
function co-allocation strategy in order toimprove the performance of functions.

Main issues to be handled by the component

This component must representefficiently dynamicinformation such as resource utilization of the different
nodes and functions and more static information such as the topology of the cluster, resources provided by
eachnode, dependencies between functions in a workflow, requirements of functions and provide a set of
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rulesto co-allocate the functionsin a given cluster. Another challenge for this componentis to process this
information in a timely manner and keep an updated representation of the information.

Figure 26 shows the different components of the Co-allocation Strategies component. There are processes
that run periodically (in grey in the figure) to obtain information about the status of the cluster or the
execution of the functions, those components are: Clusterinformation, Cluster status, Function metrics and
Function performance aggregator. The Co-allocation database (DB) storesall the information gathered by
the periodic process. Last, the data collector and the rule generator components (in orange in the figure)
are activated by the Coallocation webhook component provided by the Resource Management Controllers.

The pod YAML file intercepted by the Co-allocation webhookis sent to the data collector component. This
component is in charge of analysing the requirements of the pod (function) to be deployed in terms of
resources, or regarding co-allocation with other functions in the same flow. This information is in the
WorkflowCRD file obtained through the Kubernetes API. The current status of the workflow in terms of
functions running at each node and its impactin latency regarding previous executions is read from the Co-
allocation database. Then,the rules generator component defines pod or node, affinity or anti-affinity rules,
modifies the pod YAML file and sends the file back to the Co-allocation webhook component.
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Figure 26 Co-allocation Strategies component internal architecture

Inputs
e Application constraints/preferences provided from the Visual Workflow and the Application
Semantic Model components. Both the workflow, and its constraints and requirements will be
considered to co-allocate functions. The dependencies between them in a YAML-based
representation.
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e Computations resources requirements defined by the Service Semantic Model component. The
semantics will indicate CPU, memory,network consumption requirements of the different functions
to deploy.

e (lusterarchitecture will provide the architecture ofthe PHYSICS cluster from the Semantics Model,
the Global Continuum Placement and the Resource Management components. The placementof the
various application components in the different cloud services available in the Physics cluster.

e Resource consumption statistics. The metrics are stored in Prometheus. These metricsinclude the
CPU, memory, execution time, other co-allocated functions and network usage of the different
functions and nodes available in the cluster.

Outputs
e Affinityand anti-affinity rules on the pod of a function.
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3. PHYSICS COMPONENTS INTERACTIONS

3.1 Application Development Environment (WP3)

Figure 27 describes the interactions between the components of the visual design environment and external
ones in PHYSICS and beyond. In this figure only the direct foreseen communications between components
are displayed. Cases of indirect communication (e.g. the consumption of the annotations inserted in the
application workflow during the design phase by elements in work packages WP4 and WP5) are not
portrayed. Based on the figure the interactions are the following:

1. All envisioned areas/tasks that will offer some functionality, i.e. the Distributed Memory Service,
the Elasticity Controllers etc. need to provide Node-RED nodes that will be embedded in the Node-
RED editor used by the Design Environment. Through theseclient nodes, the developer will be able
to utilize the interfaces ofthese components or embed the implemented functionalities (in the case
of the patterns). Furthermore, means of inserting annotations in the created graph should be
provided (in the form of descriptor nodes or in-code annotations), in order for these to be either
used locally (in WP3) or forwarded by attachment in the application graph in order to be utilized
downstream (for placement or management decisions)

2. Implementations of patterns may include the existence and/or usage of external services (such as
Cloud storage, notifications, supporting microservices etc.). These implementations will also need
to be embedded in the Design environment, either as sub flows or as supporting services through
relevant descriptors.

3. The developer utilizes the Design Environment in order to create and annotate the application
graph, exploiting the aforementioned client nodes and describing the application logic. They may
also use the according tabs and functionality in order to test the application locally. Once they are
ready, they will trigger the deployment process of the next step.

4. Once theapplication graph, including functions as well as micro services, has been finalized, it will
be forwarded to the Global Continuum Placement component. The latter will decide on their
placement and forward the decision to the Platform Orchestrator in order to be enacted. The
Orchestrator will initialize calls for the various deployment artefacts (e.g., calls to handle the
function registration process in the target OpenWhisk instances). However, given that different
Openwhisk platform instances may be run and operated in differentlocations, it is not necessary
thatthereisasingle, highlevel Openwhisk platformthat spans across different container platforms.
Therefore, these OpenWhisk platforms need to be handled like separate instances. Then the
Orchestrator needs to either act as a proxy, forwarding requests to external OpenWhisk instances
or it needs to populate the environment of the action containers with suitable environment
variables throughwhich the action nodes will dynamically retrieve therelevant openwhisk instance
details (e.g. endpoint, credentials etc) for that action invocation. In any case, WP3 provides a
relevant Invoker node that can be dynamically configured through environment variables for the
target OpenWhiskendpoint.
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Figure27 WP3internal and external interactions

More details and the complete interactions between WP3 during the design and deploymentprocess appear
in the PHYSICS Global View (Chapter5 of this document).

3.2 Continuum Deployment Layer (WP4)

The Continuum Deployment Layer consists of the different interrelation between WP4 components
allowing the deployment of applications in different managed/remote clusters, based on the user
annotations and application description from work package WP3. Figure 28 shows the interaction among
WP4 components and how the deployment takes place within the PHYSICS platform.

Based on the previous figure, the interactions between the components are the following:

1. The Reasoning Framework will collect and process the input from the Design environment
component. This Component will aggregate all the semantics into the application description together
with the rest of the detailed configurations for the initialization. All the dependencies required for the
application functionality will be included and sent to the next component, the Global Continuum
Placement.

2. The Global Continuum Placement component will aggregate the placement information of the
application components to the underlying infrastructure. To achieve this, Global Continuum Placement
subcomponents will obtain all the information required from the infrastructure and take a decision
based on function annotation. The Application Graph sent by the Reasoning Framework will get the
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location decision to build the Deployment Graph and then sent to the Adaptive Platform Deployment,
Operation & Orchestration component.

3. The Adaptive Platform Deployment, Operation & Orchestration component will collect the
Deployment Graph and will process this information in order to parse the information to the cluster
software infrastructure. Ifthere is some infrastructure demand according to the Deployment Graph that
is not in place it will request it through the Resource Management component and get it ready before
the application is deployed.

4. The Performance Evaluation Component will consume the performance metrics data supplied by
the Monitoring System of each managed cluster. These data are kept and analysed, used also for the
creation of relevant performance models. Thus, it can and will consult other components such as the
Global Continuum Placement, the Scheduling Algorithms, and the Co-allocation Strategies components
regarding the anticipated performance of strategies.”

Figure 28 illustrates the flow of information between PHYSICS components to deploy an application
(workflow) that is made from independently generated functions. It shows the connections between the
initial workflow creation and the different components required for the registration (Reasoning
Framework, Continuum Placement and Orchestrator) and the feedbackto the user interface.
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Figure 28 PHYSICS Deployment Pipeline

WP4 in the PHYSICS platform consists of different components in charge of the deployment of the
application allowing the platform torun remote functions as flows (workflows) in a graph (application).
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DESIGN ENVIRONMENT (DE)

This componentis part of WP3, butitis the starting point for anew deployment. The user has a set of parts
available in the Node-RED interface to interact with an application graph: the annotations, the endpoint
definition, and the flow for the function invocation. The creation of a graph/app starts by dragging the
flows/functions. Each of these may be deployed in a different cluster based on the user annotations.

SEMANTIC EXTRACTOR

The Semantic Extractor service receives the flows description from the Design Environment, including
information on container image location (package format for the businesslogic of the function), and extracts
information based on the included annotations as well as other fields in the Node-RED JSON object
description.

The mappingis performed againstthe fields defined in the application ontology, creating, and forwarding
the application graph tothe Reasoning Framework.

REASONINGFRAMEWORK (RF)

The Reasoning Framework acts when the user deploys the application and forwards the necessary
information for the placementby creating the Application graph. All that necessary information involving
both the application and the resource descriptions have been previously received from WP3 and WP4
components and stored in the Reasoning Frameworkknowledge base.

The Reasoning Framework API offers all the required REST endpoints for querying specific information
from the knowledge base. For example, the Design Environment requires retrieving r elevant information
duringthe application graphspecification.On the other hand, the clusters API endpointwill return specific
information of the registered clusters, needed by the Global Continuum Placement component. The use of
the RF userinterface allows the interpretation of the available dataas graphs and understand what happens
behind the scenes.

Every registered cluster has properties like name, memory, locality, and performance scores to be
processed by the Global Continuum Placement component. Properties such as memory and optimization
goal, will be defined by the developer in the Design Environmentand used to match each application graph
with the available clusters. The "allocatable"” property between flows and clusters is inferred when a new
application graph is stored in the knowledge base indicatingthe possible targets for a specified flow.

GLOBAL CONTINUUM PLACEMENT

The Global Continuum Placement represents the decision maker for the final deployment of the different
flows of an application graph in the target clusters. Based on a set of annotations given by the user and the
information processed by the Reasoning Framework, an algorithm decides which cluster should receive a
flow. The algorithm will take that decision based on a set of values for each function requirement to result
in the optimization of the overall workflow.

ADAPTIVE PLATFORM DEPLOYMENT, OPERATION & ORCHESTRATION

The Translator service of the Orchestration component collects the information forwarded by the Global
Continuum Placement component and maps the fields supplied in a complete deployment graph to a
Resource Manager APl domain specificlanguage.

The ManifestWork message payload connects with Resource Management Controllers. The ManifestWork
message is received by the Resource Manager Controllers of the target cluster, implemented with Open
Cluster ManagementAPI (OCM), based on the namespace supplied. [t will deploy a workflow object to each
different target/managed clusteravailable tothe PHYSICS platform.

The OpenWhisk proxy service of the Orchestration component will translate the workflow specification
from the PHYSICS Workflow CRD (Custom Resource Definition), the domain specific language of PHYSICS
Workflow entity, into the FaaS platform API (OpenWhisk FaaS API) to deploy/register the functionsin the
FaaS platform.
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3.3 Infrastructure Layer (WP5)

Figure 29 represents the WP5 components interaction and describes the workflow followed to register the
Physics functions through OCM and Workflow CRD API.

/" HUB Cluster ' ﬁNAGED Cluster .
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t object k
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Figure29 WP5internal and external interactions for Function Registration
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The interactions between the components are summarisedin the following relationships:

1.

2.

The Semantics component (T5.1) gets information about the cluster and makes it available for WP4
components so thatthe appropriate cluster toregister the function can be selected.

The Continuum Placement component makes use of that information, selects a cluster. Afterthis the
Adaptive Platform Deployment, Operation & Orchestration component makes use of the
ManifestWork from OCM, with a WorkflowCRD object to perform the deployment of that Workflow
CRDin the appropriate cluster.

The selected cluster gets the Worflow CRD object created, the Workflow CRD operator gets notified
aboutitand performs the reconciliation loop for it. Thisloop is in charge of processing the Workflow
CRD objectand calling the Openwhisk API Proxy with the right parameters so that thelatter can call
the OpenWhisk API to register the function.

Finally, once the registration is done, the Workflow CRD operator is in charge of updating the
Workflow CRD object status section with information about the registration of the function.

This information on the WorkflowCRD object status is made accessible to the main cluster (Hub)
thanks to OCM, via the ManifestWork object.

Figure 30 representsthe WP5 components interaction and describes the workflow followed to execute the
PHYSICS functions.
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Figure 30 WP5internal interactions for Function Execution

The interactions between the components are the next:
1. Whenthe OpenWhisk APl is called to execute a function 2 options are possible:

a.

b.

Thereis already a suitable pod (i.e., warm /hot container) ready to execute them. Inthatcase
thereisnothingextratobe done

Thereis a need for creatinga new pod for executing that function and the Kubernete s APl is
called for that

2. In the second case, once the Kubernetes API receives the call, but before storing it on the ETCD
database, the Webhook gets invoked

a.

b.

C.

d.

First the scheduler related annotations are used, and the pod spec gets updated with the
right scheduler (e.g., the image layer one) tobe used for that pod/function.

Then, the co-allocation engine gets executed and obtains the right affinities/anti -affinities
by checking the information about the function (in the WorkFlowCRD), about the cluster
(Prometheus) and about previous executions.

The output of the co-allocation componentis applied tothe pod spec as a set of affinity and
anti-affinity rules.

The webhook execution finalises and the modified pod objectis returned and stored in the
ETCD database

3. At this point the normal process from Kubernetes happens. In this case the image-layer locality
scheduler (running as a pod) detects there isanew pod associated with it thathasnonode selected
and starts the process to obtain the best node, fulfilling the co-allocation hints and considering the
node with more layers in common for the given pod container image.

4. After

the node is selected the node is in charge of creating the pod locally as in the normal

Kubernetes process.
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4. PHYSICS GLOBAL VIEW

Figure 31 presents the steps and components of the PHYSICS framework platform involved in the design,
deployment, and execution of a function. The function includes two clusters (Cluster A and Cluster B) each
of them with four nodes. We assume that the platform has been previously deployed. The figure presents
the minimal numberof components involved in each step.

The starting pointis the description of the application tobe deployedincluding the othernecessary options
and annotations of the developer, while alerting the latter about the status in each step.
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Figure 31 Design, deployment, and execution of a function
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The design process can be summarized as follows:

1. Theuseruses the Design and Control User Interface (UI) to:

a. Create flows and functions. Local testing of these inside Node-RED can filter out common
minor errors that can take up much time if each time an error is fixed, the function is
deployed in the formal testing or production environment

b. Add annotations at the function or flow level for desired aspects (e.g. resource selection
aspects, deployment options, QoS features etc.)

c. Selectflows made out of functions (actions) to be included the application

2. Function generations are generated:

a. Buildingthe correspondingartifacts (Serverless Function Generator)

b. Storingthe artifacts (Dockerimage)in the Container registry

c. The functions can be registered in a local deployment of the FaaS platform for testing
purposes. This aids in further reducing the time needed for testing, since the optimization
processes and selection are skipped

d. The artifact location is returned to the design environment in order to be locally deployed
and invoked

3. The function execution in the local deployment of the FaaSplatformis triggered through the Control
UL

4. Deployment after testing: Once testingis done, thedeveloper wants to deploy the application on the
production environment.

a. The Semantic Extractor receives the request for creating the application graph

b. The Semantic Extractor extracts the annotations of functions

c. The Semantic Extractor generates a graph in the form of triples which is sent to the
Reasoning Framework, which returnsthe application id.

d. Theapp idis returned tothe Ul

The process of deployment and execution of functions can be summarized as:

5. Theuser decidesto the deploy the application (deploy flows)
6. The Reasoning Frameworkisinvoked.
a. Itenrichestheapp graph with candidate resources
b. The Placement Optimizer selects the most suitable resources for the deployment. This
information is sent to the Orchestrator
7. Function deployment
a. Theorchestrator generates the OCM ManifestWork CRD YAML. with K8S resources CRDs
and workflow CR
b. The Orchestrator sends this information to the Resource Manager (OCM Hub)
c. Eachclusterreceives this information through the K8s API on Cluster A
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5. PHYSICS DEVELOPMENT AND DEPLOYMENT STRATEGIES

Inalignment with the general PHYSICS Reference Architecture (RA) approach and to facilitate the PHYSICS
frameworkdevelopment and deployment phases, we envision two different strategies, one for each of the
two phases, sorespectively:

e Developmentstrategy
e Deploymentstrategy

The Development strategy defines the collaborative work of the developers’ partners to build up the
framework, with the goal of creating a Minimum Viable Platform (MVP) of the PHYSICS framework.

The Deployment strategy defines a uniform approach to deploy all the PHYSICS components, in particular
about how to deploy them inside a cloud provider or an edge location based on a Kubernetes13 cluster.
This section contains an overview of the previously mentioned strategies, further details are provided in
the deliverable D6.1 - “Prototype of the Integrated PHYSICS solution framework and RAMP V1”, any
changes on this deliverable will be reported on D6.2.

5.1 Development Strategy

The PHYSICS RA design approach considers a microservices architecture implementation, with
services/functions interacting among them through REST APIs based on OpenAPI specification. In that
respect, all microservices run in containers on the Kubernetes platform. In order to support the
development and testing activities, a CI/CD approach leveraging DevOps methodologies are used. The
CI/CD stands for the combined practices of Continuous Integration (CI) and Continuous Delivery (CD).

e (ontinuousIntegrationisapractice where developmentteams frequently commit (many times per
day) application code changes to a shared repository. These changes automatically trigger new
builds that are then validated by automated testing to ensure that they do not break any
functionality.

e (ontinuous Deliveryis an extension of the CI process. [t is the automation of the release process so
that new code is deployed to target environments, typically to test environments, in a repeatable
and automated fashion.

The CI/CD processes are implemented in a blueprint reference testbed environment. The Continuous
Integration tools are deployed on Kubernetes: it is an ideal choice for a Continuous Integration
environment, since it allows easy updates of deployments when new application images are built, with
manifests containing deployment configurations versioned like Git server alongside the application source
code. Furthermore, it is easy to generate new test environments from scratch, which enables future
scenarios including automated end-to-end integration testing. Build agents arealso created on demand and
removed when done, providing efficient resource utilization and clean environments to ensure build
reproducibility.

On the target Kubernetes cluster,a namespace named devops has be created for hosting the DevOps tools,
which are:
e Gogs4 is a simple, stable and extensible self-hosted Git service that lets each developer teams
collaborate on PHYSICS source code.

13 Kubernetes (https://kubernetes.io/docs/concepts/overview/what-is-kubernetes /)
14 Gogs (https:// https://gogs.io)
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e Jenkinsi5 is the de-facto standard open-source automation server for orchestrating CI/CD
workflows.

Harbor'éis a popular Docker registry CNCF compliant.
OpenLDAP!" is used as the single user directory for all tools, centralizing authentication and
simplifying managementof developer accounts.

e Helm18is a package manager that streamlines installing and managing Kubernetes ap plications.

Figure 32 shows a workflow describing how CI/CD works for a specificpartner (e.g., Partner “A”). When a
developer pushes new component code, Gogs (i.e. Gitlab in the picture) invokes a webhook on Jenkins,
which starts any job affected by the code changes. The job builds the component, runs unit tests and, if
everything has worked in a proper way, builds an updated Docker image and pushes it to Harbor. The
following step is deploying the updated component in the specific partner namespace; in fact, we have as
many namespaces as the partnersin order tomaintain the correctisolation betweenall PHYSICS partners.
In order todeploy the component, where possible, Helm manager is used. At the end of the process, Jenkins
sends anotification toa dedicated CI/CD channel on the PHYSICS Slack!% workspace, so that developers are
informed thatanew build occurred and whether it was successful or not. In case of errors, developers will
have to inspectthe build logs, find the problem and correctit. In case of success, developers will go ahead
and test that the new version works correctlyin the test environment.
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Figure 32 C1/CD workflow example

5.2 DeploymentStrategy

The PHYSICS RA design approach provides to use the deployment strategy for the creation of a PHYSICS
blueprintreference on a public cloud provider in order to have an easy reachable environment by anyone,
with the possibility toscale on demand and to get the possibility of using Kubernetes as a managed service.

15 Jenkins (https://www.jenkins.io/doc/)

16 Harbor (https://goharbor.io/docs/2.3.0/install-config/)
17 OpenLDAP (https://www.openldap.org/doc/admin25/)
18 Helm (https://helm.sh/docs/intro/)

19 Slack (https://slack.com/intl /en-pt/features)
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Kubernetes is the best choice being PHYSICS planned to be a framework based on microservices running
into containers, so thatan orchestrator is necessary. Kubernetes is an open-source system for automating
deployment, scaling, and managementof containerized applications, but it provides more features such as:

e Servicediscoveryand load balancing
Kubernetesautomatically routes the traffictothe pod creating a service assigned toit. This
resolvesthe problem ofknowing the pod IP, because the pod could die atany moment so its
[P could change many times, and this would make it difficult to communicate with it.
e Storage orchestration
Kubernetes manages the storage for Stateful pods, the user has only to decide where the
storage is located after that the Kubernetes automatically mounts and manages the storage
consumption by the pod.
Automated rollouts and rollbacks
Kubernetes allows the deployment of a new application without downtime, acting on the
replicas that make up thatapplication data.
For example, an application consisting of 2 pods with version 1.0 when the user decides to
deploy version 2.0, Kubernetes will firstcreate a new pod withversion 2.0 when this is ready
it will delete the pod with version 1.0, then it will create a second pod with version 2.0 and
once active it will delete the last pod with version 1.0.
Atthe same time Kubernetes willkeep track of this new release and any rollback can be
done easily with a single command by recalling the previous release.
e Resource Manager
Kubernetes hasan internal mechanism to manage in a fine-grained way the allocation of
resources (RAM, CPU and Storage) toa specific pod, application or tenant.
Self-healing
Kubernetesindependently manages the health of the applications; the user only has toset
how many pods a given application must be composed of and in case of a malfunction in
one of them it will be solved by Kubernetes throughthe cancellation and creation ofa new
pod.

Moreover, Kubernetesgives the possibilitytoimplement isolated resourcesaccessible only by s pecific other
resources or people. This functionality is very important duringthe development phase because it provides
to all partners the benefit to have their own sandboxes in which to develop and test their components.

In order to implement the sandboxes, we used two Kubernetes’ concepts:

e Namespace: They are alogical grouping ofa set of Kubernetes objects towhich itis possibleto apply
some policies, in particular:
Quote setsthe limits on how many hardware resources can be consumed by all objects
Network defines if the namespace can be accessed or can access to other namespace, in
other word if the namespace isisolated or accessible
e POD: is the simplest unit in the Kubernetes object. A Pod encapsulates one container, but in some
cases (when the application is complex) a POD can encapsulate more than one container. Each POD
has its own storage resources, a unique network IP, access port and options related to how the
container/s should run.

The deployment strategy makes uses of [aC (Infrastructure as Code) tool like Terraform?20to easily recreate
on demand the blueprint environment. Terraform was selected because it is one of the best tools for IaC
available on the market, which allowstorecreate an infrastructure everywhere always in a predictable and

20 Terraform (https://www.terraform.io/intro/index.html)
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safe way; moreover, it is an open-source software with a very large community, and it is infrastructure
agnostic.

Figure 33 presents the flow used to deploy PHYSICS components. This flow is made out of two macro phases,
in the first phase the Terraform scripts are retrieved from PHYSICS general GIT repository; those scripts
are used to create the environment that will accommodate the PHYSICS components in any location both
cloud and edge. In the second phase the HELM charts are used toinstall the and configure the components
into the environments created by Terraform. The only prerequisite that the customer, that is going to
deploy PHYSICS, needs are the Terraform and HELM client.
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Figure 33 PHYSICS components deployment flow

D2.5- PHYSICSREFERENCE ARCHITECTURE SPECIFICATION V2 | 52



H2020-1CT-40-2020 (RIA)PHYSICS - 101017047

6. CONCLUSIONS

This deliverable presents the second and last version of the PHYSICS Reference Architecture. This
deliverable is an updated version of the PHYSICS Reference Architecture described in deliverable D24
PHYSICS Reference Architecture Specification V1 delivered in month 7 of the project. These updat es include
a more detailed description of the component’s functionality, internal architecture and interfaces (input
and outputs) and the information flow among components. These updates are derived from the
implementation and integration of the components in the first integrated PHYSICS framework due in month
15 and its evaluation by the pilots in month 18. These activities triggered also the update of the PHYSICS
requirementsin month 19.

The architecture presents the functional description of the components (functional view of the
architecture). Describing the challenges each component will face during the second phase of the
development of the component, the input and output of each component. The interactions among
components are also described. The deliverable also presents the dynamic aspects of the PHYSICS
architecture by describing the interactions between components and the information flow from the
creation of an application in the Design Environment to its registration and execution in one or more
clusters. The deliverable also presents the process for the CI/CD during PHYSICS development and also the
deployment process of the PHYSICS platform itself.

This deliverablewill guide the second phase ofthe design and developmentofthe three layers of PHYSICS,
which will be documented in upcoming deliverablesin work packages WP3, W4 and WP5, respectively.
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DISCLAIMER
The sole responsibility for the content of this publication lies with the authors. It does not necessarily
reflect the opinion of the European Union. Neither the EASME nor the European Commission is
responsible for any use that may be made of the information contained therein.

COPYRIGHT MESSAGE

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are
free to share (copy and redistribute the materialin any medium or format) and adapt (remix, transform,
and build upon the material for any purpose, even commercially) under the following terms: (i)
attribution (you must give appropriate credit, provide alinkto the license, and indicate if changes were
made; you may do so in any reasonable manner, but not in any way that sugge sts the licensor endorses
you or your use); (ii) noadditional restrictions (you may not apply legal terms or technological measures
thatlegally restrict others from doing anything the license permits).
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