
H2020 ICT 40 2020 Research and Innovation Action

This project has received funding from the European Union’s horizon 2020 research and innovation programme
under grant agreement no 101017047

OPTIMIZED HYBRID SPACE-TIME SERVICE CONTINUUM IN FAAS

D2.3 – STATE OF THE ART ANALYSIS AND

REQUIREMENTS DEFINITION V2

Lead Beneficiary INQ
Work Package Ref. WP2 – Requirements, Architecture and Technical Coordination
Task Ref. T2.2 - Requirements & State of the Art Analysis
Deliverable Title D2.3 - State of the Art Analysis and Requirements Definition V2
Due Date 2022-09-30
Delivered Date 2022-10-07
Revision Number 3.0
Dissemination Level Public (PU)
Type Report (R)
Document Status Release
Review Status Internally Reviewed and Quality Assurance Reviewed
Document Acceptance WP Leader Accepted and Coordinator Accepted
EC Project Officer Stefano Foglietta

Ref. Ares(2022)6951014 - 07/10/2022

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 2

CONTRIBUTING PARTNERS
Partner Acronym Role1 Name Surname2

ATOS Contributor, Internal
Reviewer

Ana Soto Jiménez, Lucas
Pelegrín Caparros

BYTE Contributor, Internal
Reviewer

Yiannis Poulakis

DFKI Contributor, Quality
Assurance

Volkan Gezer, Carsten Harms,
Arnold Herget

FTDS Contributor Niklas Franke, André
Hennecke

GFT Contributor Fabrizio Di Peppo, Maurizio
Megliola

HPE Contributor Alessandro Mamelli,
Domenico Costantino

HUA Contributor George Kousiouris, Chris
Giannakos, Angeliki
Anagnostopoulou, Stelios
Tsarsitalidis

INNOV Contributor George Fatouros
INQ Lead Beneficiary Eleni Argyrioy, Damian

Strycharczuk
ISPRINT Contributor Harm op den Akker
RHT Contributor Luis Tomas, Idan Levi, Josh

Salomon
RYAX Contributor Yannis Georgiou
UPM Contributor Marta Patiño, Ainhoa Azqueta

REVISION HISTORY

Version Date Partner(s) Description
0.1 2022-06-21 INQ ToC Version
0.1 2022-08-08 ALL First Round of Contributions
1.0 2022-08-30 ATOS, BYTE 1st Version for Internal Review
1.1 2022-08-31 ALL Second Round of Contributions
1.2 2022-09-11 ALL Third Round of Contributions
2.0 2022-09-25 ATOS, BYTE 2nd Version for Internal Review
2.1 2022-09-28 INQ Address comments from reviewers
2.2 2022-10-03 DFKI Quality Assurance
3.0 2022-10-05 INQ, GFT Version for the submission

1 Lead Beneficiary, Contributor, Internal Reviewer, Quality Assurance
2 Can be left void

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 3

LIST OF ABBREVIATIONS

2FA Two-Factor Authentication

ACM RedHat Advanced Cluster Management
AKS Azure Kubernetes Service
API Application Programming Interface
AWS Amazon Web Services

CPU Central Processing Unit
CVE Common Vulnerabilities and Exposures
DAG Directed Acyclic Graph
DL Deep Learning
DNN Deep Neural Net

DoS Denial of Service
DRAM Dynamic Random Access Memory
DSL Domain Specific Languages
eDoS Economic Denial of Sustainability
EKS Amazon Elastic Container Service for Kubernetes

FaaS Function as a Service
GCP Google Cloud Platform
GKE Google Kubernetes Engine
GPG GNU Privacy Guard
HDD Hard-Disk Drive

HPA Horizontal Pod Autoscaler
HSM Hardware Security Module
HTTP/S HyperText Transfer Protocol / Secure
I/O Input/Output

IAM Identity and Access Management
IoT Internet of Things
JSON JavaScript Object Notation
JWT JSON Web Token
KMS Key Management Service

LDAP Lightweight Directory Access Protocol
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MARLA MApReduce on Lambda
MCSC Multi-Cloud Service Composition

MILP Mixed-Integer Linear Programming
ML Machine Learning
MoSCoW Must-have, Should-have, Could-have, Will-not-have
MSE Mean Squared Error
NIST National Institute of Standards and Technology

NVMe Non-Volatile Memory Express
OIDC Open ID Connect
OWASP Open Web Application Security Project
QoS Quality of Service

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 4

R^2 Coefficient of Determination
RAMP Reusable Artefacts MarketPlace
RDF Resource Description Framework

REST REpresentational State Transfer
RMSE Root Mean Squared Error
RWX Read Write Many
S.M.A.R.T. Specific, Measurable, Achievable, Relevant, Timely
SAML Security Assertion Markup Language

SDK Software Development Kit
SGX Software Guard Extensions
SIG Special Interest Group
SLA Service-Level Agreement
SOA Service Oriented Architecture

SPT Shortest Processing Time
SSD Solid-State Drive
SSH Secure Shell protocol
SSL Secure Sockets Layer

SSO Single Sign-On
TLS Transport Layer Security
TRUSTEE daTa pRivacy and cloUd Security clustEr Europe
URI Uniform Resource Identifier
W3C World Wide Web Consortium

XML Extensible Markup Language
XSS Cross Site Scripting
XXE XML External Entity
YAML YAML Ain't Markup Language

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 5

EXECUTIVE SUMMARY

The aim of this deliverable is to provide an upgraded and thoroughly analysed state of the art analysis and
requirements definition on the updated requirements for the functional and non-functional components of
the PHYSICS architecture. In the previous deliverable the analysis of the requirements was documented
using the S.M.A.R.T. (ISO25010, MoSCoW) template of well-known and established standards, something
that ensures that these requirements are well defined, understood and in scope. In this deliverable each of
the documented requirements will be checked and evaluated towards the corresponding use cases and how
these components satisfy the needs and necessities for each use case.

The state-of-the-art analysis follows the PHYSICS architectural components to ensure that there is a full
documentation and a know-how established for each part of the technical aspects of the PHYSICS project.
These architectural components are directly derived from the envisioned PHYSICS architecture as it is
described in the proposal. To ensure the transition from the initial architecture to the final promised
solution, this document analysed all possible technological candidates to be used throughout the project.
The requirements elicitation and specification aim at covering the entire PHYSICS project by allowing all
partners to participate in the documentation process and considering their own vision of the project. Each
requirement is documented within a template that uses well known and established standards (S.M.A.R.T.,
ISO25010, MoSCoW), something that ensures that these requirements are well defined, understood and in
scope. Each of these requirements will be checked and tracked in the PHYSICS project lifecycle with the
target of satisfying all the must-have and should-have requirements and most of the could-have ones.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 6

TABLE OF CONTENTS
1 Introduction 10

1.1 Objectives of the Deliverable 10
1.2 Insights from other Tasks and Deliverables 10
1.3 Structure 10

2 State of the art analysis V2 12

2.1 Visual Workflow 12
2.2 Semantic Models for Application Characteristics Description 14
2.3 Cloud Design Patterns Repository 15

2.3.1 Function-as-a-Service, Cloud patterns 16
2.3.2 Computational patterns 16
2.3.3 Security related patterns 16
2.3.4 Microservices patterns 17
2.3.5 User authentication patterns 17
2.3.6 Serverless design patterns 17
2.3.7 General Cloud patterns 18
2.3.8 Artificial intelligence and machine learning patterns 18
2.3.9 Orchestration patterns and frameworks 18

2.4 Elasticity Controllers 19
2.5 Inference Engine (Reasoning framework) 20
2.6 Metrics & Monitoring 22

2.6.1 Function-as-a-Service, Cost models, Metrics & Benchmarking 22
2.6.2 Containers, Benchmarking & Metrics 23
2.6.3 Orchestration overheads examination 24

2.7 Global Continuum Placement 24
2.8 Distributed Memory Service 26
2.9 Adaptive Platform Deployment, Operation & Orchestration 29

2.9.1 Comparison between the aforementioned platforms. 31

2.10 Service Semantics 32
2.11 Scheduling Algorithms 33

2.11.1 Serverless Platforms and Kubernetes 33
2.11.2 Kubernetes Standard Scheduler 33
2.11.3 Scheduling Algorithms for FaaS 34
2.11.4 Simulations for Serverless Platforms 35

2.12 Resource Management Controllers 36
2.13 Co-allocation Strategies 37
2.14 FaaS Security 38

2.14.1 Application security 39
2.14.2 SGX, Trusted Computing and Blockchain for FaaS Security and Privacy 40
2.14.3 Serverless Components Communications security 40
2.14.4 TRUSTEE Project Cluster 41
2.14.5 Identity and access management 41
2.14.6 Secret Storage and Management 41
2.14.7 DoS attacks — Economic DoS 42
2.14.8 Additional Considerations 42
2.14.9 Anonymization & Encryption Services 43

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 7

2.14.10 Smart Contracts 44

3 Requirements elicitation 45

3.1 Elicitation Methodology 45

3.1.1 Structure and Standards 45
3.1.2 Template 46
3.1.3 Openness and Flexibility 46

3.2 PHYSICS Requirements – Second Version 47

3.2.1 Cloud Design Environment Requirements 47

Req-3.1-WorkflowDef 47
Req-3.1-SupportedRuntimes 48
Req-3.1-UploadCustomImages 48
Req-3.1-MultiTenancy 49
Req-3.1-LogsService 49
Req-3.1-BuildsHistory 50
Req-3.3-PatternDocumentation 50
Req-3.3-PatternApplication 51
Req-3.3-ParallelContainerExecution 52
Req-4.4-funcNode 53

3.2.2 Semantic Framework Requirements 53

Req-3.2-WorkflowCoverage 53
Req-3.2-RequirementsCoverage 54
Req-3.2-ConstraintsCoverage 54
Req-3.2-LinkWithVocabularies 55
Req-3.2-ReasoningCapability 55
Req-3.2-ExpressivityRichness 56
Req-4.1-Adaptation 57
Req-4.1-Inputs 57
Req-4.1-Latency 58
Req-4.1-ML_Reasoning 58
Req-4.1-Reasoning 58
Req-5.1-ResKnow 59
Req-5.1-Interface 60
Req-5.1-Compatibility 60
Req-5.1-Portability 61
Req-5.1-GraphSeparability 61
Req-5.1-SemCap 62

3.2.3 FaaS and Container Platform Requirements 62

Req-4.4-state 62
Req-4.4-interplay 63
Req-4.4-tradeOffs 63
Req-4.4-perf 63
Req-4.4-access 64
Req-4.5-PersStorage 64
Req-5.4-optimization 65
Req-5.4-co-allocation 65
Req-5.4-workloads 66
Req-5.4-AImodels 66
Req-5.4-UsageModellingOpt 66

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 8

Req-5.4-validation 67

3.2.4 Cross Layer Requirements 68

Req-3.4-Privacy 68
Req-3.4-Smart Contracts 68
Req-3.4-Smart ContractTemplates 69
Req-3.4-CodeAnalysis 69
Req-3.4-DeprMan 70
Req-3.4-Encryption 70
Req-3.4-Secrets 71
Req-3.4-SecureComms 71
Req-4.2-FaaSBenchmarking 71
Req-4.2-CostAssociation 72
Req-4.2-MeasurementPropagation 73
Req-4.4-elasticity 74
Req-4.5-CustomDockerImages 74
Req-4.5-FaaSandIaaSMonitoring 75
Req-4.5-FaaSRuntimeAdaptation 75
Req-4.5-placementDecision 76

3.2.5 Use Case Requirements 76

Req-6.1-stateless 76
Req-6.1-single action 77
Req-6.1-lightweight 77
Req-6.1- OpenAPI 78
Req-6.1- Centralized logging system 78
Req-6.1- Backup/Restore platform 79
Req-6.1-Login functionality 79
Req-6.2-Health 80
Req-6.2-Load 80
Req-6.2-Privacy 81
Req-6.3-AccessLog 81
Req-6.3-AlteredRecords 82
Req-6.3-AuditTrailExport 82
Req-6.3-AuditTrailLogs 82
Req-6.3-AuthorizedAccess 83
Req-6.3-GenerateRecords 83
Req-6.3-TimeSynchronisation 84

3.3 Requirements Traceability Matrix 84

4 Requirements Discussion 91
5 Conclusions 92

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 9

TABLE OF FIGURES
Figure 1 - Relationship of D2.3 with other deliverables of PHYSICS ...10
Figure 2 - The PHYSICS Components Architecture ...12
Figure 3 - An example of linked building data using an RDF model ..21
Figure 4 - Pocket system architecture and job deployment steps [123] ..27
Figure 5 - Overall architecture of Crucial [126]..28
Figure 6 - InfiniCache architecture overview [128] ..28
Figure 7 - Cloudburst architecture overview [130] ..29
Figure 8 - OpenWhisk Programming Model [132] ..30
Figure 9 - OpenFaaS Architecture [133] ...30
Figure 10 - Kubeflow Architecture. ..31
Figure 11 - Optimizer scheduler example ..38
Figure 12 - PHYSICS Requirements Gathering Methodology ...45

TABLE OF TABLES
Table 1 - Summarization of Triple Stores ...21
Table 2 - Identity and access, policy and role management services of cloud providers................................. 103

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 10

1 INTRODUCTION
The deliverable D2.3 State of the Art Analysis and Requirements Definition v2 is one of the foundational
deliverables that documents both (i) all the relevant state-of-the-art technologies and research works and
(ii) the initially identified functional and non-functional requirements of the PHYSICS project. D2.3 will
provide input for the updated versions of both the reference architecture and scenarios definition, in D2.5
and D6.4 respectively. The relationship of D2.3 with its neighbouring deliverables is depicted in Figure 1.

Figure 1 - Relationship of D2.3 with other deliverables of PHYSICS

1.1 Objectives of the Deliverable
The objectives of this deliverable are to provide the most recent and well-established relevant state-of-the-
art technologies for each architectural component of PHYSICS and to aggregate all relevant functional and
non-functional requirements that are predicted for the PHYSICS project. In more detail the objectives are
the following:

⮚ Identify all state-of-the-art areas that need to be analysed

⮚ Provide a thorough analysis and presentation of all technological advances in the selected state -of-
the-art areas

⮚ Ensure that all partners have a saying in the development of the PHYSICS project by allowing them
to specify their own requirements

⮚ Ensure that all requirements are of high quality, well understood and relevant to the project

⮚ Document and analyse the aggregated requirements

⮚ Provide a reference document for the rest of the project in terms of state of the art and requirements

1.2 Insights from other Tasks and Deliverables
The main inputs of this deliverable are D2.2 “State of the art analysis and requirements definition v1” and
D6.7 “PHYSICS application prototypes evaluation v1”. D2.2 provides an initial definition of the
requirements, upon which D2.3 is built and written with the appropriate enhancements where necessary.
Based on the outcomes of D6.7 as well, D2.3 provides an updated state-of-the-art analysis and requirements
to ensure a high coverage of all aspects of the PHYSICS project.

1.3 Structure
The rest of this deliverable is structured according to the aforementioned two main pillars. Chapter 2
focuses on the state-of-the-art analysis and is divided in the architectural components – research areas of
PHYSICS. In Chapter 3, there is a thorough documentation of all requirements divided in their
corresponding tasks. This division is not mandatory, and requirements could be applied to multiple tasks
as the project matures and is better understood. A “Requirements Traceability Matrix” is also presented,

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 11

providing an overview of the requirements. Finally, the conclusion summarizes the lessons learnt from the
deliverable and provides a short overview of the entire D2.3 deliverable.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 12

2 STATE OF THE ART ANALYSIS V2
The state-of-the-art analysis is based on the architectural components of PHYSICS. Each sub-section of this
section is dedicated to one component of PHYSICS with the sole exception of FaaS security which was added
as an overlay component that should be taken into consideration throughout the project. The architecture
of PHYSICS with all its components is depicted in Figure 2, a figure that was taken directly from T2.3 to
ensure that there is a close relationship between T2.2 and T2.3 and the results of this deliverable are useful
for the rest of the project. The only exceptions that are not included in the state-of-the-art analysis are the
components from WP6 (T6.1, T6.2 and T6.3) which are about the integration and the use cases, and their
analysis is covered by all the previous components. The rest of this section follows the aforementioned
structure, with one subsection for each of the PHYSICS components.

Figure 2 - The PHYSICS Components Architecture

2.1 Visual Workflow
Visual environments, known also as “Visual Workflow Designer”, have emerged in recent years as a user-
friendly tool that can speed up application development by abstracting the details that are not directly
relevant to the user. Typically, these environments are based on flow programming, based on asynchronous
event driven languages such as JavaScript, and offer palettes of readymade nodes that incorporate the major
functionalities needed. Function code is applied to the input message (triggering function execution and
providing the function input data) transforming its contents based on the function logic and passing it to
the next node in line. Furthermore, the Visual Workflow Designer tools encompass means of extension for
these nodes as well as external repositories in which such nodes or in general flows can be stored and
shared by the community. Environments such as open-source Node-RED for event driven applications and
KNIME (mixture of open and proprietary models) for data science flows have emerged, indicating that the
need for easier development and deployment of application flows is very relevant and user demanded.
Typically, such frameworks are designed for a specific domain (e.g., Node-RED for the IoT, KNIME for data

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 13

science) and include neither an end-to-end rationale, that is from design to development and deployment
in one single step, nor ready-made patterns for exploiting the cloud model (yet they can be extended to).
In terms of major open source FaaS platforms, these typically do not come with a UI for workflow definition,
except for Apache Airflow [1] which also incorporates plugins to interface with cloud services or processes.
One drawback of Airflow is that these operators are typically provider-specific and thus cannot be reused
while amplifying the vendor lock-in. Additionally, these operators do not include advanced and abstracted
cloud design patterns. Fission workflows [2] are mainly programmatically defined while heavily linked with
the Kubernetes environment. Proprietary solutions also exist with an extensive list of accompanying
services such as the IBM Cloud (formerly Bluemix) environment (and Blueworks) as well as Google
Composer (for managing Airflow related workflows) that offer integrated services design, deployment and
composition. However, all the previously mentioned solutions are tightly coupl ed with the associated
vendor lock-in.
Let us have a look at some of the most diffused Open-Source Visual Workflow Designer environments to
understand how they work and to get the best of them in relation to the purpose of the PHYSICS visual
workflow designer, that is to easily design, configure, and deploy FaaS model applications.
Node-RED [3]
Node-RED provides a browser-based flow editor with which flows can be linked using a selection of nodes
in the palette. Flows can be easily deployed in the runtime environment. JavaScript functions can be defined
using an advanced editor included in the tool. An integrated library allows functions, templates and flows
to be stored for reuse. The runtime environment is based on Node.js, taking advantage of its event -driven
and non-blocking model. Flows created in Node-RED are stored in JSON format that can be easily imported
and exported for sharing with others.
Apache Airflow [1]
Apache Airflow is a workflow design and management tool. It allows the planning, schedul ing and
automation of the flow of data through nodes. Graphs of Directed Acyclic Graphs (DAGs) type represent the
direction of the data, while the output of one node (task) is usually the input of the next node. The acyclic
nature of the graph means that the data cannot go backwards.
Airflow allows the dynamic creation of pipelines, written in python language. It is extensible, and the user
can create its own set of operators, helping their level of abstraction and understanding. Multiple Amazon
Web Services (AWS), Google Cloud applications, and Microsoft Azure capabilities can be integrated into the
Airflow workflow environment.
Apache Taverna [4]
While Apache Airflow is mainly used to create regular workflows, Apache Taverna is often used to create
scientific workflows. Apache Taverna is represented by a set of the Taverna Engine, the Taverna Wor kbench
and the Taverna Server. The set of the above components is useful for scientists with limited programming
languages and/or coding knowledge to build complex data streams on which to perform analyses. Data may
come from a variety of public and private sources, involving many fields like geography, medicine, and
sports.
Camunda [5]
Camunda is an open-source workflow management tool that allows workflows to be designed in an
extremely simplified and efficient way. Built on the three core principles of d esign, automation and
improvement, Camunda allows the workflow design process to be continuously optimized. The workflows
produced by Camunda are particularly suitable for complex organizations, ensuring maximum visibility of
information to users. Built on a lightweight Java Application Program Interface (API) stack, the platform is
reliable and scalable. Camunda is integrated in cloud environments that are accessible from multiple
platforms.
Cflow [6]
Cflow is a cloud-based (available on AWS) and open-source workflow management software. Workflows
are designed and maintained mainly without writing code, through the availability of a big number of
components that can be gathered from the tool's libraries, even with predefined workflows. The tool is

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 14

suitable for organizations of different sizes. It allows easy integration with many third-party applications
such as SAP.
Knime [7]
Knime is a tool for mainly building data science workflows. It allows to create visual workflows with an
intuitive, drag and drop style graphical interface, without the need for coding - including dragging and
dropping nodes and components from the KNIME Hub. It allows to blend tools from different domains with
KNIME native nodes in a single workflow, including scripting in R & Python, machine learning, or connectors
to Apache Spark.
There are many other tools that allow the creation of applications using visual technology, with different
features and aimed often to a specific application. Many of the tools are commercial; in the analysis, we have
based ourselves exclusively on open-source tools, as they fall within the philosophy of the PHYSICS project.

2.2 Semantic Models for Application Characteristics Description
When it comes to the application descriptions, there must be sufficient expressiveness, so as to effectively
describe an application or pattern. This includes its components, as well as the requirements of each
component in terms of resources or (cloud) services, performance, dependencies between components and
external dependencies. To achieve data uniformity and guarantee the usability of the data by the inference
engine (T4.1), the application characteristics (T3.1 output) are transformed and semantically enriched to
conform to a metamodel/ontology. The semantic models for application characteristics description are
expressed in JSON-LD [8], a format that is consumable by conventional services, as it is pure JSON, as well
as semantic web services as it encodes RDF triples that follow the OWL vocabulary [9]. The core goal of T3.2
is the definition of the vocabulary / ontology to be followed by the PHYSICS application workflow models
created in the application developer layer and propagated to the lower layers for deployment. As such, the
aim is to reuse existing software component descriptions or related concepts, and semantically represent
the metadata annotations for the links with the FaaS platform.
Requirements of an application that have to do with resources can use terms from the Ontology for Cloud
Computing Instances [10] as well as the Ontology for Service Level Agreements [11]. For locality
requirements, the most usable are the GeoJSON-LD [12] vocabulary, which lays out coordinates or
geographical areas in a semantics-enabled way. In addition to that, the Vocabulary for Regions and Zones
on Cloud Computing [13] can be used to specify the suitable regions of Data Centres where application
components can run.
Works on semantic models for multi-cloud service compositions (MCSC) have been developed in recent
years. Relevant cases need to include specific services or unique requirements (e.g., object stores etc.) in
the application description. The application description has the potential to help identifying matching
parameters from the application descriptions with the services and resources described in T5.1 with the
use of the inference engine from T4.1. Examples of such works follow. A semantic engine for porting
applications to the cloud and among clouds is presented in [14], which later became part of the mOSAIC
framework. To aid in modelling cross-cloud deployments and optimise cloud deployments based on QoS
metrics, requirements, prices and other SLA parameters, CloudPick was introduced as an operational
platform, which is based on the aforementioned ontologies [15].
In [16], a unified cloud service description is proposed, which is meant to be able to accurately represent
any cloud service, by consolidating all common characteristics and organising them in nine
dimensions/sub-ontologies:

⮚ Service subontology, presents the general information about a cloud service (type, deployment
model, category, evaluation, service reusability, etc.).

⮚ Functional subontology, defines the functionality as the set of operations offered by a cloud
service.

⮚ Technical subontology, presents the technical aspects, i.e., the way a cloud service is accessed.

⮚ Participant subontology defines the different actors (e.g., providers, consumers) participating in
the description, composition, and invocation of cloud services.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 15

⮚ Interaction subontology describes the services' behavioural aspects, and how cloud providers and
consumers interact with services.

⮚ Service-level subontology comprises the QoS capabilities of each service (e.g., security, reliability,
compliance).

⮚ Legal subontology, presents the legal aspects and restrictions of the cloud service's usage.

⮚ Pricing subontology, refers information about the fees and pricing models for consuming a cloud
service.

⮚ Foundation subontology, describes the general concepts (e.g., artifact, resource, location, time).
Additionally, it addresses the resources control and visibility, the dynamic changes in the
environment, and the environmental constraints.

This description can be used for automated service selection, based on characteristics and QoS constraints,
expressed in Semantic Web Rule Language. In the same work, an algorithm for selecting a combination of
clouds is introduced, which considers both service semantics and multi-cloud settings, optimizing the usage
of Multi-Cloud Environments.
Requirements that have to do with other resources, such as Edge Computing and IoT, can be expressed
through the recently standardised W3C Web of Things. The Web of Things is not just a trend, but also a
concentrated effort by W3C to create standards that would reduce the fragmentation of the IoT domain, by
unifying many terms into a small set of ontologies. In the WoT architecture [17], the way to describe, expose,
as well as consume a “Thing” are laid out. As such, terms from the WoT Thing Description [18] and Binding
Templates [19] may be useful for laying out application requirements that are satisfied from special IoT
equipment at the Edge.
In the realm of linked data and open vocabularies, there are not existing ontologies that include terms about
the kind of programming workflows that Node-RED and PHYSICS have per se. However, there are
ontologies that define class hierarchies and characteristics of more generic workflows, such as dataflows,
which most typically are Directed Acyclic Graphs. The modelling of the PHYSICS application class hierarchy
is based upon Node-RED, using the following external ontologies as a guide, with the goal of connecting to
or reusing terms from related ontologies wherever possible.
The Visual Modelling Tool Model (vmm for short)3 defines a vocabulary that includes the characteristics of
a modelling tool and originates from the study of UML software modelling tools. Although vmm falls outside
the scope of the application description, it provides a guide for modelling terms related to applicat ion
workflow design, in a more abstract and reusable way. The Wfdesc ontology [20] describes an abstract
workflow description structure and it is meant as an upper ontology for more specific workflow definitions
and a way to express abstract workflows. The Wfprov ontology [21] helps link the descriptions of Wfdesc,
to form a provenance trace of the execution of a workflow. The invocation of the steps of a workflow
execution are described by the Workflow Invocation Ontology [22], which provides useful insigh ts in the
representation of an actual workflow execution. The kinds of data-intensive activities that are found in
workflows, which are essentially data operations, and the ways in which the activities are implemented
within these workflows, are found in the Workflow Motif Ontology [23]. Linking the workflow-related
ontologies with occurrences of equivalent terms in the manifests of FaaS platforms and visual workflow
programming tools appears to be possible and may prove beneficial in the semantic modelling of
applications in PHYSICS.
In general, reusing terms from these ontologies, and following the ways their terms are linked, can help
improve the descriptions of workflows and application patterns and their components. The ensemble of
these works provides insights as to how to organise semantic terms within the PHYSICS application
semantic models.

2.3 Cloud Design Patterns Repository
In the following paragraphs, related work is presented around common Cloud Patterns in Function -as-a-
service (FaaS) platforms and microservice environments that covers various areas of application

3 https://lov.linkeddata.es/dataset/lov/vocabs/vmm

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 16

development such as computational patterns, security patterns, microservices patterns, user authentication
patterns, ai-machine learning patterns and more generic serverless design patterns.

2.3.1 Function-as-a-Service, Cloud patterns
As PHYSICS aims to provide an environment that will make application development easier through visual
editors and make the same applications work efficiently by optimizing the execution and cost of a service,
it is necessary to provide some common, reusable design and cloud patterns. These patterns will be
common programming patterns, or architecture patterns, that an application developer usually needs (such
as computing models, data encryption, security architecture, request management etc) and they will be
available through PHYSICS development environment. The implementation will be in a native function
model which is expected to harvest more efficiently the relevant capabilities of the FaaS layer. I t is important
to mention that these patterns must be implemented on languages and frameworks that are supported by
the FaaS framework (eg., OpenWhisk [24]) and it should be noted the efficiency of each language for certain
tasks [25]. Following we will analyse several candidate patterns that will be considered for the PHYSICS
development environment.

2.3.2 Computational patterns
In today’s data-drive applications it is common to collect great amounts of data daily from multiple sources
which then requires processing and analysing. MapReduce, a programming model for data intensive
computing inspired by functional programming [26], is one of the most common programming models for
analysing large-scale data. Regarding the implementation of MapReduce models for serverless computing,
few works could be found in the literature. AWS has its own reference architecture for serverless
MapReduce [27] in which the user provides the mapper and reducer functions, a Coordinator Lambda
function that orchestrates the execution, and the already partitioned input data. Additionally, more libraries
and frameworks for serverless MapReduce have been implemented such as Ooso [28] and Corral [29].
Finally, a more complete framework has been proposed in MARLA (MApReduce on LAmbda) [30]. MARLA
is a framework designed to work on AWS Lambda and allows the execution of Python-based MapReduce
jobs without requiring pre-partitioning of the input data. In MARLA the coordinator Lambda calculates the
optimal size of the data partitions taking into consideration the user-defined number of chunks and invokes
the first mapper Lambda function with an environment variable that stores the dimension of each data
chunk size. The first mapper Lambda function starts a logarithmic reduction approach so that it invokes the
second mapper and then, each Lambda function will invoke another two. This procedure is recursively
repeated until all mappers have been invoked.
The above model can be extended in such a way to offer frameworks and services that will support g eneric
parallel serverless execution of functions, providing the application developers the capability to just write
the functional code and the FaaS platform will be responsible to parallelize the execution and aggregate the
results.

2.3.3 Security related patterns
As in Cloud Computing, and in extension Serverless Computing, exists a shared -responsibility model
regarding the security of applications. Often, cloud providers provide tenants with security services and
patterns to integrate on their workflows but also invest in securing their own infrastructure. Regarding the
applications developed using the FaaS model, securing the code running in a function and the data coming
in/out of it, complying with the corporate and privacy rules is responsibility of the ap plication developers.
Aditionally, an important aspect on FaaS, unlike Cloud computing applications, is to provide mechanisms
that detect and prevent attacks leveraging on incorrect function execution order to subvert application
logic. A framework has been proposed in [31], SecLambda, which covers the peculiar security needs of
serverless applications (exg Flow control) and gives the developer the capability to define custom security
functions to protect the application. SecLambda consists of three main components:

⮚ Secure runtime: A function runtime that generates events and reports them to the Guard component.
An event might be send/receive messages, SSL/TLS connections or create/modify/delete files. The
runtime blocks an operation until it receives a decision from the guard and enforces the decision
(ALLOW/DENY).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 17

⮚ Controller: The controller provides an interface for the application developer to manage security
functions, policies, and configurations.

⮚ Guard: The guard is a runsec module which executes a set a set of security functions created by the
application developer to process the received events based on the application security policies

This framework can be used to implement security functions for modelling and monitoring application
behaviours, obfuscating credentials in requests, rate limiting and even data encryption.
A more general approach is mentioned in [32] where the use of 6 main Serverless Design Patterns (periodic
invocation, event driven, data transformation, data streaming, state machine , and bundled pattern) are
proposed as a Serverless Threat-Intelligence Platform that analyses various data sources in the cloud,
notifies suspicious events and takes responsive actions against them.
In the context of cloud design patterns for security, all major providers define some design patterns or
specifications for secure and well-functioning cloud applications [33][34][35][36]. Although these patterns
are very useful when it comes to securing an application and must be taken into consideration, there is a
lack of cloud design patterns that focus on providing security and privacy functionalities as serverless
components. These components could provide easy to use abstraction for encryption, privacy blurring of
fields, management of secrets and other services in the same context. These components can significantly
enhance the usage of security in such applications both in terms of ease of use but also from a functional
correctness viewpoint.
Furthermore, there are some examples [37][38][39] of forensics as a service. These examples are especially
useful given the nature of the forensics science and the methodology of forensically correct collection of
data. They include methodologies for provable correct collection, privacy and encryption that, if broken
down, could prove useful in creating security-focused cloud design patterns to be used in serverless
applications

2.3.4 Microservices patterns
In recent years microservices-based solutions are gaining more and more momentum in application
development as an extension of service-oriented architecture (SOA) by enabling high service reusability,
reliability, improved scalability and availability, heterogeneity, and platform independence [40]. As
microservices break the logic of an application into a number of independent services that run as separate
processes, it is quite obvious that their very nature is aligned with the FaaS paradigm. Common
microservices patterns [41] are:

⮚ API Gateway Design Pattern: A gateway pattern which exposes a number of sub -services as a single
entry point

⮚ Chain of Responsibility Design Pattern: This design pattern consists of a collection of sub -services
designed to work together with a specific order in order to process a request.

⮚ Asynchronous Messaging Design Pattern: Pattern that enables asynchronous messaging and event-
driven communications.

More microservices patterns are proposed at VSLive blog [42] such as Proxy Microservice Design Pattern,
Branch Microservice Design Pattern and Shared Data Microservice Design Pattern.

2.3.5 User authentication patterns
In modern web applications the need for user authentication and management is a common issue with
many different approaches. Regarding FaaS applications it is important to note that the authentication
patterns must be stateless as FaaS itself is stateless. Perhaps one of the most common techniques for
stateless authentication is JWT tokens, where after user authentication (for example user login), each HTTP
request will carry the generated JWT token to the endpoint and the token will be valid ated from a serverless
function. A key advantage of JWT tokens is that it can also be used to store additional user information
directly in the token, not just the access credentials.

2.3.6 Serverless design patterns
A basic feature of serverless environments is to provide the ability for an application developer to compose,
orchestrate and execute serverless functions in sequences or workflows based on data (for example based

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 18

on a message or an event). In the literature we can find frameworks [43] that propose solutions for sequence
management where a workflow management system orchestrates the function execution and is responsible
for maintaining the appropriate execution order. Another approach is for each serverless function to know
which is the next function that should be called, based on a decision, and so to create a function chain where
each serverless function, when finished execution, calls the next one.

2.3.7 General Cloud patterns
A very thorough and interesting catalogue of design patterns in cloud environm ents is detailed in [44]. This
includes patterns separated in three large categories (Data Management, Messaging and Design and
Implementation) and relate to how the services may expose interfaces, functionality organization, service
design etc. Some of them are already existent in typical FaaS environments (e.g. Throttling for limiting
number of concurrent function invocation, Queue-based load levelling through the inclusion of Kafka
messaging in a typical OpenWhisk architecture setup etc.) or aim to cover for limitations of these
environments (e.g. Function Chain in order to continue a function execution after the maximum function
execution time is reached). Interesting patterns can also be extracted from the literature regarding
parametric service creation for adaptation to dynamic request patterns [45] or from a combination of
request management and FaaS platform configurations for minimizing other issues such as the cold start
problem.

2.3.8 Artificial intelligence and machine learning patterns
As AI and machine learning are some of the major technology trends, work has been done to propose
solutions for AI development on Cloud and Serverless platforms. The main goal is to provide an easy-to-use
framework for developing AI and machine learning applications without having developers worry about
scalability and provisioning. Such framework has been proposed in [46] where special function annotations
and a data API hide platform data management tasks from the developer. Furthermore, some techniques
have been proposed [47] to transform existing AI applications with standard architectures into applications
that work on Serverless platforms. These techniques have to do with 1) Reducing the footprint of the AI
libraries and frameworks used in application codebase, 2) Dynamic loading and injection of AI models into
temporary container runtime memory 3) A 2-Step Framework ML Process (train and running machine
learning models with different frameworks) and 4) Improving the handling of data lookup and storage,
through innovative partitioning and indexing techniques. With the aforementioned techniques, a pattern
can be implemented to provide developers a way to easily build AI and Machine Learning applications
without worrying about Serverless platform’s restrictions.

2.3.9 Orchestration patterns and frameworks
Function orchestration (or function choreography as more specially mentioned) is the ability to regulate
the execution of a more complex logic involving a number of functions, based on a business logic and
scenario. For this reason, a number of frameworks are available for dictating and executing function
orchestrations.
 From a visual workflow creation point of view, Kubeflow [223] includes a relevant language for
pipeline definition and an editor extension for visual definitions of workflows. The defined workflow
resembles more to a static definition of steps, without a respective runtime, orchestrating the execution of
one task after the other, while the inputs and outputs are passed through external object storage services.
AWS Step functions supports visual programming style and extended operators for function workflows (e.g.
state management ones) however it is tied to a single provider (AWS Lambda). Google Cloud Functions are
based on text based yaml files for the definition of a workflow. The same yaml approach applies for the AFCL
approach presented in [224]. In general yaml based approaches can become very complex when the size or
connections in the workflow scale, although in this case the solution comes also with a rich set of available
constructs that can significantly speed up application creation.
 [225] has moved the execution of scientific workflows to a FaaS model with Hyperflow and
compares it to the traditional IaaS approach from a cost point of view, while it proposes a number of
architecture alternatives for workflow orchestration. One commendable research effort was the extension
of Hyperflow to support execution of workflow tasks with AWS Lambda and Google Cloud Functions, where

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 19

performance and cost was impacted by size and priority of cloud functions.In [226], SWEEP, a cloud-
agnostic workflow management system, which is built on the serverless execution model , is introduced and
evaluated. Throughout the findings and results it is clear that it allows the direct mapping of functions and
containers to tasks in workflows, while providing a layer of structure and orchestration on top of serverless
execution frameworks. Based on the aforementioned, works like [224] with AFCL introducing programming
for workflows on a high-level of abstraction for reducing invocation delays and avoidance of delays of
blocking functions, and Beldi [227], a library and runtime system that makes transactional and fault-
tolerable workflows possible without having to deal with load-balancing, have been conducted in this sense.
In [228], Durable Functions, which is a programming model for serverless workflows, and Netherite which
is a distributed execution engine, are proposed, while they provide interesting results on Throughput and
Latency aspects.

2.4 Elasticity Controllers
The elasticity controllers will be integrated into the infrastructure layer (through the API extensions
provided in resource manager controllers (task T5.3). They should be abstracted so that they can be
configured and used in different use cases.
Currently Kubernetes has different scalability controllers, two for the application abstraction layer (the
Horizontal Pod Autoscaler and the Vertical Pod Autoscaler) and one for the infrastructure layer (Cluster
Autoscaler).
This task focuses on the application layer, and more specifically on the number of replicas, therefore on the
horizontal one. In a nutshell, the Horizontal Pod Autoscaler (HPA) [48] automatically scales the number of
pods in a replication controller, deployment, replica set or stateful set based on observed CPU utilization. It
is implemented as a Kubernetes API resource and a controller. The behaviour of the controller can be
adjusted through the API and loops its functionality periodically (with a default value of 15 seconds). Hence,
HPA is a tool to ensure that critical applications are elastic and can scale out to meet increasing demand as
well scale down to ensure optimal resource usage.
There are different types of metrics that HPA can use to perform more accurate autoscaling actions [40]:
The default "per-pod resource metrics" (i), i.e., CPU, which are obtained from the resource metrics API for
each pod. Upon target utilization set, the controller calculates the utilization value as a percentage of the
equivalent resource request on the containers in each pod. The controller then calculates the average
utilization across all targeted pods and generates a ratio that is used to scale the number replicas. The "per-
pod custom metrics" (ii), similar to the per-pod resource metrics but working with raw values instead of
utilization values. The "external metrics" (iii), using them allows the cluster to autoscale applications based
on any metric available in the monitoring system. This is useful for applications running on Kubernetes that
may need to autoscale based on metrics that do not have an obvious relationship to any object in the
Kubernetes cluster.
However, there may be other metrics that would be interesting to include, such as the “price”. For instance,
when multiple deployment options are available, select the one which is cheaper for the customer. This
metric is useful mainly for public cloud deployments. This can be achieved by better packing pods into
instances, using ML based metrics on the relations between pods resource consumption (rather than using
max resource consumption) and by choosing the cheapest instance types that fit the requirements.
The controller manager works as a control loop by quering the resource utilization against the metrics
specified in each HorizontalPodAutoscaler definition. It obtains the metrics from either the resource
metrics API (for per-pod resource metrics), the cloud provider API (for cost calculations) or the custom
metrics API (for all other metrics). For object metrics and external metrics, a single metric is fetched, which
is compared to the target value to obtain the desired/needed ratio. The ratio is obtained by t he Horizontal
Pod Autoscaler controller by using the next formula:
 desiredReplicas = ceil[currentReplicas * (currentMetricValue / desiredMetricValue)]
In addition to the custom metrics, Kubernetes also has support for configurable scaling behaviour as well
as for multiple metrics (autoscaling/v2beta2 API). For example, for the former, it is possible to configure
autoscaling to skip certain actions when it is "close" to the target by configuring the tolerance flag. Related

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 20

to multiple metrics, the HPA controller will evaluate each metric, and propose a new scale based on that
metric.
On the other hand, the scaling actions can also be made for container specific metrics (unlike pod specific
metrics), i.e., by tracking individual containers across a set of pods. This let us to configure scaling
thresholds for the containers that is more important in a particular pod. For example, a web application and
a logging sidecar can be scaled based on the resource usage of the web application, ignoring the sidecar
container and its resource usage.
There are extra mechanisms that together with HPA can be used to ensure that other controllers (such as
the cluster autoscaler one) do not remove pods required for a given application. To that end Pod Disruption
Budget [49] can be utilized. It ensures nodes with specific pods of an application cannot be removed until
those pods have been scaled out to a different node. This avoids disruptions to critical pods and ensures
that a desired number of them is always running.
The PHYSICS project will leverage and enhance HPA to provide extra optimized controllers based on
external/custom metrics. An important aspect which is today outside of Kubernetes scope is the total cost
of ownership for a specific cluster, machine sets, or pods. In public clouds, this cost can be very critical for
the customers. In public clouds when we look at the set of deployed pods as a network, we can cover this
network by multiple combinations of instances (usually VMs, but it can also be bare metal machines), with
different performance characteristics and different cost. As part of the PHYSICS project, we want to
minimize the cost of ownership by using some additional mechanisms:

⮚ The sse of pod state size-aware algorithms for executing more pods on some nodes (e.g., preferring
AWS spot instances). This is simple for stateless pods (pods that do not keep state on the hosting
instance, hence pod-state-size is zero), but it becomes more challenging for stateful workloads. The
project aims to carefully control the pods state and use horizontal scaling to run additional
workloads on spot instances. Preliminary work in this direction (for a long running computational
batch process use case) is implemented by the FastFreeze project [50].

⮚ Create deployments that will assure that the network will not become the bottleneck of the
performance. This require locating the components which communicate with each other in the same
instance and deploy them on instances with smaller network bandwidth (typically smaller and
cheaper instances).

2.5 Inference Engine (Reasoning framework)
As far as the Inference Engine is concerned, both the input and the output of the model should be defined.
As input of the Inference Engine, two semantic models (i.e., T3.2, T5.1) will be considered: the application
description and the available cloud resources. The output will be a deployment graph where each function
of the application will be connected to certain resources capable of running the given function. Thus, the
inference engine objective (task T4.1) is to produce a knowledge graph (KG) which given a fact
function(predict, 128mb) and resource(e2micro, 1gb) would be able to complete the missing link
ableToRun(predict, e2micro). In addition, it is worthwhile mentioning that, to the best of our knowledge,
there are no regulated ontologies for FaaS and Serverless applications and as a result, the semantic
descriptions will be developed in the context of PHYSICS. Additionally, the Deployment Graph should be
able to be updated during the runtime as properties regarding the performance of the deployed application
change.
The Deployment graph will be completed as a Resource Description Framework (RDF) triple store. In RDF,
data is linked via a subject-predicate-object structure (Figure 3), where the subject is a node, the predicate
is an edge, and the object is either another node or a literal. Multiple triples could be modelled as a graph of
data consisting of nodes and edges, named by a Unique Resource Identifier (URI) which typically is an HTTP
URI. A unique asset of RDF is that the HTTP URIs can be published on the world wide web, and therefore be
used by others. In the context of Semantic Ontologies, SPARQL has been adopted as the standard query
language based on triple patterns. Being a global standard, RDF is the most frequently used graph model in
the smart home domain and has been used in cases related to energy [51], home automation [52][53],
health [54], activity-recognition [55] and IoT integration [52][56].

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 21

Figure 3 - An example of linked building data using an RDF model

RDF stores typically support ontology modelling languages such as RDFS and OWL2 RL. The scope of the
ontologies’ usage is twofold. Firstly, they may serve as an interoperability framework where different
stakeholders model their data. Secondly, ontologies store domain knowledge that allows machines to do
inferences to better interpret the data or to derive new insights from them. The top well -established RDF
stores in terms of community adoption are listed in Table 1.

Table 1 - Summarization of Triple Stores

Name Description License API

GraphDB
[57]

Enterprise-ready RDF and graph database with
efficient reasoning, cluster and external index

synchronization support. It also supports SQL
JDBC access to Knowledge Graph and GraphQL
over SPARQL.

Free version is
limited to two

concurrent
queries

GeoSPARQL, GraphQL, Java API, JDBC, RDF4J,
RDFS, RIO, Sail API

Sesame REST HTTP Protocol, SPARQL 1.1

Blazegraph
[58]

High-performance graph database supporting
Semantic Web (RDF/SPARQL) and Graph
Database (tinkerpop3, blueprints, vertex-
centric) APIs with scale-out and High

Availability.

Open Source Java API,RESTful HTTP API
SPARQL QUERY, SPARQL UPDATE,
TinkerPop 3

Stardog

[59]

Enterprise Knowledge Graph platform and

graph DBMS with high availability, high
performance reasoning, and virtualization

Commercial GraphQL query language, HTTP API, Jena RDF

API, OWL, RDF4J API, Sesame REST HTTP,
SNARL,SPARQL, Spring Data, Stardog Studio,
TinkerPop 3

Virtuoso
[60]

Virtuoso is a multi-model hybrid-RDBMS that
supports management of data represented as
relational tables and/or property graphs

Commercial ADO.NET, GeoSPARQL, HTTP API, JDBC, Jena
RDF API, ODBC, OLE DB
RDF4J API, RESTful HTTP API, Sesame REST
HTTP
SOAP, SPARQL 1.1, WebDAV

XPath, XQuery, XSLT
JanusGraph

[61]

A Graph DBMS optimized for distributed

clusters

Open Source Java API, TinkerPop

Apache Jena
- TDB [62]

An RDF storage and query DBMS, shipped as an
optional-use component of the Apache Jena
framework

Open Source Fuseki, Jena RDF API, RIO

AnzoGraph
[63]

Scalable graph database built for online
analytics and data harmonization with MPP
scaling, high-performance analytical algorithms
and reasoning, and virtualization

Commercial Apache Mule, gRPC, JDBC
Kafka, OData access for BI tools, OpenCypher ,
RESTful HTTP API, SPARQL

AllegroGrap
h [64]

High performance, persistent RDF store with
additional support for Graph DBMS

Commercial RESTful HTTP API, SPARQL

Furthermore, a semantic reasoner will be utilized to infer the required logical consequences for the
development of the Deployment graph. For instance, after loading the ontologies (i.e., application, resource)
to the Inference Engine, queries (i.e., which resources are gpuEnabled?) can be answered using one of the
available reasoners.
Current reasoners can handle a comprehensive set of RDFs and OWL vocabularies and most RDF data
formats. A reasoner concludes facts from semantic data and ontologies based on predefined rules. Common
reasoning and inference engines such as Jena Inference subsystem [62], Pellet [65], RacerPro [66], HermiT
[67], RIF4J [68] , and Fact++ [69] are based on different rule languages and have support for ontologies and

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 22

OWL. The triple stores described in Table 1 provide built-in reasoning engines, while some of them are able
to work with external reasoners.
In recent years, there is surging interest in designing machine learning / deep learning ML/DL algorithms
for complex reasoning tasks, especially in large KGs where the countless nodes and links have posed great
challenges to traditional logic-based algorithms. Specifically, various deep neural networks (DNNs)
architectures have been leveraged as link prediction models for the completion of knowledge graphs [70].
These methods [71][72][73][74][75][76][77] heavily rely on the subsymbolic representation of entities
and relations learned through maximization of a scoring objective function over valid factual triples. Thus,
the current success of such deep models hinges primarily on the power of those subsymbolic continuous
real-valued representations in encoding the similarity/relatedness of entities and relations. Recent
attempts have focused on neural multi-hop reasoners [78][79][80][81][82] to equip the model to deal with
more complex reasoning where multi-hop inference is required. More recently, DeepPath [83] and
MINERVA [84], frame the path-finding problem as a Markov Decision Process (MDP) and utilize
reinforcement learning (RL) to maximize the expected return.

2.6 Metrics & Monitoring
In the following paragraphs, related work is presented around Function-as-a-Service (FaaS) benchmarking
research that has already been conducted (or is currently on-going) related to performance monitoring and
cost efficiency, research on container performance comparison and benchmarking (with specific metrics)
but also current open issues.

2.6.1 Function-as-a-Service, Cost models, Metrics & Benchmarking
The number of available FaaS platforms increases with the frequent tendency nowadays to use serverless
architecture, thus, a high demand for benchmarking FaaS platforms exists. In the paper [85] a literature
review is presented in support of benchmarking FaaS platforms. Due to extremely rapid development and
slow publication in FaaS, a lack of benchmarks is observed for measuring effects on key points such as cost
efficiency as well as benchmarks that observe functions not isolated from the whole but in the composed
environment of a cloud service.
The use of FaaS environments is delivered by many cloud service providers nowadays. Although the
problem is that it is hard to measure performance of Cloud Services because they behave like black boxes.
In papers [86], [87] an architectural design of a new FaaS benchmarking tool is presented which allows
users to evaluate their cloud functions performance, since users need to clarify whether more resources are
needed to deliver services in higher qualities. This benchmarking framework consists of two components,
a Java-based application and a JavaScript proxy cloud function. This framework can be used to identify
limitations and restrictions on top of the FaaS infrastructure helping the cloud service consumers to
evaluate and identify a more holistic view of the performance of the platforms, aside from typical
benchmarking.
Another simulation tool, SimFaas, is proposed in [88] which aids developers to create optimised FaaS
applications in terms of cost and performance. The simulator is written in Python language and available
on GitHub. Use cases for the simulator include “Steady-State analysis”, “Transient Analysis”, “What-If
analysis” and “Cost Calculation”, plus an experimentation on AWS Lambda. SimFaas benefits include i)
validating new ideas for cloud service providers in SimFaas before applying them (which is cheaper in both
cost and time aspects) ii) providing users with fine-grained control over the cost-performance trade off by
alternating the platform parameters.
In [89] authors present a microbenchmark to monitor 2 aspects of FaaS: i) Differences in observable
behaviour related to memory of each FaaS implementation by the providers ii) Complex pricing models
currently being in use derived from the number of function invocations across functions belonging to the
user together with function execution duration. Three very common algorithmic tasks (Fast Fourier
Transformation, matrix multiplication, and a simple sleep as a baseline) are applied to this matter, which
are implemented on the Node.js environment as the common denominator across the FaaS solutions under
consideration. The results provide some insights on the relationship between cost and performance on a
cloud environment.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 23

FaaS models transition from singular applications to compositions of smaller services that are more
granular and distributed. Thus, new FaaS models offer many new opportunities while raising new
performance challenges. [90] identified six performance-related challenges related to FaaS modelling from
a performance engineering aspect: reduction of performance overheads, performance isolation, scheduling
policies, performance prediction, cost-performance engineering, evaluation and comparison of FaaS
platforms through suitable benchmarks. [91] also tries to list some performance-related challenges along
with a proposed approach to solve them. Most notable challenges are: 1) Software engineering challenges
(meaning developer experience can be overcome by better testing, tooling, functionality and education) 2)
System (operational) challenges that emerge mostly from the dynamic characteristics of Serverless models.
A proposition made is an improvement in cost prediction models as well as lifecycle management. 3)
Performance engineering challenges which are unwanted overheads, questionable performance and
diversity in cost-performance solution models.
With FaaS models being our prior and outmost general interest, we cannot ignore microservice architecture
technology. Microservice is defined as an architectural style for software design as opposed to the
monolithic style. Thus, software applications are dissected to smaller, simpler functioning components that
communicate with each other throughout network requests. [92] draws a detailed analysis and summary
on performance optimization, design approaches and open issues for microservices. PHYSICS could most
likely benefit from the topics of benchmarking approaches, performance optimization techniques and
monitoring of anomaly detections from this article.
[93] addresses the research issues behind FaaS. A large literature gap (mismatch between academic and
industrial sources on tested platform configurations) is identified while providing recommendations that
can take place immediately. The paper's main findings are that AWS Lambda is the most evaluated platform
, microbenchmarks are the most common type of benchmarks and that application benchmarks are
currently evaluated on a single platform.
[94] is another paper referring to performance evaluation metrics, benchmarks and open issues in the
general spectrum of Cloud Computing. The aspects of resource allocation, resource provisioning, task
scheduling, load balancing, task placement, data caching and service discovery are some of the topics that
play an important role. One interesting point lies in the categorization of metric benchmarks in 1)
Monitoring - related metrics (resource load, throughput, resource lifetime, maximum running resources,
response time, fault tolerance, energy consumption etc.) 2) Analysing-related metrics (MAPE, MAE, MSE,
R^2, RMSE, average, median) 3) Planning-related metrics (adaptation time & scalability, decision making,
competition Ratio) 4) Execution-related metrics (provisioned and de-commissioned resources metrics,
technique overhead or lightness, contradictory actions). Many of those could be used (as base, and then
adapted) to test the project functionalities, depths and limits.

2.6.2 Containers, Benchmarking & Metrics
Virtualization is nowadays the core component of cloud computing that allows multiple tenants to run their
heterogeneous applications in isolated environments. Containers are a solid viable alternative for VMs in
cloud infrastructure services as they provide virtualization advantages with near bare -metal performance
as they bind all the necessary software in the form of images that can be easily deployed in any environment.
In [95] an experimental study is presented on the performance evaluation of Docker containers running a
heterogeneous set of microservices concurrently, providing more insights on their power and limits. The
extensive testing was materialised with many benchmarking tools (Linpack, STREAM, Bonnie++, Netperf)
looking at CPU performance, memory evaluation, disk I/O evaluation and network performance (floating
point operations per second, data and disk throughput, random seeks, network throughput).
Another interesting publication [96] conducts experimental evaluations on containers to investigate their
performance, while running on hosted , cloud-native managed Kubernetes environments offered by cloud
providers, by monitoring system resources such as CPU, memory, disk and network with the benchmarking
tools and metrics for each resource (SysBench for CPU load, Y-cruncher for CPU load + efficiency, STREAM
for data throughput, SysBench for data throughput with random I/O, Bonnie++ for data throughput with
sequential I/O, Nuttcp for data throughput and Netperf for network latency). The different cloud
environments that are under tests consist of Amazon Elastic Container Service for Kubernetes (EKS), Azure

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 24

Kubernetes Service (AKS), Google Kubernetes Engine (GKE). The gain on this paper is twofold: a good
evaluation on the functionalities of Kubernetes with different service providers, (presenting pros and cons
on the environment to be used) and the importance of the used container benchmarks as a basis for our
work in the benchmarking aspect.
An extensive literature review on container technologies and their related challenges is presented, as well
as performance (in comparison to VMs and bare-metal performance), orchestration (deployment and
dynamic control of multi container packaged applications) and security (container isolation, confidentiality
of containerized data, and network security). Performance prediction models and scheduling challenges
for production of optimal schedules (cost efficiency) are also presented.
Overall, environments like serverless computing tend to evolve at the speed of light nowadays, although the
research and applications related to them are still at an early stage. This is easily notable the lack of solid
benchmarking tools focused on FaaS environments, absence of highly accurate cost models and on the
unsolved open issues that exist.

2.6.3 Orchestration overheads examination
Orchestration overheads intersect two out of the 3 performance challenges identified in [229], namely the
request overheads and the function lifecycle management aspects. One exception investigating
performance issues in depth is Netherite [228], in which a distributed executi on engine is presented.
Netherite applies speculation for minimizing delays from state management, which aids in increasing the
orchestration throughput and workflow latency.
In [230], a performance analysis is conducted for fork-join executions between Amazon Step Functions,
Azure Durable Functions and IBM Composer, in the form of overheads from multiple concurrent executions.
In [231], the pure orchestration needs are measured in sequences of operations for the same providers as
[230]. Interesting findings are reported with relation primarily to the state transition delays affected by the
function input size and how this affects the total overhead. Other approaches investigate more futuristic
implementations deploying the orchestrators at the Smart NIC level, for minimizing latency in function
orchestrations [232].

2.7 Global Continuum Placement
PHYSICS will provide a uniform access, management and optimization layer for the usage of the underlying
hybrid edge-cloud computing infrastructure. In this context one of the important tasks is the workflow
placement across the distributed and diverse edge and cloud resources along with possible optimizations
and needed adaptations. In this context, this section provides a first analysis regarding the state of the art
of workflow placement upon the global continuum.
This study [97] upon orchestrators discusses the various advances that have been made regarding
scheduling. Kubernetes [98], [99] and Mesos [100], two of the most advanced open-source orchestrators.
Kubernetes orchestrator enables the support of Software Defined Infrastructures and resources
disaggregation by leveraging on container-based deployments and particular drivers based on
standardized interfaces (Container Runtime Interface [101], Container Storage Interface [102], Container
Network Interface [103] and the device plugins framework [104]). These interfaces enable the definition of
abstractions for finer-grain control of computation, state, and communications in multi-tenant
environments along with optimal usage of the underlying hardware resources.
However, even if Kubernetes is today production-level for typical cloud data centres, the default
distribution is not adapted for the constrained edge capabilities nor for multi -cluster deployments, such as
integrating different layers of compute resources (edge, fog and cloud). Efforts are currently ongoing to
better adapt Kubernetes for the edge, such as those done by the IoT-Edge working group [105] which are
mainly focused on guidelines and best practices with the current ecosystem. The opensource proje cts
kubeedge [106] and virtual-kubelet [107], driven by vendors provide interesting designs to incorporate the
edge with the cloud using Kubernetes, enabling a simpler integration of cloud and edge based on a group of
complexity abstraction features. Opensource solutions such as k3s [108] where Kubernetes heavyweight
internal procedures have been stripped down is another alternative that simplifies the autonomy of single
edge devices using the same Kubernetes API. Another opensource alternative that could b e interesting for

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 25

the deployment of individual autonomous edge resources is Canonicals’ microk8s [109] which can be
evaluated for the mobile edge resources case, needing to orchestrate tasks and workflows autonomously
when disconnected from network. Further analysis is needed as we go forward on determining the best
tools to be used for the edge resource management.
In a similar way, the multi-cluster special interest group (SIG) community of Kubernetes works on the
federation v2 project, named kubefed [110] which focuses on integrating multiple clusters under a
federation while providing a generic scheduling engine that, based on policies, can make decisions on how
to place arbitrary Kubernetes API objects. The project is currently under development, but th e goal is to
eventually support the execution of workloads across multiple clusters which is one of our requirements.
Other alternatives that could be used to provide the communication layer across services that run on
multiple Kubernetes clusters are Submariner [111] and Istio [112] but they do not offer the capabilities of

scheduling which has to be provided apart. The cloud federation reference architecture by NIST [113]
can be also considered as a base when designing the architecture of our global continuum.
Asuncao et al [114] studied resource management challenges regarding hybrid deployments including IoT
and Edge. They consider that managing task scheduling and allocation of heterogeneous resources along
with adapting an application to current resource and network conditions will require the development of
new schedulers and that allocations must be dynamic enough to support migration. Yuan in [115] does a
thorough study of task scheduling in hybrid edge-cloud environments and proposes various algorithms
optimizing energy, performance and cost while considering various constraints such deadlines and QoS.
Maia et al in [116] considered the offline placement problem of IoT services supporting horizontal and
vertical scaling in a hybrid edge-cloud environment. They tried to solve the joint problem of service
placement and load distribution to minimize the delay in execution (QoS). They formulated the problem
with Mixed-Integer Linear Programming (MILP) method which has high computational complexity, so they
considered solutions either through MILP approaches for optimal solution or greedy and genetic methods
which provide good placement with less computational complexity and faster results. In our case we would
like to consider both offline and online placement optimizations.
Wang et al in [117] proposed another genetic-based scheduling algorithm under a deadline constraint to
enable the execution of tasks upon edge or cloud resources with a goal to minimize the execution time of all
tasks. They have enhanced the genetic algorithm with a catastrophic variant to increase the mutation
probability to stay away from the current optimal, which may not be the ideal optimal solution, and allow a
re-optimization in a later stage. They have provided experimentations and performance evaluations of their
algorithms upon the CloudSim simulator.
We consider that scheduling on the global continuum layer is considered as a meta-scheduling to take the
high-level decision on how the different components/patterns of the workflow need to be placed across the
available platforms. Different ways to deal with this environment can be studied but the most adapted
would be to consider a two-phase scheduling where the high-level decision will be taken on the global
continuum layer while the second scheduling will be done on each local scheduler. In that scenario the final
scheduling will be based on the meta-scheduling proposition which will be directed to the local schedulers
of each platform to perform the local placement considering the local characteristics and availabilities while
trying to fulfil the global scheduling proposition. In addition, we need to consider that the applications to
be executed will be (at least partially) based on serverless architecture (FaaS programming mod el).
The execution of serverless workflows [118] will stress the scheduler of the system since a large number of
tasks will need to be mapped to resources. This can be also considered by the orchestrator and provide
optimized high throughput techniques which will minimize the scheduling time while respecting
constraints such as data locality.
Das et al in [119] presented scheduling algorithms and a framework to execute serverless applications over
a hybrid public-private cloud in a way to minimize the cost of public cloud use, while remaining under a
user-specified makespan constraint. The choice of how to offload tasks to the public cloud is made based on
their order in the priority queue considering the following methods: Highest Cost First order (HCF) and
Shortest Processing Time order (SPT). The experimentation took place using 3 different serverless
applications dealing with matrix, image or video processing in each case, while the platform was composed

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 26

out of OpenFaaS for the private cloud and AWS Lambda for the public cloud. Their results showed that their
algorithms and framework achieved a speedup of more around 1.8 times (in average) for matrix and video
processing applications over an approach that uses only the private cloud, at a cost that is ar ound 40% (in
average) of an approach that uses only the public cloud.
Another important aspect that needs to be considered for the global continuum scheduling is adaptability
and the capacity to perform adjustments on placement based on new parameters. Kub ernetes has an
inherent support of self-healing and auto-scaling, but it cannot be leveraged on the federation level amongst
clusters. To enable this a cross-layer federated monitoring strategy will be needed along with strategies on
how to decide which cluster to select for the offloading and how. The orchestration techniques [120] to
optimize autoscaling within Borg the predecessor of Kubernetes at Google can be used as a reference in our
investigation for autoscaling improvements.
Of course, the study of scheduling algorithms cannot be performed efficiently without having ways to
experiment and evaluate the developed strategies in simulated environments. Addressing the challenge of
cloud and edge computing simulations, another study and platform, developed by a member of Ryax team,
is a simulated edge platform developed on top of Batsim/SimGrid along with several scheduling policies
solutions upon a real use-case [121]. This solution was used to simulate a real edge platform use-case based
on smart heaters allocated over smart buildings. The simulated infrastructure was composed by nodes
representing the smart buildings and computational resources representing the smart heaters. They
developed two-level scheduling policies that first decide the building that a job should be executed and then
to decide in which smart heater. Upon such platform they proposed three different scheduling policies
based on data locality and compared them with the default policy applied in the initial smart buildings use
case as a baseline. To perform the comparisons, they used several workloads extracted from the real
platform. In addition, Batsim allows the injection of external events and plugins. The events can abstract
real world behaviours for edge platforms such as loss of connection to some nodes or more nodes becoming
available. The plugin can add more features to the platform, such as a storage controller plugin that dealt
with the data movements. Paper [122] depicts the implementation of the simulator and provides more
information about other cloud and edge platform simulators, scheduling policies and metrics. We foresee
to use a variation of the above simulator, adapted to our context, in order to simulate our new scheduling
strategies for the global continuum in PHYSICS.

2.8 Distributed Memory Service
FaaS allows building and deploying applications in the cloud in which the unit of computation is a function
that the cloud provider scales as needed. The application developer concentrates in the business logic which
mainly consists of stateless functions with minimal I/O and communication. Other limitations include the
maximum memory allocated to functions and the time to execute a function for instance, AWS Lambda limits
the execution time of a function to 15 minutes and maximum memory to 3GB. Moreover, state across
function invocations cannot be shared unless the state is made persistent using a remote storage service
which worsens performance. Transforming legacy applications to follow this model is challenging.
The In-memory Distributed State Service will oversee maintaining state across function invocations in
memory, therefore avoiding the latency penalty of persistent storage. The cache will keep the state in
memory so that it can be quickly accessed between functions invocations. The cache must be distributed,
and its state replicated so functions can quickly access the state regardless of where the function is executed.
Elasticity is also a requirement for the in-memory distributed state service in order to be deployed in a
FaaS/cloud environment in which functions are scaled as needed. In a FaaS/serverless environment a large
amount of functions can be launched and produce a high number of requests to the in-memory state service.
Once the functions complete, the data service should be scaled down.
The goals for in-memory distributed state service are: 1) it should provide high throughput for a wide range
of objects sizes. 2) It should be cost efficient and ensure a low response time with a low cost of the usa ge of
resources. 3) It should provide data consistency. 4) It should provide automatic elasticity. 5) Simple
interface (get & put) to accommodate different applications.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 27

There are a very few proposals on handling state in FaaS environments. During the last years some solutions
have been presented such as:
Pocket is a distributed ephemeral storage system for storing ephemeral data for analytics in the context of
serverless computing [123]. Analytics run in several phases and need to store intermediate data produced
by each phase before the final output is produced. Pocket provides three types of storage: DRAM, NVMe
Flash storage, and a generic block storage (HDD or SSD) to meet the I/O demands of the application.
Pocket architecture consists of three components: one centralized controller, one or more metadata
servers, and multiple data plane storage servers (Figure 4). The controller allocates storage resources and
dynamically scales the other two types of components: metadata servers and storage nodes. Metadata
servers enforce data placement policies and server client requests accessing the storage nodes.
When a job is registered, it launches lambdas. Lambdas first connect to their assigned metadata server.
Lambdas write data by first contacting the metadata server to obtain the storage server’s IP address and
connecting to the storage server to write data. Pocket supports elasticity, the controller monitors the system
health and decides whether to deploy or remove new metadata servers or storage servers. To support
metadata server failures, all metadata servers log their data operations to a shared NFS so that new
metadata servers can access and replay the log.

Figure 4 - Pocket system architecture and job deployment steps [123]

The controller fault tolerance mechanism is not presented. The paper states that it can be achieved by
master-slave replication. Pocket uses Kubernetes container orchestration to launch and remove metadata
and storage servers running in Docker containers. Metadata and storage servers are implemented on top of
Apache Crail distributed data store [124]. The latency of Pocket is higher than the one of Redis [125] with a
similar throughput.
In PHYSICS we aim at designing similar goals although, we do not only target ephemeral data. We will also
provide different consistency levels.
CRUCIAL is a system for programming high-concurrency stateful applications with serverless architectures
[126]. It implements a model that resembles shared distributed memory (Distributed Shared Objects,
DSO). Data is organized as objects found in programming languages such as Java. Objects can be ephemeral
or persistent and CRUCIAL replicates the data. State machine replication guarantees fault-tolerance of
objects. The consistency criterium of the DSO is linearizability. That is, concurrent method invocations
behave as if they were executed sequentially.
Figure 5 shows the components of CRUCIAL and how clients interact with the objects (either directly from
the client or functions, CloudThread in CRUCIAL terminology).
Data objects are built on top of the Infinispan in-memory data grid [127]. CloudThreads are implemented
as AWS Lambdas. CRUCIAL does not provide auto-scaling of objects and the replication model used by
CRUCIAL is very expensive in terms of performance (based on state machine replication and implemented
in Infinispan using group communication).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 28

Figure 5 - Overall architecture of Crucial [126]

InfiniCache is an object cache for FaaS applications [128] optimized for large objects (MBs up to GBs) with
strong locality, which are less frequently accessed than small objects. InfiniCache uses the functions
memory to reduce the cost of accessing the objects (traditional caches are billed per hour in contrast to
functions that are charged per invocation). InfiniCache is made up of three components: a client library, a
proxy server and the Lambda cache pool (Figure 6). The client library is responsible for the cache
invalidation. The proxy manages a set of lambdas and acts as a server accepting connections from Lambda
nodes. A Lambda node cannot act as a server due to the limitations of functions. InfiniCache is based on
AWS Lambda. The proxy keeps the mapping between objects and Lambda nodes. It also coordinates data
migration.

Figure 6 - InfiniCache architecture overview [128]

InfiniCache provides high availability of data by a combination of invoking functions periodically (to avoid
that the function can be finished) and replication of functions. The performance of Iof this solution under
changing loads is not yet evaluated and the performance with small objects (less than 10MBs-1) is worse
than that of AWS ElastiCache [129].
Cloudburst is an autoscaling stateful FaaS [130]. Cloudburst is not based on other FaaS, it completely
designs a new FaaS system that collocates data with functions to provide high performance. Cloudburst is
built on top of AnnaDB [131], a key-value data store that provides fault tolerance and automatic scaling.
Each virtual machine may run several functions (Executors) and keeps an internal cache that
asynchronously stores the state in AnnaDB. Cloudburst is the only system that takes care of consistency of
the cached data providing repeatable reads and causal consistency. Its runtime scales independently of the
AnnaDB. There are four components in Cloudburst: function executors, caches, function schedulers and a
monitoring and resource management system (Figure 7). In PHYSICS we aim at providing consistency by
integrating the in-memory service with a FaaS platform instead of designing the whole FaaS system.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 29

Figure 7 - Cloudburst architecture overview [130]

The different approaches providing stateful computation in FaaS environments either do not consider data
consistency or cannot be used with existing FaaS platforms. Moreover, those approaches target or large
objects or, if they allow small to medium size objects, the scaling is independent of the FaaS platform
introducing two levels of independently scaled planes.

2.9 Adaptive Platform Deployment, Operation & Orchestration
One of the main objectives of PHYSICS is to provide a FaaS Platform able to operate, orchestrate, and deploy
service applications adaptatively on different infrastructures from several cloud providers. Current
implementations are facing several constraints limiting their potential:

⮚ Resource catalogue: Not all cloud providers offer the same resources or services in their catalogue,
therefore, it can happen that the PHYSICS user needs something specific that is not present in a
given provider.

⮚ Deployment: Although most of the cloud providers offer the same basic resources in their
catalogue, they are not provisioned the same way, that means, that all providers expose a different
interface on how resources are created, administrated and operated.

⮚ Operations: Given the deployment diversity, there would be different procedures on how to
execute the required operations to deploy and maintain the platform.

⮚ Orchestration: On top of the previous points, the orchestration stands for making the platform
work automatically. To be able to execute the operations with the minimum human interaction or

no interaction at all. Ideally, the platform would automatically detect points of failure either in a
proactive or reactive way and apply the required operation action.

Container based technologies provide the needed application isolation required to develop pl atforms in a
heterogeneous environment. Such technologies did ramp up development and shorten delivery times of
any solution since requirements could be isolated inside the container's definition. Moreover, container
technologies provide a simplified way to deploy and operate different solutions while making them much
easier to maintain.
The following platforms presented are taking this into account in their design by featuring a simple and
homogeneous way to deploy, operate and orchestrate them by using technologies such as Docker Container
and Kubernetes Middleware.
Apache OpenWhisk [132] is an open source, distributed serverless platform that executes functions in
response to events at any scale. By using a Docker container technology, it can manage the infrastructure
and scale according to the workload. The main elements of OpenWhisk and their interactions are depicted
in Figure 8:

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 30

Figure 8 - OpenWhisk Programming Model [132]

⮚ Actions: Isolated stateless functions that encapsulate application logic

⮚ Triggers & Rules: The reactive element from an even source that start the execution of an action.

⮚ Sequences: A definition of succession of functions actions that works together with a specific order
and logic.

According the OpenWhisk documentation it supports many deployment options either locally and within
cloud infrastructures, including container frameworks such as Kubernetes or OpenShift Mesos.
OpenFaaS [133] is an open source event-driven platform like OpenWhisk that deploys functions and
microservices to container-based frameworks such as Kubernetes or OpenShift Mesos. The OpenFaas
architecture is depicted in Figure 9.

Figure 9 - OpenFaaS Architecture [133]

By using an OpenFaas Gateway endpoint, it is possible to trigger the call of services and functions hosted
inside the platform together with other complementary solutions that extend the functionality for the log
tracing, metrics collection and asynchronous calls.
Knative [134] is built on top of Kubernetes and abstracts away its complex details, making it extremely
simple to deploy services on top in a serverless way. It focuses on an API with higher level abstractions and
enables autoscaling up/down (including to zero) of applications based on their load. As it is basically an
extension to kubernetes (set of controllers and custom resource definitions) it can easily get access to the
base k8s improvements as well as be managed by third party cluster administrator tools (GitOps for
instance). It has 2 core components: Knative Serving and Knative Eventing. While Knative Serving easily
manages stateless services on Kubernetes by reducing the developer effort required for autoscaling,
networking, and rollouts, Knative Eventing easily routes events between on -cluster and off-cluster
components by exposing event routing as configuration rather than embedded in code. PHYSICS project
could contribute to knative with more advanced scaling options (such as predictions or defining the desired
minimum over time) as well as with extra APIs needed.
Kubeflow is an AI stack of technologies enabling easier incorporation of tasks based on Tensorflow, MPI,
Map/Reduce and other relevant heavy weight application subsystems. It includes a set of functionalities
(Jupyter notebooks for different runtimes, workflow definition through Kubernetes-based Argo pipelines
[135], execution through a Knative platform layer based on Kubernetes [134]). It supports readymade

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 31

operators for the main environments such as MPI or Tensorflow, enabling easier execution and experiment
implementation. A developer can write Python code primarily for AI tasks, package it and then deploy it
(through Knative plugins) directly on a Kubernetes cluster environment. Defined functions can also be
reused, even in some elementary workflows. Importing existing arbitrary code does not seem very flexible
[136]. Although Kubeflow is not directly a FaaS platform, its execution engine based on Knative enables its
consideration as a candidate tool. The architecture of Kubeflow can be found in Figure 10.

Figure 10 - Kubeflow Architecture.

2.9.1 Comparison between the aforementioned platforms.
Based on the anticipated needed functionality from the main FaaS platform, as well as the identified
requirements of the following sections, the following key characteristics of interest for the platform are
listed below and compared with the aforementioned platforms:
1). Run any type of container as the result of an event (allow legacy code).
Both OpenWhisk and OpenFaaS have a process for registering an arbitrary container image and trigger it
with events. Kubeflow can include arbitrary scripts as executables, based on the Argo notation, although it
does not have an event layer. It has however a REST API that can be triggered by respective externa l event
mechanisms. Knative also runs any type of container, as it is fully integrated into Kubernetes.
2). Support for sequences of functions (i.e. workflows).
OpenWhisk has the advantage in this case, given that it has a specific functionality in place (sequence
operator). It also has a readymade Node-RED node that can be used to define function workflows in Node-
RED. OpenFaaS has an external plugin (FaaS-flow) for declaring sequences of functions while Kubeflow has
the pipeline definition language as well as an editor extension (Elyra) through which pipelines can be
visually defined. Elyra is a further abstraction level (includes notebooks, flow creation, pipeline building
and deployment to an available Kubeflow endpoint), however the concept of workfl ow is that of a static
sequence of operations (with information passing from one step to another via intermediate cloud object
storage files). Therefore it lacks the dynamicity of a combination like Node-RED and OpenWhisk/OpenFaaS.
that is based on a message level execution of the workflow through the respective runtime mechanism.
Furthermore, Knative eventing/triggering mechanisms can be used to support workflows a fact that
kubeflow has on top of Knative.
3). Different endpoints for triggering events (for better flexibility).
OpenWhisk has an advantage in this case, covering a variety of endpoints and flexible structure between
triggers, rules and actions while OpenFaaS has only HTTP based triggers. Knative also supports different
eventing mechanisms, that can be used: "Source to Sink", "Channel and Subscription", and "Broker and
Trigger".

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 32

4). Backend support for Kubernetes (since it is the mainstream container orchestration system).
All the tools support Kubernetes (possibly among others) as the baseline container management platform.
5). Open-source nature and size/activity of community.
All tools have a sufficiently large community, as well as backing by major companies that have helped in
their evolution.
6). Lifetime limitation of function (max execution time for a function).
OpenFaaS, Knative and Kubeflow do not have any limitation on function execution, OpenWhisk has a
maximum limit. In order to overcome it, alternative mechanisms would be needed, such as the Function
Chain pattern.
7). Ability to change parameters such as autoscaling rationale, concurrency, number of prewarm containers
etc dynamically and during runtime.
In this case OpenFaaS has a clear advantage, since it can be configured with different scaling parameters at
the function level, including a REST API to change them during runtime. These parameters include aspects
such as min and max container replicas used as well as scaling factor with which to increase them based on
identified activation increase [137]. OpenWhisk on the other hand can limit the number of concurrent
function activation across the cluster while Knative of Kubeflow is the only one that can be configured to
execute multiple functions concurrently in the same container. This however is not expected to provide
significant benefits given the computationally intensive workloads that Kubeflow primarily targets.

2.10 Service Semantics
The emergence of cloud and edge computing paradigms has enabled cost reduction and high resource
availability for modern applications, by utilizing features that employ a resources-on-demand schema.
Deployment and elasticity control of these applications is usually managed by tools that are compatible with
the respective vendor infrastructure. However, this specificity of the tools along with the plethora of cloud
vendors hinders the ability to migrate applications through cloud providers and application modelling in
infrastructures that require multicloud solutions, thus defining a vendor lock-in problem.
To address these challenges, several Domain Specific Languages (DSL) and standards can be utilized to
create ontologies based on semantic descriptions for cloud modelling, application management and
monitoring. The main goal of the service semantics component in PHYSICS is to utilize these DSL and in turn
describe the available resources in the time of application modelling. This will enable the creation of
application topologies that in turn can be further analyzed for resource management and allocation.
The Web Ontology Language (OWL) [9] is one of the most popular standards for semantic descriptions that
was initially developed to account for the specific needs of World Wide Web. It has been utilized within the
Cloud Paradigm extensively in [138][139] to address cloud portability, resource management and
discovery. OpenStack Heat, the main project in the OpenStack Orchestration program utilizes Heat
templates to operate. These templates capture features such as the compute resources, network
configuration, scaling rules etc in a YAML file. Additionally, a cloud application modelling and execution
language (CAMEL) was developed during the PaaSage EU project. CAMEL is a multi -domain specific
language for cloud application management. It utilizes CloudML [140] and defines new Scalability Rule
Languages. Finally, OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA) is a DSL
that aims to improve cloud portability and interoperability using semantic topologies. It can be utilized in
both XML and YAML and defines two categories of each entity available, types and templates. Types are
reusable entities that contain implicit knowledge while templates explicitly describe the application
information.
The application of ontologies, service semantics and knowledge graphs are not limited to cloud applications
but also extend to edge and IoT systems. The papers [141][142] study how ontologies can be used for
modelling and reasoning in edge and IoT. In addition, IoT-Lite Ontology [143] aims to represent resources,
entities and services that find applicability in the edge.
The service semantic component will explore the previously mentioned research results and standards in
order to utilize their dynamics and capabilities. Ultimately, this knowledge of the state -of-the-art

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 33

approaches, along with a series of advancements and contributions will lead to a functionality that enables
the modern resource management and allocation in the edge ecosystem and the FaaS driven applications.

2.11 Scheduling Algorithms
Serverless Computing has emerged as a new paradigm of abstraction, platform and implementation of cloud
functions. It is thought to be the evolution of the Cloud Computing model in the sense of use of micro
services and containers. Containers look to be one of the best options to work with isolated and controlled
environments. With them it is possible to pack a whole environment and to deploy it anywhere. Within such
environment, of course, it is added the application which will be executed when such container would be
deployed. For instance, an application can be an entire program, or a part of that – such as a set of functions
that can run separated but coordinated to join the main program in the end - or even small functions that
do not communicate to any other. From the first scenario we could say that we are talking about a
monolithic architecture application, from the second one, a micro-services architecture application and
from the third one we are talking about function as a service modelled application. Please, notice that we
are not discussing the efficiency of these approaches, the focus is to emphasize that containers can pack
applications for several proposes and in different type of environment configurations. Once that is pointed,
something is required to manage those containers. Kubernetes is one of the options for that. It provides a
container management upon platforms. It is possible to deploy, schedule, execute them and interconnect
them.

2.11.1 Serverless Platforms and Kubernetes
As mentioned above, FaaS applications can benefit from containerization, which means they can also be
managed by Kubernetes-based solutions previously target to other or similar problems. Serverless
Computing evolves the FaaS concept avoiding the server infrastructure management. So, if by one side FaaS
applications benefit from Kubernetes based platforms, from the other side, they still handle the server’s
infrastructure. At this point, there were developed several Serverless Platforms on top of Kubernetes such
as Kubeless [144], OpenWhisk [24] and OpenFaaS [133]. These platforms automatically handle the
Kubernetes configuration side to make it easier for the developers to upload, deploy and execute their
functions. For that, they create all the services and operators needed as pods within such clusters. When an
action is needed to be done, they use these pods. For instance, when OpenWhisk is deployed upon a
Kubernetes cluster, it creates pods to manage its administration, alarms, gateways, schedulers and so on. It
also creates pods to connect to external services -with which it was developed - such as Kafka, NGINX and
CouchDB. Similarly, OpenFaaS creates its own pods for helping its management. Going into more details for
OpenWhisk, it abstracts a function as an Action, which is called by a Trigger and follows a Rule. Developers
can deploy their functions and define such triggers and rules. With all of that, they can also combine actions
- functions - with Events. OpenWhisk architecture is based on a) a NGINX mechanism to handle HTTPs
requests; b) a CouchDB mechanism to save the platform information such as the Actions defined; c) a
Controller to decide what to do with the HTTP requests received and with the information saved on the
CouchDB. In addition, it sends Actions to be executed in the Invokers; d) a Kafka mechanism to manage the
messages among the Controller and the Invokers; and finally, e) the Invokers that execute the Actions within
containers.

2.11.2 Kubernetes Standard Scheduler
The decisions regarding to where to execute pods are taken by schedulers. Kub e-scheduler is the default
scheduler of Kubernetes and its role is to dispatch pods to nodes based on a scheduling policy [145].
Depending on the metric focused by the platform, sometimes the best allocation is not achieved with such
scheduler. Besides Kubernetes allowing the developers to modify its default one, there are some available
options such other open-source schedulers for Kubernetes such as Volcano [146], YuniKorn [147], [148],
Safe Scheduler [149] and Multiple ClusterDispatcher [150]. Each one addresses to some of the different
focus on scheduling objectives. Since all the tools mentioned above are based on Kubernetes and its default
scheduler, we will depict its mechanism.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 34

The Kubernetes scheduling process is based on some steps where filtering and scoring are the two main
parts. Basically, before scheduling a pod to a node, the kube-scheduler filters all available nodes and if there
is any, it scores them to select the most valuable one. If kube-scheduler algorithm is not the most suitable
option for some specific case, Kubernetes allows developers to change it. Policies [151] are the way that
Kubernetes implements the filtering and scoring phases for the scheduler. Anyone can access and change
its parameters. Furthermore, Kubernetes split its scheduling process in stages, for instance, QueueSort,
Filter, Score, Bind, Reserve and others. Each Stage represents a scheduling step, and they are exposed by
Extension Points. Extension Points behaviours are implemented by Plugins [152]. A Plugin can be used by
one or more Extension Points. In the end, the set of Extension Points and its Plugins compose a Profile [153].
A Profile is a mechanism that allows developers to configure Plugins to implement different scheduling
behaviours for different Stages. If not provided at pod creation, Kubernetes considers its default Profile, the
default-scheduler. There is also the possibility to develop several Profiles and to use them within different
pods as a multiple-scheduler mechanism [154]. For instance, an example is the QueueSort Extension Point.
As an Extension Point it defines a scheduling Stage. It provides ordering functions to sort the pods in the
schedule queue. To do so the QueueSort Extension Point uses the PrioritySort Plugin, that implements the
default priority-based sorting. With many others, QueueSort Extension Point, and consequently the
PrioritySortPlugin, compose the default-scheduler Profile. Since Kubernetes environment evolves and
changes over time, some resources might become under or over usage. For instance, a very simple example
is if a pod fails, and it is duplicated for fault tolerant reasons. If the failed pod becomes available again the
cluster would be running two instances of the same pod. For this and other reasons, there is a mechanism
to avoid such under or over resources usage named descheduler [155]. The goal of the descheduler
mechanism is to find pods that can be moved and evict them. This does not mean that the descheduler will
replace the evicted pods, but if needed, that can be done by the scheduler itself .

2.11.3 Scheduling Algorithms for FaaS
Scheduling algorithms can be used for several reasons, such as to minimize functions response time, to save
costs, to reduce data movements, or energy consumption and so on. To address the problem of functions
locality requirement, Aumala et al. proposed a scheduling policy based on the packages needed to execute
a function [156]. The package-aware scheduling proposed (PASch) considers the package affinity during
scheduling. So, a worker node which already executed a specific function can re -use execution
environments with preloaded packages. They showed that the cache hit rate was improved, as well as the
individual functions execution and turnaround time. Besides, they do not achieve the best load balance
results, due to the priority given to the packages locality instead of the resources availability.
To address the response time minimization challenge, Stein presented an approach based on a n on-
cooperative game-theoretic load balancing, implemented on top of OpenWhisk [157]. The concept of non-
cooperative load balancing is that every user within the distributed scenario has information regarding
service time and allocation from the hosts. With that information, they calculate an optimal split of its own
perceived arrival rate in response to other users. The distributed controller architecture used by
OpenWhisk shares common host state information such as the number of concurrently active invoca tions
on each host. Combining the concept of non-cooperative load balancing and the architecture of OpenWhisk,
Stein presents a non-cooperative on-line allocation heuristic (NOAH), where each function contains an
expected average waiting time to be handled by an event. For each function it estimates the required
number of in-stances to respect such average waiting time.
The dispatcher first searches for idle instances to schedule the functions and to get the minimum completion
time possible, otherwise it balances the request based on the function’s allocation. When a function is
allocated to a site, its instances are not directly spawned. An instance pool manages the requests and take
the decisions locally. Suresh et. Gandhi also used OpenWhisk to implement a scheduling policy, named
FnSched, focused on costs reduction. Their main idea is that they try to use as less resources - named
invokers - as possible [158]. For that, they developed and combined two algorithms, the CPU-shares
regulation and the greedy one. The so-called CPU-shares regulation algorithm, it regulates how much CPU
the instances will use. They define a latency ratio that measures the quality of the service and verify it over
time. If an instance achieves the latency ratio, it receives more CPU-shares - resources. The greedy algorithm

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 35

will take care of allocating and scaling up the instances. It checks the available memory of the host, and just
if needed, more invokers are used. This way they avoid using many machines, invokers, and consequently
reduce costs. They point that it also reduces the cold start latency since they prefer to use the same invoker
as long as necessary if possible, and therefore keep the containers. In addition, to avoid cold start latency,
they duplicate the container during an invocation to another invoker even if it will not be used. This way,
whenever scale up is needed, some invokers will have a warm pool of containers.
The scheduling policies were implemented on top of OpenWhisk which provides a REST interface to a ccept
requests and provide response to them. The CPU-shares regulation algorithm belongs to each Invoker and
the greedy algorithm belongs to the Controller mechanism. With a different focus, James et. Schien present
a model and the results of the implementation of a scheduling algorithm based on low carbon emissions
[159].

2.11.4 Simulations for Serverless Platforms
Although a lot is said about improvement of metrics by evolving the scheduling phase of the functions, one
of the main challenges of this subject is reducing the cost to perform and evaluate all the possibilities on in-
production platforms or services. Such cost can be understood in several ways such as money, time,
resources and many others. To address these problems, simulation is a key practice and solution. Within
simulations one can easily perform and compare different scheduling policies without using any of the
above-mentioned resources. Besides, it is needed to have accurate results to be fair with real -world
environments and there are not many tools with such accuracy. Either in a real deployment or in a simulated
one, benchmarks are needed [160]–[162]. Kim et. Lee [160] presents a set with micro and application
benchmarks for serverless platforms. The micro-benchmarks help measure the performance of target
resources with functions call, such as matrix multiplication, linpack, iperf3, etc.
The application-benchmarks provide an entire application with realistic scenarios, dealing with data-
oriented flow and several resources together. Some examples are image/video processing, logistic
regression, face detection, word generation, etc. In this scenario, SimGrid [163] is a framework that allows
the development of simulators to be used to prototype, evaluate and compare system designs, platform
configurations and algorithmic approaches. Batsim [164] is a resource and job management system (RJMS)
simulator developed on top of SimGrid. It allows the development and study of scheduling algorithms. The
design of Batsim helps researchers to apply and compare different scheduling polices to different platforms
due to its decoupled development. Batkube [165] is a Kubernetes cluster simulator developed on top of
Batsim. It benefits from Batsim platform and scheduling decoupled implementation, simulating different
platforms and workloads connecting them to different scheduling policies.
The first work developed with Batkube uses the default scheduler of Kubernetes. Mahmoudi et. Khazaei
present the SimFaas platform [88]. It is an open source serverless platform which allows the study of
scheduling policies. The platform deals with some aspects of serverless computing such as function
instances states, cold/ warm start-up, auto-scaling etc. Different to Batsim that allows the implementation
of whole platforms, SimFaas abstraction uses four parameters to characterize a platform: expiration
threshold, which they point that is usually constant for public serverless platforms such as Isagoge Cloud
etc.; arrival process, that describes the frequency that the jobs arrive; warm and cold service process,
representing the response time took by the platform to reply cold and war requests respectively. To
characterize a workload, they consider the instances arrival rate and the response time for warm and cold
requests. Within the simulations, a practice to validate a scheduling policy as generic instead of being useful
only on specific case, is to compare such results with benchmarks.
Those are studies that examine the performance of general workloads and platforms. One example is
presented by Utiugov et al. that demonstrates a technique to reduce functions cold start latency based on
snapshots [166]. They save the current state of a VM in the disk and use it when needed. With that they
capture the state of the virtual machine monitor (VMM) and the guest-physical memory contents. It reduces
the cold-start latency, in addition to require no main memory during the idle periods. They provide a tool
named vHive, an open-source framework for serverless experimentation. It is based on Containerd [167]
for the container’s orchestration and on Firecracker [168] for provisioning. Using vHive, they evaluated the
functions from FunctionBench [160].

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 36

2.12 Resource Management Controllers
New controllers and interfaces will be added to the infrastructure layer (OpenShift, Kubernetes, Serverless
framework, etc.).to provide the needed knobs for the scheduling mechanisms implemented (Chapter 2.11)
as well as for the multi-cluster orchestration layer (Chapter 2.9) or application-level controllers (Chapter
2.4) to enable improved fine-grain scheduling decisions as well as optimized resource allocation between
clusters and within each cluster over time. Moreover, the target is to contribute those API/Controllers
extensions to the related upstream versions of each software communities.
As regards to in-cluster interfaces and controllers, there exist several options available that PHYSICS project
can leverage in and optimize them.
1) Scheduling Policies and Multi-Schedulers
Kubernetes comes with a default filter and weight scheduler. However, if the default scheduler is not
enough, it provides you with the knobs to implement your own [169]. In fact, you can even run multiple
schedulers simultaneously (alongside the default one) and instruct Kubernetes which sch eduler to use for
each of the pods. Basically, it allows to run your scheduler as another pod running on the system. New pods
will use the new scheduler by adding the desired scheduler at the pod spec (schedulerName field). PHYSICS
will extend this to provide new scheduling mechanisms (Chapter 2.11) as well as configurable options for
them and for the upper management layer to easily select between them.
2) Descheduler Operator
After the initial scheduling process, there may be changes on the infrastructure that may end up in a
nonoptimal status. For example, new nodes may have been added or deleted, or the resource usage in one
of the nodes is higher/lower than when an application was initially scheduled which forced a less optimal
pod distribution. In order to react to that, work has been done to provide a "descheduler" for Kubernetes
[170]. This is work on its initial steps that PHYSICS project could leverage and extend to provide the needed
APIs and descheduler profiles for other components (such as Chapter 2.13) to trigger a more optimized
resource management over time. The descheduler operator is in charge of enforcing the profile configured
every X seconds by performing new scheduling decisions through terminating pods in some nodes and
creating them in the new ones. Currently there are three profiles implemented:
AffinityAndTaints: Basic profile that removes running pods that violate node and pod affinity, and node
taints.
TopologyAndDuplicates: Attempts to balance pod distribution based on topology constraints definitions and
evicting duplicate copies of the same pod running on the same node.
LifecycleAndUtilization: Focuses on pod lifecycle and node resource consumption. It attempts to evict pods
from nodes with high utilization that can fit onto other nodes with less load. High and Low utilization is
measured based on CPU, memory or pod capacity percentages.
3) Performance Operator
In order to provide more predictable performance, there is a need for some extra low-level configuration
(kernel tuning, CPU pinning, hugepages, NUMA awareness, etc.). These low-level configurations should be
abstracted away behind simpler APIs for the upper layers (such as the co-allocation techniques developed
in 2.13). In order to do that, PHYSICS could leverage the work being done around the Performance Operator
[171] to ensure that nodes are configured with the needed kernel flags (e.g., to configure it with real time
kernel as well as hugepages), as well as the isolation between different applications on the same node can
be enforced by assigning different cores to different applications (NUMA aware). The performance operator
provides an easy way to configure and manage some of those capabilities on OpenShift:

⮚ Reserve a set of cores per node to either run or not run other workloads

⮚ Ensure QoS for a given pod by creating it with the same memory limit and request, as well as the
same CPU limit and request.

⮚ Annotations on a pod to configure (enable/disable) CPU load balancing
Regarding multi cluster management, there is a need for applications (pods) running in different clusters to
be able to reach other components/applications leaving in a different cluster, enabling a common
networking layer across Kubernetes clusters. Kubernetes has defined the Multi-Cluster Services API [172],
which specifies both the terminology as well as the expected process to expose a service across Kubernetes

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 37

Clusters. Submariner [111] is one upstream project which targets to cover this existing gap, implementing
the mentioned multi-cluster services API, and providing more flexibility and extra options at the application
placement layer. Submariner is a tool built to connect overlay networks of different Kubernetes clusters
(with different CNIs/Networking plugins) by establishing encrypted tunnel s between each Kubernetes
cluster and ensuring proper service discovery and traffic redirection between clusters. Currently
Submariner is in the pre-alpha stage, but the PHYSICS project will leverage the already existing functionality
and work together with the upstream community, providing new requirements and contributing
enhancements.
Despite the option to have applications with a shared networking layer across clusters, there is still a need
for orchestration decisions about what applications to deploy on what clusters, how many replicas on each,
etc., as well as to have a simple way of managing and visualizing it. There are several tools to enable cross
cluster management, for instance ManageIQ [173] or Red Hat Advance Cluster Management (ACM) [174],
based on Open Cluster Management [175]. ACM for Kubernetes provides a single view to manage
Kubernetes clusters, providing end-to-end management visibility and control to manage clusters and
application life cycle, including security and compliance for the entire Kubernetes domain across multiple
datacenters and public clouds. It supports easy provisioning of OpenShift clusters on several cloud
providers (AWS, GCP, Azure), and on-premise (OpenStack, baremetal, vSphere). In addition, it allows to
enforce policies at the target clusters using Kubernetes supported custom resource definitions. P HYSICS
can leverage and enhance the APIs provided to better support the multi -cluster orchestration layer
(Chapter 2.9) needs.
In addition to the above, and as organizations embark on the hybrid cloud, new challenges arise when
managing applications at different clusters, such as the complexity of deploying and delivering the
applications in a consistent and predictable way. Currently there is a trend about managing the applications
(continuos delivery) in a declarative way, following the GitOps model [176]. GitOps is a way of continuously
(re)deploying cloud native applications based on having a Git repository as the source of true and
containing the declarative descriptions about the infrastructure needs for the applications. It allows full
transparency through Git audit capabilities and provides a straightforward mechanism to roll back to any
desired version across multiple OpenShift and Kubernetes clusters. There are several tools running on top
of Kubernetes providing the GitOps functionality, such as ArgoCD [177] and kustomize [178].

2.13 Co-allocation Strategies
The co-allocation strategies component will investigate how to group services in a physical node for
improving overall performance. The co-allocation component will use the monitoring information of the
services such as CPU usage, memory, network usage… in order to identify complementarity of services. This
information will be used by the adaptable scheduling algorithms. The different effects of co-allocation
between different users and workloads will be studied to obtain the best co-allocation strategy.
Applications are divided into different functions that are executed in containers. A container needs a set of
resources (CPU, memory). In some cases, containers have dependencies between them and require to be
collocated on the same node to reduce network latency. A pod groups several containers, and pods have
limited resources which limits the number of containers in a pod. A physical node can host one or more
pods depending on the amount of resources the pods require.
Figure 11 shows an application that is made up of six functions that will be deployed in a 4 -node cluster.
The function execution can be represented as a directed acyclic graph where nodes are functions and
arrows represent the execution order. When a function completes, it sends its results to their neighbor
functions. The cluster is made up of 4 nodes with different resources. In one of the nodes a NFS is deployed
within a pod. This pod is a Read Write Many (RWX) persistent volume [145], needed to read and write shared
data with other pods. The co-allocation service will provide rules for deciding on the co-allocation of pods
in a physical node. It will propose a distribution of functions (pods) among the available nodes and a co-
allocation strategy that takes advantage of the available resources and does not create bottlenecks.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 38

Figure 11 - Optimizer scheduler example

The co-allocation strategy will be triggered at least when: 1) a new application is deployed, 2) an application
scales out/down. There are several tools to allocate application pods in different hosts, such as Kube-
scheduler [145], describe in Section 2.11 and Openshift scheduler [179], [180], that is similar to the
previous one.
Another way to allocate pods to nodes is using affinity and anti-affinity rules (Openshift [181], Kubernetes
[182]). The affinity rules define the preferred nodes on which a pod will be executed. On the other hand, the
anti-affinity rules prevent a pod to be scheduled on a node. Pods are tagged with a selector label. The selector
label is not unique, in fact, there can be multiple pods with the same selection label allowing the
identification of a set of pods. If an affinity rule is defined, the scheduler will place a pod in the same node
as other pods with the same selector label. Otherwise, it remains as pending to be placed. The first pod
within a selector label doesn’t have to have any rules and it will be placed considering the scheduler
configuration. In case of the affinity rules there are two types: required, that which means the rule must be
enforced; and preferred, which means that the rule shouldn’t be enforced. P od selector label and
affinity/anti-affinity rules are configured in the podspec yaml file. Multiple rules can be configured and can
be affinity or anti-affinity, but cannot overlap; otherwise the pod will never be scheduled.
In addition, Openshift allows the creation of infrastructure topological levels by assigning custom labels to
nodes [183], grouping a set of nodes in levels such as cluster, room, building, etc. Affinity and anti -affinity
rules can be used to place different pods in the same level (set) of nodes. The affinity rules, in this case, allow
the administrator to define the set of nodes where the pod must be placed using a selector level. This way,
all service pods are scheduled on nodes within the same level. If there are no more nodes availa ble in the
selected level, the rest of pods to be deployed are not scheduled. On the other hand, the anti-affinity rules,
also called spread policies, allow pods of the same service to be placed over different levels. This type of
policy is well suited for high availability purposes since it distributes pods evenly across available nodes.
Both Kubernetes and Openshift have tools to define different co-allocation strategies for new pods taking
into account the requirements in terms of resources of each pod. More over, the co-allocation service has to
take into account dependencies between to pods and the resource consumption for avoiding bottlenecks
and to create the proper co-allocation strategy.

2.14 FaaS Security
The security implications of FaaS in terms of benefits and concerns is still an open topic that requires
additional research [184]. The serverless architecture in a general perspective, has mainly positive
outcomes when it comes to security due to the fact that the underlying system is patched, updated and
managed by the cloud provider. This fact effectively removes all system security responsibilities from the

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 39

application developers and leaves only the application-level security to them. Besides this significant
benefit, the serverless architecture has some security concerns that mainly stem from its complex, stateless
and segregated nature that will be presented through this section that is divided in several subsections that
focus on the different identified concerns.

2.14.1 Application security
In the architecture of FaaS, the organisation that needs to run the code does not need to know or care about
the underlying operational issues of how many servers/containers are required, networking and storage
issues associated with the operation of the code, or with maintenance, updating, patching, and securing the
servers supporting the functionality—that is all the responsibility of the cloud provider. [185]
While the usage of FaaS removes any security issues and responsibilities from the organisations, this is only
true in part; while the organisation has delegated the applied security associated with the servers and the
host OS to the cloud provider (and most of the times the security issues of central common applications
such as databases), the organisation is still fully responsible for the security of their deployed function-
application.
This function-application security includes but is not limited to [185]: (i) the actual code that runs in each
function, (ii) the connection and communication between function components in the context of the
application, (iii) the authentication and authorization of functional components, users and other internal or
external entities, (iv) the protection and validation of data and communications and (v) the analysis and
protection from vulnerabilities in code, modules, and libraries that the application calls and uses including
third-party code or services.
Given these facts, the OWASP organisation has provided a top-10 list with the most common security
vulnerabilities that provides an analysis of common attack vectors in the context of FaaS serverless
applications [186]. These attacks mainly focus on the application security given the fact that system security
is off-loaded to the cloud provider. The list is the following:
Injection (major security concern): Refers to attacks where the input to one function can be controlled or
manipulated by an attacker. In the case of FaaS, the input does not only come from API calls but also from
internal cloud triggers (cloud storage events, stream data processing, database changes, code modifications,
notifications etc.); this fact should be considered when calculating the attack surface of a FaaS application.
Broken Authentication (moderate security concern): This type of vulnerability is concerned with ways that
the authentication can be maliciously manipulated. This includes forgotten stored credentials,
authentication triggers that can be toggled in an unforeseen manner, entirely open APIs, public cloud
storages etc. These vulnerabilities mainly stem from weak and not carefully analysed identity and access
control application design. This issue is especially relevant in serverless design where there are multiple
potential entry points, services, events and triggers with no continuous flow, something that requires
multiple points of automated authentication.
Sensitive Data Exposure (Moderate Security Concern): Most of the methods used in traditional architectures,
such as stealing keys, performing man-in-the-middle (MitM) attacks, and stealing readable data at rest or
in transit, still apply to serverless applications. This type of attacks can come from faulty or non -existent
usage of encryption or from the expectation that temporary files (/tmp) will be deleted automatically.
XML External Entities (Low Security Concern): This is a class of vulnerabilities manifests from the parsing of
defined XML External Entities from malicious payloads. This issue is internal to the XML specification,
where it is allowed for XML files to define external resources that could potentially be manipulated by
attackers.
Broken Access Control (Moderate Security Concern): This refers to the bad implementation or usage of access
control mechanisms. In FaaS architectures, the management of admin credentials to the system is not
crucial since they are automatically managed by the provider. What is crucial in such architectures is the
management of access to resources that can be done through the service provider.
Security Misconfiguration (Major Security Concern): This category is focused on any security
misconfiguration that includes configuration of access to resources, over-privileged functions and most
importantly the human error.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 40

Cross-Site Scripting (Moderate Security Concern): It is an extended form of traditional cross-side scripting
(XSS) since the source of attacks could also come from other triggers (emails, IoT, cloud storage etc
Insecure Deserialization (Major Security Concern): This is the traditional form of deserialization
vulnerabilities in dynamic languages (Python, JavaScript, Java, .NET).
Using Components with Known Vulnerabilities (Major Security Concern): Usage of dependencies and third-
party libraries is common for FaaS applications. Usage of external components that is known to have
vulnerabilities or using them from questionable sources will lead to introducing vulnerabilities to the entire
application.
Insufficient logging and monitoring (Major Security Concern): This problem mainly focuses on the
undetectability of attacks due to the lack of logging and monitoring. This is even more relevant in FaaS
architecture where monitoring and logging is even more difficult and complicated.
Despite these ten vulnerabilities, the list also identifies other types of vulnerabilities that are common
amongst serverless architecture. These include (i) denial of service (minor), where resources are peaked to
the set limit by the administrator, (ii) denial of wallet (moderate), where the resources are escalated to such
a degree that the organization is not able to pay for the requested fee, (iii) insecure shared space (moderate),
where remounted shared drives are not properly cleaned from previous runs of the container and (iv)
Business logic / flow manipulation (major), that targets at exploiting the higher level logic implemented by
the serverless components of the application.

2.14.2 SGX, Trusted Computing and Blockchain for FaaS Security and Privacy
The majority of solutions trying to enhance security and privacy properties of serverless architectures, use
the Intel SGX as a trust anchor, a hardware-backed trusted execution environment, which can be utilized
for running functions in private memory regions called enclaves [187]. The usage of SGX enclaves is
proposed in [188] where the authors propose a secure lambda function model where each function that
handles sensitive data or is security critical is run under protected SGX enclaves. With this, the assurance
provided both in terms of security and of privacy are enhanced. SGX is also used by [189] in the proposed
protocol that the system uses to ensure confidentiality and integrity of data, and integrity of function chains.
The additional benefit of this solution is that to overcome performance and latency issues that exist
sometimes in SGX applications, the authors applied several SGX-specific optimizations to the runtime
system, such as SGXv2 to speed up the enclave start-up and perform batch enclave page cache
augmentation. In [190] the authors propose the usage of SGX in an advanced key distribution and
verification protocol that allow for seamless verification of functions and assurance for their proper and
untampered functionality that focuses on the privacy and security of the data handled by the function.
The usage of blockchains has been proposed many times as a solution for privacy in the context of the cloud,
especially when it comes to the protection of healthcare data [191][192]. This has been observed mainly
due to the tendency of healthcare organisations to offload their responsibilities towards security and
privacy to the cloud providers. The proposed usage of blockchains is to essentially pass the ownership of
the data to the true owners (the patients) and this way adding a layer of security and privacy on the
application level.

2.14.3 Serverless Components Communications security
When it comes to the communication between application components in a FaaS architecture, developers
can choose to implement all the code that manages the calling of their functions and their i ntegration with
any third-party services used or use cloud-service provided communication solutions. By choosing to
implement their own communication solutions and carefully restricting their calls against the FaaS
providers API to the commonly used subset of supported APIs across the FaaS providers that they plan to
support, the developer can preserve maximum flexibility in dealing with FaaS providers and so can
minimise the effort associated with moving code between FaaS providers, reducing provider lock-in.
This flexibility makes the organisations fully responsible for maintaining the security of the
communications to and from the functions and the state datastore (which should be protected with TLS)—
with appropriate key management. On the other hand, using a cloud service provided communication

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 41

solution, delegates this security responsibility to the cloud provider but it removes the aforementioned
flexibility and locks the application to the specific provider.

2.14.4 TRUSTEE Project Cluster
The TRUSTEE project cluster is a consortium of projects that all have the common denominator of security
and privacy in the cloud. TRUSTEE (daTa pRivacy and cloUd Security clustEr Europe) is an aggregation of
results of 11 research projects funded by the European Union that was established within the Common
Dissemination Booster initiative. The TRUSTEE initiative is coordinated by the CREDENTIAL [193] project,
and is composed of the following projects: MUSA [194], PRISMACLOUD [195], SecureCloud [196], SERECA
[197], SPECS [198], SUNFISH [199], SWITCH [200], TREDISEC [201], UNICORN [202], and WITDOM [203],
which are all focused in different domains of cloud security and privacy, ranging from secure and privacy-
friendly authentication over encrypted and distributed solutions for data sharing and cloud storage to data
integrity, authenticity, and availability. In the context of the TRUSTEE consortium, there is a variety of
readily available solutions in multiple contexts that could be taken into account for the PHYSICS project
when it comes to security. The following is a concise list of the categories that these solutions cover: (i)
identity management, (ii) cloud security management, (iii) cloud management, (iv) secure data sharing, (v)
application development and (vi) SLA management.

2.14.5 Identity and access management
Most cloud providers implement internally critical security functionalities for developers. One of the central
services among these are the cloud identification and authorization management (IAM) functionality, policy
and role management, and access control management. In ANNEX I there is a table (Table 2) that provides
a bird’s eye view of these services from the three major cloud providers, namely: Amazon AWS, Google
Cloud Platform, and Microsoft Azure. These services also have firewall capabilities, which customers can
configure to restrict improper access.
A novel identity and access management system as part of the overall FaaS architecture is proposed in the
work of [204] as part of the H2020 SUNFISH project that created the proposed cloud federation service.
This service allows organisations to enforce attribute-based access control policies on their data in a
privacy-preserving fashion using their federated solutions. The end users are granted access to federated
data when their identity attributes match the policies, but without revealing their attributes in clear. The
entire solution is based on two trust anchors, namely, blockchain and Intel SGX hardware platform to
guarantee integrity of the policy evaluation process, a common approach when it comes to security and
privacy in the context of FaaS.

2.14.6 Secret Storage and Management
The proper deployment of serverless components alongside access control and secure storage rely upon
secrets that must be installed within them. Some form of trustworthy secret management and storage,
typically backed by cloud hardware security modules, is needed. Most of the major cloud providers offer
some kind of secret management: Google Cloud platform does this with Cloud KMS, Amazon provides this
with AWS Secrets Manager, and Azure provides this functionality in Azure Key Vault. Furthermore, in all of
these services, there is the choice of encrypting lower-level secrets under a protected key that is stored in
an appropriate database, being decrypted under the protected key, as needed. Automated provisioning of
secrets to VM’s/containers is challenging as there are many underlying security concerns. One option for
example is to use the keys from the command line directly, but command line arguments are logged and
easily accessible from the history. This is the reason why storing and injecting secrets in drives that are
mapped to the target or the use of products such as HashiCorp’s Vault to inject secrets is preferable.
Despite the services provided by the cloud services, there is an array of solutions that are service -agnostic
and allow to avoid a vendor lock-in. Of course, this is the classic trade-off between ease-of-use/integration
and avoiding a lock-in. An advantage of using the cloud provider functionality is that the provider has
integrated their security controls with the secret management functionality, something that simplifies the
developer’s task in managing and deploying secrets to components. Following, there is a list of possible
solutions for secret management.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 42

There are in-house solutions from each major cloud provider such as AWS Secrets Manager [205], Google
Cloud Secret Manager [206] and Azure Key Vault [207]. All of these tools are quite versatile within the
application domain of each provider with tight integrations with the services of the provider, something
that allows for easier to deploy secret management services. On the other hand, usage of such solutions will
lead to vendor lock-in. The solution Akeyless Vault [208] provides a zero-trust scheme for multi-cloud
secret management and propagation of secrets. This solution is very focused on privacy and provable zero
knowledge of the secrets from the provider, but it is not open-source and comes at a price for commercial
usage.
The open-source solution Vault from HashiCorp [209] is a solution that allows for a cloud-centric secret
management across well-known providers (AWS, Google Cloud, Azure) that allows for storing, moving,
replicating secrets across cloud providers and networks while also providing tight access control to said
secrets. Square Keyewhiz [210] is an open-source solution for secret management (such as GPG keyrings,
database credentials, TLS certificates and keys, symmetric keys, API tokens, and SSH keys for external
services). This solution is provider-agnostic since it provides just a JSON API that the application-level
gateways can use to interact with. Confidant [211] is an open-source secret management tool that aims at
ease of use and security of the secrets. It is tightly integrated with AWS since it uses DynamoDB for the
storage of secrets. Docker Secrets [212] is a service deeply integrated with Docker Swarm an d allows for
management and deployment of secrets to docker containers in swarms. This service provides an
application-level abstraction of secrets management since it utilises Docker, and thus it allows for ease of
use and tight integration with the developed application without enforcing vendor lock-in. Knox from
Pinterest [213] is an open source secret management solution that is provider-agnostic. The management
of secrets is offloaded to the application level, where developers have to create the approp riate hooks for
their business logic that they need.

2.14.7 DoS attacks — Economic DoS
Depending on how the services are configured, traditional DoS attacks can still be applicable even in a FaaS
architecture. More specifically, cloud providers allow for policy specifications that enforce resource limits
on functions (such as execution times, CPU cycles and memory usage). Given this capability, administrators
could enforce strict policies to avoid overcharging their accounts; a fact that essentially opens the door for
traditional DoS attacks. That is, attackers could just perform a DoS attack, and reach the enforced policy
limit, effectively crippling the function.
If there are no restrictions on resources from policies, then there is a manifestation of a new type of attack,
the economic denial of sustainability (eDoS) attack. In this scenario, the attacker has such an overwhelming
botnet size in his disposal that an attack would escalate the FaaS-based application resources to such a
degree that it essentially becomes economically unsustainable for the organisation. There are many
proposed research solutions such as [214] and [215] that focus on monitoring the behaviour of the overall
application. An additional solution would be to create cloud-specific policies that detect possibly malicious
behaviours and block any further access attempts from the source(s) of the detected attack.

2.14.8 Additional Considerations
In addition, and in conjunction to the aforementioned security challenges, there are a few more
considerations when it comes to security in the context of serverless architectures. The dynamicity and
complexity of the FaaS components could lead to left-out APIs that are not properly secured, care must be
taken so that each communication is properly protected and controlled while also ensuring that any input
to each component is properly validated. Another concern is the usage of DevOps and agile methodologies
that continuously integrate changes and modify the architecture of an application; this conce pt in FaaS
could leave residual and unused (legacy) components that are prone to or could lead to unforeseen
vulnerabilities. Furthermore, given the stateless nature of serverless architectures; there should be a secure
methodology for the management and storage of the required state in any used databases. This should also
be taken into consideration in the shared memory proposed by PHYSICS.
Continuing in the context of the PHYSICS project, the usage of the reusable artefacts marketplace platform
(RAMP) could lead to reusable vulnerabilities that are propagated through all the users of the artefact. This

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 43

stands true for all marketplaces and automated paired with manual security analysis should be performed
on each artefact to ensure that no serious vulnerabilities exist. Finally, the global deployment strategy and
auto scaling architecture of the PHYSICS project should also be concerned with malicious manipulations of
the autoscaling and locality mechanisms. More specifically, the algorithms used to determine the factors of
these mechanisms, could be fed manipulated data in order to change their behaviour.

2.14.9 Anonymization & Encryption Services

While cloud computing provides a flexible, on-demand and dynamic environment to the user, it poses many
privacy concerns as the provider can access the data stored in the cloud at any time. This is the case for the
edge computing model as well, as the user’s data is shared across many distributed nodes connected
through the Internet. Sharing these data introduces privacy concerns and major reliability issues if no
proper security measures are implemented by the service provider. The survey in [216] highlights the
various privacy threats present when handling sensitive data:

● Intrusion – Any action that can directly or indirectly invade an individual’s or an organisation’s
private affairs.

● Public Disclosure – The release of private or previously unknown information to the public
regarding an individual or an organisation.

● False Light – A form of public disclosure of false or malicious statements. Usually accomplished by
distorting the truth or using fictional facts.

● Appropriation – Referring to the appropriation of an individual’s or organisation’s identity or other
private data without authorization or knowledge. Especially in the digital era, this happens with
online accounts or profiles.

This is especially the case when the data sharing involves health data or personally identifiable information,
where efficient and reliable security mechanisms need to be implemented to preserve the user’s privacy
[217]. Several third-party open-source anonymization software have been evaluated [218] that can be
utilised to address these privacy issues, these are presented below:

● ARX Data Anonymization Tool: A popular open source and cross-platform tool, supporting
different privacy models like k-anonymity or Differential Privacy and can be used for up to 50
dimensions (e.g., attributes) on millions of data records.

● Amnesia: A data anonymization tool that supports k-anonymity and km-anonymity. It has a
hierarchy creator and editor that allows the user to tailor the anonymization requirements to and
balance between privacy and data utility.

● Anonimatron: A tool that pseudonymizes datasets. It can be used to generate pseudonymized
production data to find a bug or do performance tests outside of the client’s production
environment.

● Presidio: A tool that helps to ensure that sensitive data are properly managed and governed,
providing fast analysis and anonymization modules for private entities both in text and images. The
Personal Information Identifier analysis module involves identifiers such as credit card numbers,
names, locations, social security numbers, bitcoin wallets, US phone numbers, financial data and
more.

An important aspect of the architecture is its confidentiality capabilities on data transmissions. It must be
noted that FaaS developers should consider how their user’s data is transferred between each process or
service and evaluate the needs and privacy requirements of the underlying data. Furthermore, the integrity
of the underlying data is an aspect that should be considered, alongside confidentiality, to provide a
fundamental security overlay on PHYSICS. Both security aspects can be addressed through reusable
components and flows that can be properly overlayed on top of any other service or process..

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 44

2.14.10 Smart Contracts

In the cloud context, the term serverless is often associated with FaaS, a particular serverless component
type that allows hosting business logic in serverless architectures. As shown in [219] the distributed peer-
to-peer nature of Blockchain makes it an interesting consideration for enhancing the capabilities of
serverless architectures as the resource allocation and resource management tasks do not necessarily need
to be performed directly by the users. In [220] a blockchain-based serverless platform is introduced which
takes advantage of the capacity provided by underutilised personal computers to run serverless tasks,
considering the modern massive computational resource requirements. Modern cloud application
developers rely on a wide range of available cloud service models that allow for flexibility by making trade-
offs between out-of-the-box integrations and user control over the infrastructure. Especially with FaaS,
developers can deploy custom code blocks that can be triggered by events from multiple provider -managed
cloud service offerings. These cloud service offerings include emerging new paradigms such as BaaS [221]
which can combine the high computing power of cloud computing, the pervasiveness of IoT and the
decentralisation of blockchain ensuring the openness and transparency of the system.
Distributed Ledger Technology (DLT) is a protocol that enables the secure functioning of a decentralised
digital database, allowing for storage of all information in a secure and integral manner using cryptographic
functions. These distributed ledgers can be accessed using “keys” with their corresponding cryptographic
signatures. Once the information is stored inside the ledger, it becomes an immutable database that is
governed by the rules of the decentralised network. One of the most well-known uses of DLT is blockchain
technology.
In a blockchain network the participants can deploy functional code blocks that can be invoked to perform
automatic procedures in the ledger. These code blocks, called Smart Contracts (SC), provide secure and
transparent means for accessing and changing data inside the ledger by utilising cryptographic signatures.
Their corresponding “key” inside the ledger is the address at which the SC is deployed.
To invoke a Smart Contract, a client application formulates a cryptographically signed request message,
known as a transaction, containing entries like the address of the Smart Contract, the sign ature of the
specific function to be invoked and the arguments passed to it, and sends it to one of the network peers,
known as blockchain nodes. The node then validates the transaction, and includes it in a distributed,
blockchain-specific consensus mechanism that ensures all honest peers agree on the contents of the
transaction and its global order among other transactions. The result of this mechanism is a block of
transactions that is appended at the end of a fully replicated list of blocks, which are chained by their hashes.
This list is known as the blockchain data structure, and the way it is organised, in addition to the consensus
mechanism, both ensure that the stored transactions are practically immutable.
In this context Smart Contracts can enable useful properties for the PHYSICS architecture, ensuring
immutability for transactions made, facilitating accountable interactions, and delegating the business logic
on digital assets. From a study conducted in [222] for the adoption of Smart Contracts fr om different
organisations, the research shows that transparency and trust were the main benefits from incorporating
them to their business models and several limitations are identified for the capabilities of blockchain
technology which are mainly focused on the existing consensus protocols.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 45

3 REQUIREMENTS ELICITATION

3.1 Elicitation Methodology
The methodology used to gather the requirements was based on the vision of each partner for the PHYSICS
project. More specifically, each partner was asked to create internally draft visions and uses of the PHYSICS
solution and based on this, they extracted requirements (functional and not) that fulfil this vision and allow
for a seamless implementation of the envisioned scenario. This allows each partner to participate in the
building of the project from its foundation which in turn will allow for a seamless execution of the project
plan, given that the requirements of each partner are taken into consideration from the beginning. These
requirements will evolve and expand as the project matures, something that will be depicted in the next
version of this deliverable. Each partner was asked to document their created requirements within a
template that follows well understood and mature standards.
The aim of the envisioned methodology is to simulate the ISO29148 standard. What we want to do is to
allow the partners to initially create an internal requirement-driven vision of the project and on top of this
to create informed and detailed requirements that can be used in a technical level for the creation of the
product. These requirements will be further enhanced and detailed in the second iteration of the
deliverable, something that will result in more specific and detailed requirements. This way, we partially
skip the first abstract requirements of ISO29148 by having the internal visions of each partner and then we
create directly in the first version detailed requirements which will be used as a basis for the mid -term of
the project and for the second version of the requirements and essentially having two detailed versions of
requirements, something that allows for a rapid initial development of the project. This procedure is
depicted in Figure 12.

Figure 12 - PHYSICS Requirements Gathering Methodology

3.1.1 Structure and Standards
The overall approach when it comes to requirement specification follows well known and proven standards.
The basis of the overall approach is the usage of the widely used S.M.A.R.T. tool. This tool is a mnemonic
that gives five criteria that aim to guide the proper identification and selection of objectives and
requirements. These criteria, according to the tool, the defined requirements must be (i) Specific in their
initial definition (ii) Measurable with tight milestones and results, (iii) Attainable, (iv) Relevant to the
overall plan and (v) Timely with specific delivery dates. This tool will allow for a detailed specification,
management and tracking of each requirement to ensure that project objectives are met.
In addition to the aforementioned methodology, the MoSCoW approach was used to prioritize the
requirements within the context of the Specific field. More specifically, this approach defines four levels of
priority so as to allow a unified prioritization amongst all requirements. The levels are (i) M for must have,
(ii) S for should have, (iii) C for could have and (iv) W for will not have but could be a future enhancement.
Furthermore, the ISO25010 was used to create a homogenous categorization of the requirements. The
ISO25010 specification defines a set of metrics for software quality, these metrics perfectly align withy and
are translated to requirement categories. Given the additional complexity of a project, we added the data
category that aims to cover any requirements that focus on data. All in all, the following categories are
defined:

⮚ Functional Suitability (FUNC): For requirements that define functional and behavioural attributes.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 46

⮚ Data (DATA): For requirements that define data dependencies.
⮚ Usability (USE): For requirements that define ease of use attributes.

⮚ Reliability (REL): For requirements that define attributes that focus on reliability and dependability.

⮚ Security (SEC): For security-focused requirements.

⮚ Performance Efficiency (PERF): For requirements that describe performance needs.

⮚ Compatibility (COMP): For interoperability requirements.

⮚ Maintainability (MAINT): For requirements that describe ease of maintenance of the solution.

⮚ Portability (PORT): For requirements that describe needs for portability and replaceability.

3.1.2 Template
In order to attain consistency and uniformity of the aggregated requirements, a template was used by all
partners that modelled the aforementioned structure and standards. The template has the following fields
based on the S.M.A.R.T. approach:
Specific: The aim of this group of fields is to make the requirement specific and to ensure that it is on point.

⮚ ID: A unique identifier for the requirement. It has the structure Req-TASK-ALPHANUM where Req
is a constant, TASK is the task number related to the requirement and ALPHANUM a small and
descriptive alphanumeric value. (e.g., Req-5.1-ResKnow)

⮚ (Optional) Dependencies: This is a list of possible dependencies for the requirement. The
dependencies are listed with their IDs.

⮚ Type: The type of the requirement. The type should be one of the pre-specified types which are
based on the ISO 25010 standard.

⮚ Short Name: A short but descriptive name for the requirement.

⮚ (Optional) Actors: Any actors involved in the requirement. This field is optional since some
requirements might not have any easy to identify actors. The aim of this is to better specify the
requirement and possibly make it easier to understand.

⮚ Description: A description of the requirement.

⮚ (Optional) Additional Information: Any additional information for the requirement.

⮚ Priority: The importance of the requirement. It follows the MoSCoW approach to specify the
priority of the requirement.

Measurable: The aim of this field is to specify any metrics and milestones that will be used as measures of
goal achievement.
Attainable: This field defines the attainability of the requirement. This should align with the priority of the
requirement.
Relevant: This field will investigate the relevancy of the requirement to the project. The aim here is to
ensure that the requirement is as close to the project as possible.
Timely: The final field of the S.M.A.R.T. approach specifies the time by which the requirement should be
met. Here there can be many definitions that mainly refer to the project such as task completion dates,
milestones, project months etc.
The focus of this template is to be as concise as possible while maintaining an optimized amount of
information that will allow it to be easily translatable to technical terms for the implementation tasks to
understand. The entire template is available in ANNEX I.

3.1.3 Openness and Flexibility
Although the skeleton of a requirement is pre-determined and essentially its use is mandatory, the actual
contents of the deliverable can be flexible. More specifically, the short name, the description and additional
information areas are by their nature arbitrary inputs that have small limitations. Furthermore, the actors
area is an optional input that serves as an additional definition layer that could be used to better describe
the requirement or add information that will be useful during the implementation phase. The M(easurable)
area allows authors to specify how the requirement will be measured in open text; the same goes for
A(chievable), R(elevant) and T(timely) where authors specify how achievable and how relevant to the
project the requirements are and when the requirements should be satisfied in open text. Finally, although

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 47

in the dependencies it is recommended to add the IDs of the requirements that the requirement depends
on, authors are free to define other dependencies so as to be more flexible and have better capabilities to
exactly define their requirements.
The intuition behind this choice is to allow authors to be as descriptive or abstract as they require for the
requirement they are specifying. This was chosen due to the fact that different kinds of requirements have
different needs and can be specified in more detailed or vague manner. For example, one requ irement could
specify a strict policy that requires the usage of specific algorithms and technologies, while other
requirements are not so technical and might require conformity to some laws and regulations. Finally, these
are the requirements as they are understood in month M4 of the project, as the project matures and it is
better understood, these requirements might change, evolve, deprecate or new requirements might occur.
This is why a second version of this deliverable is scheduled for month M21, wher e the partners of the
PHYSICS project will have the chance to depict their updated vision of the project in a more concrete
manner. These final requirements will be compared with their initial version and tracked until the end of
the project for their fulfilment.

3.2 PHYSICS Requirements – Second Version
In this chapter there is the documentation of each requirement as they are provided by each partner. Each
requirement was grouped by the PHYSICS layer that they affect the most. It is worth noting here that a
requirement could potentially affect multiple layers or even layers that were not predicted in this initial
state. These changes will be taken into account in the second version of the deliverable and will be
investigated throughout the project.

3.2.1 Cloud Design Environment Requirements

 Req-3.1-WorkflowDef

Section Description
S ID Req-3.1-WorkflowDef

Dependencies -
Type FUNC: Functional Completeness
Short name Define workflows on FAAS platform

Actors FAAS platform, Visual Design Environment
Description FaaS platform needs to have workflow definition abilities to allow

development of cloud patterns and applications that require specific
execution sequence as it is represented in the development Visual
environment. The Visual Environment needs to translate the designed
flow in the respective workflow definition specification of the
platform.

Additional
Information

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M This requirement will be identified as complete, if the FaaS platform can accept, in any format,

the definition of an application workflow and execute different functions or runtimes in
sequence or through any arbitrary defined structure (including branches etc.).

A Many FaaS platforms (such as Openwhisk or IBM cloud) provide the ability to create
workflows by calling an action from another action. For this reason, we believe this is an
achievable requirement.

R The goal of this requirement is to allow the development applications and cloud patterns in a
flow-like way that will represent what a developer designs in the Visual Environment.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 48

T This should be one of the firsts priorities as Visual Cloud Application Workflow Design
Environment and Cloud Design Patterns as FaaS Template Nodes highly depend on it.
Therefore, it should be available by Phase 1 of the project (M13 prototype-M15 Integration).
The ability for any arbitrary structure and branch can be implemented by Phase 2 of the
project.

 Req-3.1-SupportedRuntimes

 Section Description
S ID Req-3.1-SupportedRuntimes

Dependencies
Type USE: Operability

Short name Supported runtimes on Visual Editor
Actors Visual Editor
Description The Visual Editing environment should support more languages, other

than NodeJS, based on the supported runtimes of the FaaS platform.
Additional
Information

This means that the Visual Editing environment should also do the
appropriate syntax highlighting and checking to help developers with
their development.

Priority
(MoSCoW)

Should-have

M This requirement will be identified as complete, if the Visual Environment allows the
development in more than just one of the supported runtimes.

A For this requirement to be implemented it is required to make appropriate changes in the
Visual Editor that will be used (for example Node-RED). Furthermore, many code editors
today allow development on multiple runtimes and offer the appropriate syntax highlighting
and error checking to help the developer. For this reason, we believe this is an achievable
requirement.

R The goal of this requirement is to allow application developers to develop their applications
on multiple runtimes, based on the supported runtimes from the FaaS platform.

T Although the Visual Environment should support the same runtimes that the FaaS engine
supports this is not a very-high priority. This requirement can be assessed after Phase 1 of
the project (M13 prototype-M15 Integration)

 Req-3.1-UploadCustomImages

 Section Description
S ID Req-3.1-UploadCustomImages

Dependencies Req-3.1-CustomDockerImages

Type USE
Short name Upload custom images functionality
Actors Visual Environment
Description If the FaaS platform supports it, the Visual Environment should

provide developers the ability to upload their own custom docker
images and use them as function nodes.

Additional
Information

Priority (MoSCoW) Should-have

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 49

M This requirement will be identified as complete, if the Visual Environment allows them to
upload custom docker images and use them as function nodes.

A For this requirement to be implemented it is required to make appropriate changes in the
Visual Editor that will be used(for example Node-RED). Registry facilities are also required
in order to store the uploaded image.

R The goal of this requirement is to allow application developers to upload their own custom
docker images, if the FaaS platform supports it, and use them as functions. With this we
provide developers greater freedom on their applications and ease of porting of existing
applications.

T This requirement can be handled in Phase 2 of the project (M30-32).

 Req-3.1-MultiTenancy

 Section Description

S

ID Req-3.1-MultiTenancy

Dependencies

Type PERF

Short name Multi Tenancy

Actors Visual Design Environment

Description The Design Environment should have the possibility to
define specific branch names different for each user. The
branch name will be used in the build process for that user
flow. It allows one backend service for handling building
and deploying processes for multiple users.

Additional Information

Priority (MoSCoW) Must have

M
Input for the branch name must be placed on the UI. Entered branch name must be remembered
by the browser. That name must be sent to the build process and deployment process.

A
This requirement is achievable by extending necessary backend requests by branch name
property.

R
Purpose for this feature is to have one job defined on Jenkins that is handling builds from multiple
branches, and also one backend service processing data from multiple users.

T
This is the first priority, needed to invoke a job on Jenkins that will build flow for separated
branches.

 Req-3.1-LogsService

 Section

S

ID Req-3.1-LogsService

Dependencies

Type PERF

Short name Logs Service

Actors Visual Design Environment

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 50

Description There should be one place for collecting logs coming from
each microservice. Logs should have the possibility of
passing JSON objects for debugging purposes. Viewing
logs should be available from the panel on the UI.

Additional Information

Priority (MoSCoW) Should have

M
Service collecting logs should be created. Other microservices should be connected to it.

A
This requirement can be fulfilled creating a new custom implementation of service collecting logs,
or using an open source one, for example Grafana Logs.

R
This requirement aims to make the application easier for debugging, tracking the processes
engaging multiple microservices.

T It should be finished before the application starts to be used by multiple users.

 Req-3.1-BuildsHistory

 Section

S

ID Req-3.1-BuildsHistory

Dependencies

Type PERF

Short name Builds History

Actors Visual Design Environment

Description Built flows page displays information about builds done
by the Design Environment. List is presented in the
table that contains information about time, branch and
name of the function that will be deployed on the
OpenWhisk.

Additional Information

Priority (MoSCoW) Should have

M
Page with flow build information should display a table for each flow with details like time, branch
and function name.

A This requirement is achievable by storing additional properties for the builds in the database.

R
The goal of this requirement is to have information needed to differentiate results of builds for
different users displayed on the UI.

T It should be ready after the multi-tenancy feature.

 Req-3.3-PatternDocumentation

 Section Description

S ID Req-3.3-PatternDocumentation
Dependencies Req-3.1-WorkflowDef,Req-3.2-RequirementsCoverage
Type FUNC: Functional Completeness
Short name Documentation and Semantic Enrichness of Design Patterns

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 51

Actors Visual Environment, Semantic Framework, application developer
Description The exposed patterns from T3.3 need to be completely documented

so that the application developer is aware of their structure,
operation, effects and outcomes as well as how to incorporate them
in their application. Furthermore, semantic tags that can be included
in the PHYSICS ontology and therefore enable reasoning over the
needed functionalities that can be enhanced by the pattern are
needed.

Additional
Information

Priority (MoSCoW) Must-have
M Each pattern should be documented with characteristics such as:

● One indicative use case or testing flow case where applicable
● Expected benefits (if quantifiable)
● Anticipated limitations or values/cases in which the pattern no longer becomes useful, if

applicable
● Adaptation needed by the application (if any) and the way the pattern is configured (via the

incoming message or the provided UI)
This information should also be visible to the application developer at the visual environment layer.

A The requirement is achievable, since it relates to the richness and completeness of
information that is available to the application developer and should be completed by the
pattern developers. The only aspect that may not be attainable in some cases is the
boundaries of operation after which the pattern no longer becomes useful. For these cases
indicative comments or rules of thumb may be used.

R The goal of this requirement is to enable the use of readymade functionality adapted to the
cloud and/or FaaS design principles in the application structure with limited knowledge or
effort by the application developer. To this end it is linked to Objective - 2: “Enhance
transparency, abstraction and application development reuse through intuitive flow
programming approaches incorporating typical cloud design patterns structures” of the
project.

T This activity is expected to go hand in hand with the actual availability of the patterns.
Therefore, based on the pattern production, it is expected to have completed in Phase 1 of
the project (M13 prototype-M15 Integration) for the patterns that are made available in
M13, and accordingly for the ones that are delivered in Phase 2 of the project (M30-32).

 Req-3.3-PatternApplication

 Section Description

S ID Req-3.3-PatternApplication
Dependencies Req-3.1-WorkflowDef
Type FUNC: Functional Completeness
Short name Application of Design Patterns by Application Developers

Actors Visual Environment, Application Developer, FaaS platform
Description The exposed patterns from T3.3 need to be seamlessly integrated into

the application structure. To this end, they need to be exposed in the
Visual environment and directly integrated into the application
workflow, while configurable, if applicable, through the environment.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 52

The mechanism for enforcing the pattern should be seamlessly
deployed along the application in the FaaS platform.

Additional
Information

Priority
(MoSCoW)

Must-have

M Each pattern should be successfully deployed and operated along the normal application
components, not affecting their functional correctness.

A For this requirement to be implemented, a specific docker image is needed per pattern that
contains the implementation logic. Also, a relevant node is needed at the Visual editor. In
some cases, a minor configuration step may be needed in order to set it up.

R The goal of this requirement is to enable the use of readymade functionality adapted to the
cloud and/or FaaS design principles in the application structure with limited knowledge or
effort by the application developer. To this end it is linked to Objective – 2: “Enhance
transparency, abstraction and application development reuse through intuitive flow
programming approaches incorporating typical cloud design patterns structures” of the
project.

T This activity is expected to go hand in hand with the actual availability of the patterns.
Therefore, based on the pattern production, it is expected to have completed in Phase 1 of
the project (M13 prototype-M15 Integration) for the patterns that are made available in
M13, and accordingly for the ones that are delivered in Phase 2 of the project (M30-32).

 Req-3.3-ParallelContainerExecution

 Section Description
S ID Req-3.3-ParallelContainerExecution

Dependencies

Type USE
Short name Spawn multiple containers to execute same function with different

data in parallel

Actors FaaS-Platform
Description FaaS-Platform should provide the ability on a pattern to request the

creation of multiple containers that execute the same function with
different data to achieve parallel processing(MapReduce patterns &
MPI patterns).

Additional
Information

Priority (MoSCoW) Could-have
M This requirement will be identified as complete, if FaaS-Platform provides the ability for a

pattern to specify the number of containers that will be created for a specific parallel
execution workflow.

A Although obstacles can be found some FaaS platforms support this feature and allow
concurrent function executions.

R The goal of this requirement is to allow the implementation of parallel execution workflows
by avoiding multiprocessing inside containers which is not recommended

T This activity is expected to go hand in hand with the availability of some patterns that
require parallel execution. Therefore, based on the pattern production, it is expected to have

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 53

completed in Phase 1 of the project (M13 prototype-M15 Integration) for the patterns that
are made available in M13, and accordingly for the ones that are delivered in Phase 2 of the
project (M30-32).

 Req-4.4-funcNode

 Section Description
S ID Req-4.4-funcNode

Dependencies Req-3.1-WorkflowDef
Type PORT

Short name Incorporate as a functional node
Actors -
Description Incorporate as a functional node in the design environment of T3.1

in order to enable its usage by the application-level function
blocks.

Additional Information -

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Verify the correct deployment of the in-memory state service as a functional node.
A This requirement is achievable, as it is one of the main goals of task T4.4.
R The objective of this requirement is to integrate the in-memory state service with the rest of

components and allow its use by the application-level function blocks.
T D4.2 M30

3.2.2 Semantic Framework Requirements

 Req-3.2-WorkflowCoverage

 Section Description
S ID Req-3.2-WorkflowCoverage

Dependencies Req-3.1-WorkflowDef
Type DATA
Short name Coverage of Workflow Programming Attributes
Actors FaaS platform
Description The PHYSICS Ontologies/Metamodels must include every attribute

of functional workflow programming, in a way ingestible by
Semantic Web tools.

Additional
Information

Reuse of workflow Ontologies in the inception of the application
description metamodel.

Priority (MoSCoW) Must-have
M This requirement will be identified as complete, if the attributes of the workflows are all

included in the resulting PHYSICS ontology about the application characteristics description.

A This requirement is achievable through knowledge engineering. It is a matter of matching
the semantic terms/classes that have to do with the workflow, making sure that they are all
derived by the visual workflow tool, and connecting them with terms that express
constraints or requirements for functions/nodes.

R This requirement is about the creation of the basic PHYSICS ontology about the application
characteristics description of the metamodel for the workflows. This will help create the

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 54

basic graph of the workflow, and its attributes. It will also be the basis for the annotation of
the workflow’s components with additional attributes, constraints and requirements.

T This is of one of the highest priority requirements, as it is an essential part of the semantic
description of the functional workflows. It should be one of the first things to be
implemented in the PHYSICS ontology.

 Req-3.2-RequirementsCoverage

 Section Description

S ID Req-3.2-RequirementsCoverage
Dependencies Req-3.2-WorkflowCoverage
Type DATA
Short name Coverage of function/component requirement attributes

Actors FaaS platform
Description The PHYSICS Ontologies/Metamodels must include sufficient

attributes for the requirements a workflow component may have
regarding hardware, software or location.

Additional
Information

Specifically provide properties and possible value domains for
hardware, software or location requirements a workflow
component has. Due to the relationship with T5.1, in the next version
there might be additional dependencies from T5.1.

 Priority (MoSCoW) Must-have
M This requirement will be identified as complete, if the requirements expressed in the

PHYSICS application characteristics descriptions cover the needs of the project’s use cases,
at least.

A This requirement is achievable through knowledge engineering and gathering the attributes
that may be required in each indicative use-case scenario.

R The requirements an application workflow component may have are covered as much as
possible. Links with the service descriptions of Task 5.1 must also be created.

T This is one of the highest priority requirements, as it is an essential part of the semantic
description of the requirements of the components of the functional workflows. It should be
one of the first things to be implemented in the PHYSICS ontology.

 Req-3.2-ConstraintsCoverage

 Section Description
S ID Req-3.2-ConstraintsCoverage

Dependencies Req-3.2-WorkflowCoverage

Type DATA
Short name Coverage of QoS and performance constraint attributes
Actors FaaS platform
Description The PHYSICS Ontologies/Metamodels must include sufficient QoS

attributes that a workflow component may have.
Additional
Information

Performance metrics or Cloud SLA terms have to be reused and
organized as insertable values in the workflow components. Due to
the relationship with T5.1 and the optimizer, in the next version
there might be additional dependencies from these components.

 Priority (MoSCoW) Must-have

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 55

M This requirement will be identified as complete, if the constraints expressed in the PHYSICS
application characteristics descriptions cover the needs of the project’s use cases, at least.

A This requirement is achievable through knowledge engineering, inclusion of QoS
parameters found in T5.1 service description, and investigating the constraints used in the
performance optimization process.

R This requirement ensures that application descriptions include QoS and performance-
indicator values that will be used accordingly by both the reasoning framework and the
optimizer of PHYSICS.

T This is one of the highest priority requirements, as it is an essential part of the semantic
description of the requirements of the components of the functional workflows. It should be
one of the first things to be implemented in the PHYSICS ontology.

 Req-3.2-LinkWithVocabularies

 Section Description
S ID Req-3.2-LinkWithVocabularies

Dependencies -
Type DATA
Short name Link PHYSICS ontology terms with other Vocabularies
Actors FaaS platform
Description The PHYSICS Ontologies should have links with other ontologies and

follow the linked data paradigm.
Additional
Information

 Target common ontologies to reuse terms from, or make links to,
when creating the PHYSICS application characteristics ontologies.
Due to the relationship with T5.1, in the next version there might be
dependencies from T5.1.

 Priority (MoSCoW) Should-have
M Create a link with at least one existing ontology per domain included in the PHYSICS

application characteristics descriptions.
A This requirement is achievable through knowledge engineering and analyzing ontologies of

related domains to the ones PHYSICS encompasses.
R This requirement helps in both of the following ways:

Assist in the knowledge engineering process, by discovering terms, and relationships
between them, that have been thought of by other researchers.
Makes the resulting PHYSICS ontology reusable in future work related to the semantic web,
and modelling of logic in general.

T This is an essential part of the semantic description of the requirements of the components
of the functional workflows. It should be one of the first things to be implemented in the
PHYSICS ontology.

 Req-3.2-ReasoningCapability

 Section Description

S ID Req-3.2-ReasoningCapability
Dependencies -
Type USE
Short name Reasoning capabilities using the PHYSICS ontology
Actors FaaS platform

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 56

Description The PHYSICS Ontologies/Metamodels must be effectively usable
within reasoners.

Additional
Information

 Application description models should, in combination with service
descriptions, be usable in the reasoning framework of PHYSICS. Due
to the relationship with T4.1 and T5.1, in the next version there
might be dependencies from these tasks.

 Priority (MoSCoW) Must-have
M The PHYSICS Ontologies/Metamodels must be usable as terminological boxes of knowledge

bases with reasoners and should be capable of constituting an effective entailment regime
on SPARQL queries of individuals, yielding more knowledge as assertions.

A This requirement is achievable through: knowledge engineering, the testing on common
reasoners and SPARQL querying over example individuals that follow the classes of the
resulting Ontology, given the OWL Ontology itself as an entailment regime.

R A SPARQL query over example data/individuals, yields more assertions that are a result of
a basic OWL entailment regime, than the data originally created. This will ensure the
usability of the model within a reasoner that extends beyond simple OWL reasoning.

T This requirement comes at a second stage, as the effort will be put into the inclusion of the
resulting ontology in the reasoning engine as its terminological box (TBOX). It is however
essential for the reasoning engine.

 Req-3.2-ExpressivityRichness

 Section Description
S ID Req-3.2-ExpressivityRichness

Dependencies Req-3.2-WorkflowCoverage, Req-3.2-RequirementsCoverage, Req-
3.2-ReasoningCapability

Type USE
Short name High Expressivity: Attribute Richness & Relationship Richness
Actors FaaS platform

Description The PHYSICS Ontologies/Metamodels should achieve at least
acceptable attribute richness and relationship richness, in order to
indicate expressiveness.

Additional
Information

Attribute richness is an indicator of how rich the description of a
class is. Relationship richness is an indicator of the achievable
variety through connections, and a high level of achievable detail.

Priority (MoSCoW) Should-have

M The PHYSICS Ontologies/Metamodels should achieve attribute richness and relationship
richness same as or higher than the average of the other linked ontologies in its domain.

A This requirement is achievable through: knowledge engineering, creation of meaningful
predicates/properties between classes/terms wherever possible and the testing on
common reasoners

R Make the resulting ontology as expressive as possible, in order to ensure that additional
knowledge and assertions lead to the reduction of the effective search space of the optimizer,
through a reasoning process.

T This requirement comes at a second stage, as the effort will be put into the inclusion of the
resulting ontology in the reasoning engine as its terminological box (TBOX). It is however
essential for the reasoning engine.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 57

 Req-4.1-Adaptation

 Section Description
S ID Req-4.1-Adaptation

Dependencies -
Type FUNC
Short name Runtime Adaptation
Actors Semantics, Service Semantic Models, Global Continuum Placement
Description The deployment graph, produced by the Inference Engine, will be

updated during runtime based on the performance of the utilized
resources.

Additional
Information

Due to the relationship with T3.2, T4.3 and T5.1, in the next version
there might be dependencies from these tasks.

 Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Frequency of required changes in the deployment graph.
A Runtime Adaptation requires appropriate system architecture in order for updated inputs to

trigger a new deployment graph calculation.
R This requirement ensures that misbehavior in the deployment of a given function will be

handled appropriately.

T Initial version at M13.
Integration with the other components at M15.
Updated version at M30.
Reintegration with the other components at M32.

 Req-4.1-Inputs

 Section Description
S ID Req-4.1-Inputs

Dependencies Req-5.1-Compatibility

Type DATA
Short name Inference Engine (Reasoning framework)
Actors Semantics, Service Semantic Models, Global Continuum Placement
Description The Inference Engine takes as input two semantic models (i.e., T3.2,

T5.1), one describing the application to be deployed and another
describing the available cloud resources. The output is the
deployment graph where each function of the application will be
connected to certain resources capable of running the given function.

Additional
Information

 Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Domain coverage by ontologies, Semantic distance/similarity of graph nodes
A Application and Services Ontologies will be developed in the context of PHYSICS; thus, they

could be aligned in order to optimize the required reasoning.
Dataset with resources and deployments of FaaS are difficult to find, however some partners
or other EU projects might provide such data.

R Availability of data is mandatory in order to start developing the Inference engine. The data
format (e.g., JSON-LD, XML) of the inputs and the output of T4.1 should be defined. Dataset

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 58

with resources and deployments of FaaS applications are required in order to develop ML-
based Reasoning.

T Initial version of ontologies at M8.
Dataset with resources and deployments at M15.
Updated version of ontologies at M17.
Dataset with resources and deployments from PHYSICS platform at M20.

 Req-4.1-Latency

 Section Description
S ID Req-4.1-Latency

Dependencies Req-4.1-Reasoning

Type PERF
Short name Inference Engine Efficiency
Actors
Description The Reasoning performed by the Inference Engine should be both

valid and instant in order for PHYSICS to operate efficiently.
Additional
Information

Due to the relationship with T4.3, in the next version there might be
additional dependencies from T4.3.

 Priority (MoSCoW) S: Should-have. Desirable requirement.
M Correctness of this requirement will be determined by its applicability within the PHYSICS

ecosystem.
A Given that application and services ontologies are properly designed this requirement will be

achievable.

R This requirement will enhance the overall performance of PHYSICS.
T After the initial deployment of the Inference engine .

 Req-4.1-ML_Reasoning

 Section Description

S ID Req-4.1-ML_Reasoning
Dependencies Req-4.1-Inputs
Type FUNC
Short name Machine Learning based Reasoner

Actors Global Continuum Placement
Description The reasoning between requirements and application resources is

done with Machine Learning techniques.

Additional
Information

 Priority (MoSCoW) C: Could-have. Optional requirement

M Extra utility in T4.3 in comparison to Req-4.1-Reasoning.
A ML-based Reasoning requires R&D and proper data.
R ML based Reasoning will be capable of eliminating the search space of the T4.3.
T

 Req-4.1-Reasoning

 Section Description
S ID Req-4.1-Reasoning

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 59

Dependencies Req-4.1-Inputs
Type FUNC
Short name Inference Engine (Reasoning framework)

Actors Semantics, Service Semantic Models, Global Continuum Placement
Description The Inference Engine takes as input two semantic models (i.e., T3.2,

T5.1), one describing the application to be deployed and another
describing the available cloud resources. The output is the
deployment graph where each function of the application will be
connected to certain resources capable of running the given function.

Additional
Information

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Required time for reasoning (Number of SPARQL queries, query mean response time)

A Rule-based Reasoning will be implemented by an open-source framework for building Linked-
Data applications (e.g. Apache Jena).

R This requirement will provide the tools to use in a functional context the semantic descriptions
created by T-3.2 and T-5.1, through exposing them in a service-oriented manner as well as
offer reasoning capabilities and semantic inference. Req-4.1-Reasoning will also aid T-4.3 in
the determination of the benefit of using a specific service type instead of another and it will
act as a first level filter to minimize the number of candidate services that may be used for the
deployment of a given application graph, enhancing the optimization process of T-4.3.

T Initial version at M13.
Integration with the other components at M15.
Updated version at M30.
Reintegration with the other components at M32.

 Req-5.1-ResKnow

 Section Description
S ID Req-5.1-ResKnow

Dependencies -
Type DATA: Data preconditions

Short name Input information on resources
Actors -
Description For the service semantics component to be operational, the

component needs to be aware of which resources to describe and
their respective characteristics

Additional
Information

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M This requirement will be identified as complete, if the service semantics component can

receive information that will directly or indirectly lead to the semantics modelling.
A Although it is thought to be achievable, certain obstacles can occur such as how to acquire the

properties from different cloud vendors and edge devices. The variety of resource types will
most probably require a unique approach to collecting these data via a single middleware.
Additionally information on domains such as environmental impact, i.e. energy consumption

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 60

can be very difficult to obtain. As such the component should include methods for manual
input of the respective fields in the ontology.

R The scope of this requirement is to collect resource properties. This is the backbone of the
service semantics component that will in turn enable a functional modelling.

T This should be the first priority of the component, given that every other functionality of the
component depends on it. As a result, this requirement will be assessed during the first year
of the project.

 Req-5.1-Interface

 Section Description
S ID Req-5.1-Interface

Dependencies -
Type USE: Operability
Short name Component’s operational interface.
Actors Application developer

Description An interface that interested actors can find an overview of the
resources available.

Additional
Information

Priority (MoSCoW) C: Could-have. Optional requirement.
M -

A This requirement is thought to be achievable.
R The main goal is to provide an additional graphical interface through a web application where

resources and their respective properties can be conceptualized graphically.

T This requirement will be addressed during the second year of the project after the initial
design has concluded and a prototype have been developed.

 Req-5.1-Compatibility

 Section Description
S ID Req-5.1-Compatibility

Dependencies Req-4.1-Inputs
Type COMP: Interoperability t

Short name Compatible outcome with co-existent components
Actors Inference Engine
Description The format of this component’s outcome should allow its use by other

components interested in the service semantics.
Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Correctness of this requirement will be determined by its applicability within the PHYSICS

ecosystem.

A With the required amount of communication and design between involved partners this
requirement will be achievable.

R This requirement ensures that the components involved in utilizing the semantics description
will have a defined format of inputs and outputs that allows interoperability.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 61

T This requirement will be focused on at the mid to late early stages of design. Hopefully this
period will take place during the 6th to 8th month of the project.

 Req-5.1-Portability

 Section Description
S ID Req-5.1-Portability

Dependencies -
Type PORT
Short name Portability of the Service Semantic Reusables
Actors
Description Creation of reusable entities that describe the core components of

resources to be possibly utilized in an edge application.
Additional
Information

Priority (MoSCoW) S: Should-have. Desirable requirement
M The portability of the results of this task will be verified by the creation of service semantics

for a variety of applications in the edge that utilize a broad spectrum of resources.
A Although the complexity of modelling services can be daunting, a set of state-of-the-art

methodologies and technologies along with exhaustive research will enable fulfilment of this
scenario.

R The fulfilment of this requirement is needed in order to extend the resource management
components of the PHYSICS programs so as to be extendable in cases that new resources are
implemented in relevant scenarios.

T This requirement is to be fulfilled upon the first year of the project as it is dependent with the
resource allocation process of task 4.2.

 Req-5.1-GraphSeparability

 Section Description

S

ID Req-5.1-GraphSeparability

Dependencies -

Type DATA: Data preconditions

Short name Identification of different ontology graphs

Actors -

Description The service semantics component will capture
information on more than one different clusters. As such ,
the produced graphs from semantics modelling should be
separable and assigned unique identifiers.

Additional Information

Priority (MoSCoW) M: Must-have. Mandatory requirement.

M
This requirement will be identified as complete, if the service semantics component can produce
multiple but uniquely identified graphs of each cluster examined .

A
No obstacles of great impact can be foreseen as there do exist techniques to implement in order
to produce unique identifiers for each cluster

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 62

R
The scope of this requirement is to manage output of the component, i.e. provide unique
identifiers on produced semantic graphs.

T
This should a high priority, given that components that ingest information from the service
semantics will need to identify the different options for deployment in a clear and structured way.

 Req-5.1-SemCap

 Section Description
S ID Req-5.1-SemCap

Dependencies -

Type FUNC: Functional Completeness
Short name Resource capabilities in service semantics
Actors -
Description Service semantics should capture all the available resources and their

respective capabilities in a way that is meaningful for resource
management and allocation through the semantics reasoner.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.

M The quality of results will be tested through direct applicability in the PHYSICS use cases and
other relevant scenarios.

A Through the past years several domain specific languages have been utilized in order to create
application topologies by defining semantic descriptions of the relevant components. In
PHYSICS such an approach is thought to be achievable to realize and implement.

R Creating service semantics will enable PHYSICS to manage resources in a meaningful way that
allows deployment of applications in the edge and enables a meaningful resource allocation.

T This requirement will be a work in progress for the first 18 months of the project in
collaboration with the relevant tasks from WP3 and WP4.

3.2.3 FaaS and Container Platform Requirements

 Req-4.4-state

 Section Description

S ID Req-4.4-state
Dependencies -
Type FUNC
Short name State between function invocations

Actors -
Description The distributed management system must maintain the state between

function invocations.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.

M Plan and design a validation process to verify that different functions share the state in order
to obtain a result combining the results obtained from the previous functions.

A This requirement is achievable, as it is one of the main goals of task T4.4.

R This requirement aims to share state between different FaaS functions.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 63

T D4.1 M13

 Req-4.4-interplay

 Section Description

S ID Req-4.4-interplay
Dependencies -
Type FUNC
Short name Interplay between the in-memory state and the persistent storage

layer
Actors -
Description Enable numerous functionalities of interplay between the in-memory

state and the persistent storage layer.
Additional
Information

-

Priority (MoSCoW) C: Could-have
M Plan and design a validation process to verify the interplay between both the in-memory state

and persistent storage layer.
A This requirement is achievable, as it is one of the main goals of task T4.4.
R This requirement aims to define and implement a process to integrate the state storage using

the in-memory state and the persistent storage layer.
T Initial version was reported in D4.1 at M13. An updated version will be produced at M30

 Req-4.4-tradeOffs

 Section Description
S ID Req-4.4-tradeOffs

Dependencies -
Type USE
Short name Trade-offs between consistency and performance

Actors -
Description Investigate trade-offs between consistency and performance.
Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement
M Write a document with the investigation analysing the trade-offs.
A This requirement is achievable, as it is one of the main goals of task T4.4.

R This requirement amins to study the trade-offs between consistency and performance and
how this affects the development of this task.

T D4.1 M13

 Req-4.4-perf

 Section Description
S ID Req-4.4-perf

Dependencies Req-4.4-state
Req-4.4-interplay

Type PERF
Short name Activation performance

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 64

Actors -
Description Dynamic caching mechanisms and persistent storage functionalities

activation performance.
Additional
Information

-

Priority (MoSCoW) C: Could-have
M Measurement of the activation time of functions
A This requirement is achievable, as it is one of the main goals of task T4.4.
R The goal of this requirement is to evaluate the time it takes for functions to configure with data

stored in cache or persistent storage to be ready to run.
T D4.2 M30

 Req-4.4-access

 Section Description
S ID Req-4.4-access

Dependencies -
Type USE

Short name In-memory access patterns.
Actors -
Description Different access patterns must be investigated and included such as

single client-multiple access, multiple client-single access, multiple
client-multiple access.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement

M Check state access using different access patterns.
A This requirement is achievable, as it is one of the main goals of task T4.4.
R The goal of the requirement is to implement and verify that state access from different

functions is working correctly and all functions write or read the expected data.
T D4.1 M30

 Req-4.5-PersStorage

 Section Description

S ID Req-4.5-PersStorage
Dependencies Req-3.1-WorkflowDef, Req-3.3-PatternApplication
Type FUNC: Functional Completeness
Short name Persistent storage on FaaS platform
Actors FaaS platform

Description FaaS platform should provide persistent storage (Like AWS S3 or
Minio) for applications, that also supports notifications based on the
content changes.

Additional
Information

-

Priority (MoSCoW) Could-have

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 65

M This requirement will be identified as complete, if the FaaS platform can provide the
application developers the capability to read, write and update persistent data in FaaS
platform during function execution. Notification mechanisms on top of the data are also
needed in order to enable triggering of functions based on content availability or change.

A Many FaaS platforms (such as Openwhisk, AWS Lambda) provide the capability for a
function to use persistent volumes, Object Storage or external DBs to handle persistent data
so we believe this is an achievable requirement.

R The goal of this requirement is to allow applications to handle persistent data during their
runtime to apply their business logic.

T Application development can be done without relying on persistent data or with using
external resources (such as an external database). For this reason, we believe this
requirement does not have a high priority and can be completed in Phase 2 of the project
(M30-32).

 Req-5.4-optimization

 Section Description

S ID Req-5.4-optimization
Dependencies
Type FUNC
Short name Definition and implementation of an optimization process
Actors -

Description Definition and implementation of an optimization process inside the
provider resources

Additional
Information

-

Priority (MoSCoW) C: Could-have
M Compare our developed implementation process with other available systems.

A This requirement is achievable, as it is one of the main goals of task T5.4.
R The aim of this requirement is to define and implement an optimization process inside the

resource’s provider.

T D5.2 M30

 Req-5.4-co-allocation

 Section Description
S ID Req-5.4-co-allocation

Dependencies Req-5.4-workloads
Type FUNC
Short name Co-allocation service
Actors -

Description This requirement will provide rules for the co-allocation of services in
a physical node in order to optimize the performance of the services
and do not create contention

Additional
Information

Priority (MoSCoW) M: Must-have. Mandatory requirement.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 66

M Compare the performance when co-allocation is used with other strategies for assigning
services to physical nodes.

A This requirement is achievable, as it is one of the main goals of task T5.4.
R The aim of this requirement is to define rules for co-allocating services in a physical node in

order to optimize the performance of all services deployed in the node.
T D5.2 M30

 Req-5.4-workloads

 Section Description

S ID Req-5.4-workloads
Dependencies
Type USE
Short name Identify computational nature of the workloads
Actors The actors involved in this scenario

Description Identify the computational nature of the workloads running in a
physical node. In order to define the co-allocation rules.

Additional Information

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M
A This requirement is achievable, as it is one of the main goals of task T5.4.
R The goal of this requirement is to analyse the different natural workloads and bottlenecks to

obtain accurate placement decisions.
T D5.1 M13

 Req-5.4-AImodels

 Section Description
S ID Req-5.4-AImodels

Dependencies Req-5.4-UsageModellingOpt
Type USE
Short name Effects of different deployed services and models combinations

Actors -
Description Investigate the effects of various combinations of the deployed

services and models

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Plan and implement a way to evaluate the different combinations of implemented services and

models
A This requirement is achievable, as it is one of the main goals of task T5.4.
R The goal of this requirement is to study the effects of the different combination of the deployed

services and models
T D5.1 M13

 Req-5.4-UsageModellingOpt

 Section Description

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 67

S ID Req-5.4-UsageModellingOpt
Dependencies Req-4.5-FaaSandIaaSMonitoring,

Req-4.5-FaaSRuntimeAdaptation
Type PERF: Time Behavior
Short name Exploit Monitoring Data for Modelling and Optimization purposes
Actors FaaS Platform, Container Orchestrator Platform

Description Exploitation of performance information may be used in a modelling
process in order to optimize management practices either at the
platform or orchestrator levels.

Additional
Information

The modelling may refer to aspects such as anticipation of request
invocation patterns, re-allocation of request sequence in order to
optimize warm starts and/or dynamic setting of FaaS platform
parameters available from Req-4.5

Priority (MoSCoW) Should-have
M Modelling attempts should produce a Mean Absolute Percentage Error in the area of <20%

and/or an according improvement in performance.
A The requirement is achievable, following a selection of relevant available benchmark tests.

Registration of the respective functions can be performed once, while the workflow of the
execution can be handled also through the visual environment of WP3. Careful consideration
of benchmarking needs and sequence may be needed based on the selected benchmarks and
relevant stages of measurement.

R The goal of this requirement is to evaluate the performance of a FaaS platform provider and
aid in the selection processes. It can also be used as a mean to evaluate resource management
practices by the provider, and it is related to Objective - 3: “Workflow distribution, functional
incorporation and runtime management across the continuum (optimization, placement and
reconfiguration)” and Objective - 4: “Provider-Local, fine grained runtime management and
adaptation through extension of relevant provider interfaces” of the project.

T This activity is expected to be available during Phase 2 of the project (M30 prototype-M32
Integration).

 Req-5.4-validation

 Section Description
S ID Req-5.4-validation

Dependencies -
Type PERF

Short name Quantify the performance gains of different deployments of services
Actors -
Description Investigate the effects of various combinations of services

deployments.
Additional
Information

Due to the relationship with T5.2 and T5.3 there might be
dependencies from these requirements.

 Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Plan and implement a way to evaluate the performance of different combinations of

deployments

A This requirement is achievable, it is one of the main goals of task T5.4.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 68

R The goal of this requirement is to study the effects in the performance of different
combinations of deployments of services

T D5.1 M13

3.2.4 Cross Layer Requirements

 Req-3.4-Privacy

 Section Description
S ID Req-3.4-Privacy

Dependencies -

Type SEC
Short name Privacy for individuals and their data. Compliance with privacy laws

and regulations.

Actors -
Description The handling of data (storage, transmission and processing) should

protect the privacy of the users and follow all applying laws and
regulations.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M A plan, design and implementation that proves the measures taken to holistically protect the

privacy of data-owners. (Mandatory)
Compliancy with privacy laws and regulations (Mandatory)
Results from a privacy impact assessment (Tentative)
Privacy maturity model results (Tentative)

A Given the complexity of the PHYSICS architecture, this requirement is achievable, but care
must be taken on each step so that privacy is incorporated by-design.

R To protect the privacy of the data-owners. This requirement aims to satisfy privacy-related
regulatory and legal obligations of the PHYSICS architecture.

T This requirement needs to be active throughout the lifecycle of the project. A privacy status
assessment must be done before major milestones.

 Req-3.4-Smart Contracts

 Section Description
S ID Req-3.4-SmartContracts

Dependencies -
Type SEC
Short name External code invocation from Blockchain Network.

Actors -
Description Smart Contracts deployed in a blockchain network provide the means

for delegating data procedures where user authentication and
authorization is needed

Additional
Information

-

Priority (MoSCoW) S: Should-Have.
M A cloud design pattern allowing the deployment and interaction with smart contracts.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 69

A The needs of this requirement are easy to implement and incorporate.
R Extend the PHYSICS architecture to leverage the distributed nature of Smart Contracts.
T This requirement needs to be addressed in the context of pilot cases.

 Req-3.4-Smart ContractTemplates

 Section Description
S ID Req-3.4-SmartContractTemplates

Dependencies Req-3.4-SmartContracts

Type SEC
Short name Templates for automated Smart Contract deployment.
Actors -
Description A collection of contract templates to automate the procedure of

deploying a smart contract to a blockchain network
Additional
Information

-

Priority (MoSCoW) C: Could-Have.
M A cloud design pattern with several contract templates:

Authorization Policy Contract
Timed Policy Contract
Access Control Contract
Marketplace Contract

A The needs of this requirement are easy to implement and incorporate.
R Creation of a template repository for reusability.
T This requirement needs to be addressed in the context of pilot cases.

 Req-3.4-CodeAnalysis

 Section Description
S ID Req-3.4-CodeAnalysis

Dependencies -
Type SEC
Short name Code and binary analysis of internal and external functions

Actors -
Description The deployed code and used external libraries should be analyzed for

known or potential vulnerabilities. In the best case, this will be an
automated process that will allow for a quick security health check of
each deployed application. This could be implemented in the form of
a cloud design pattern.

Additional
Information

-

Priority (MoSCoW) C: Could-have. Optional requirement.
M A cloud design pattern alongside with functions that execute code analysis or binary analysis

of the deployed FaaS components.
A Given the readily available tools for automated vulnerability analysis, it is feasible to deploy

them or potentially modify them in a FaaS architecture which will serve as a drop-in
component for security enhancement.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 70

R To enhance the overall security of deployed applications in the context of PHYSICS. This
service can also be used in the RAMP where each reusable artefact will be scanned and verified
for its security and integrity.

T This requirement needs to be initially defined in the context of T3.3 and T3.4 while its
implementation and evaluation will be checked in WP6.

 Req-3.4-DeprMan

 Section Description

S ID Req-3.4-DeprMan
Dependencies -
Type SEC
Short name Deprecated Component Management

Actors -
Description This requirement specifies the need for a method and process for the

deprecation and removal of old FaaS components. This is based on the
fact that due to rapid development of components, old ones could
easily be forgotten, something that poses new security risks.

Additional
Information

-

Priority (MoSCoW) C: Could-have. Optional requirement.

M A cloud design pattern or a methodology for the policy enforcement that manages the
deprecated components.

A The needs of this requirement are easy to implement and incorporate.

R To ensure that all components are not deprecated and exist within the overall architecture for
a purpose.

T This requirement needs to finish in the context of T3.4

 Req-3.4-Encryption

 Section Description
S ID Req-3.4-Encryption

Dependencies -

Type SEC
Short name Encryption Usage
Actors -
Description Strong encryption must be used in all cases where sensitive data are

handled in transit or in storage.
Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
Additionally, a could-have requirement is the usage of post-quantum
resistant cryptography,

M The method for measuring this requirement is the algorithms and the corresponding key
lengths used for the encryption, decryption, signing, verification, key exchange and hashing
throughout the project.

A All strong encryption schemes are easy to implement and use. Care must be taken in their
configuration so that their guarantees are maintained and not weakened.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 71

R The protection of sensitive data in rest and in transit through ought PHYSICS.
T This requirement needs to be addressed in the context of T3.4.

 Req-3.4-Secrets

 Section Description
S ID Req-3.4-Secrets

Dependencies -
Type SEC

Short name Secrets deployment to components
Actors -
Description The secrets to be deployed in each component should be done in a

protected and secure manner.
Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M A method and process for deploying secrets to FaaS PHYSICS components
A Given the abundancy of solutions and technologies for secure secret deployment, this

requirement is achievable.
R To ensure the secrecy of the to-be deployed secrets in each FaaS component.
T This requirement needs to be addressed in the context of T3.4.

 Req-3.4-SecureComms

 Section Description
S ID Req-3.4-SecureComms

Dependencies Req-3.4-Encryption
Type SEC
Short name Communication security between components

Actors -
Description The communication between each component and components and

other entities need to be authenticated, controlled and secured.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.

M An identity and access management methodology to be enforced throughout deployed
applications.
Strong communication and authentication protocols to be used between all components and
entities.

A Given the complexity of the PHYSICS architecture, this requirement is achievable, but care
must be taken on each step so that secure communications and proper access management is
used between all components and entities.

R To protect the integrity, authenticity and secrecy of all data in transit while also ensuring
proper access and identity management in the entire deployed application.

T This requirement needs to be addressed in task T3.4.

 Req-4.2-FaaSBenchmarking

 Section Description

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 72

S ID Req-4.2-FaaSBenchmarking
Dependencies Req-4.5-FaaSandIaaSMonitoring
Type PERF: Time Behavior

Short name Benchmark functions execution towards the FaaS Platform
Actors FaaS Platform
Description The mechanisms of T4.2 need to execute performance benchmarks

towards the FaaS platform in order to evaluate its effectiveness
and/or resource management approaches.

Additional
Information

Priority (MoSCoW) Must-have
M The benchmarking process will be successful if all of the following points are met:

● The benchmarking framework is able to benchmark the user provided functions

● The benchmarking framework undertakes the full lifecycle of benchmark execution (i.e.

launching of the benchmark, orchestration of its operation, gathering of results)

● A benchmark test can be run as the result of a service invocation (Benchmarking as a Service)

A The requirement is achievable, following a selection of relevant available benchmark tests.
Registration of the respective functions can be performed once, while the workflow of the
execution can be handled also through the visual environment of WP3. Careful consideration
of benchmarking needs and sequence may be needed based on the selected benchmarks and
relevant stages of measurement.

R The goal of this requirement is to evaluate the performance of a FaaS platform provider and
aid in the selection processes. It can also be used as a mean to evaluate resource management
practices by the provider, and it is related to Objective - 3: “Workflow distribution, functional
incorporation and runtime management across the continuum (optimization, placement and
reconfiguration)” and Objective - 4: “Provider-Local, fine grained runtime management and
adaptation through extension of relevant provider interfaces” of the project.

T This activity is expected to have finalized for at least one category of benchmarks in Phase 1 of
the project (M13 prototype-M15 Integration).

 Req-4.2-CostAssociation

 Section Description

S ID Req-4.2-CostAssociation
Dependencies Req-4.2-FaaSBenchmarking,

Req-4.5-FaaSandIaaSMonitoring

Type DATA: Data Requirements
Short name Integration of cost models in performance aspects
Actors End user, FaaS platform
Description The mechanisms of T4.2 need to associate performance metrics

attained through the benchmarking executions with the relevant cost
models available in the FaaS domain, in order to indicate to users or
selection mechanisms the cost aspect in their selection.

Additional
Information

Priority (MoSCoW) Should-have

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 73

M Cost estimation should be linked with a benchmark execution sequence and presented to the
user. along with the relevant performance metrics of an experiment.

A The requirement is achievable, following a selection of relevant available benchmark tests.
Registration of the respective functions can be performed once, while the workflow of the
execution can be handled also through the visual environment of WP3. Careful consideration
of benchmarking needs and sequence may be needed based on the selected benchmarks and
relevant stages of measurement.

R The goal of this requirement is to evaluate the performance of a FaaS platform provider and
aid in the selection processes. It can also be used as a mean to evaluate resource management
practices by the provider, and it is related to Objective - 3: “Workflow distribution, functional
incorporation and runtime management across the continuum (optimization, placement and
reconfiguration)” and Objective - 4: “Provider-Local, fine grained runtime management and
adaptation through extension of relevant provider interfaces” of the project.

T This activity is expected to have finalized for at least one category of benchmarks in Phase 1 of
the project (M13 prototype-M15 Integration).

 Req-4.2-MeasurementPropagation

 Section Description

S

ID Req-4.2-MeasurementPropagation
Dependencies Req-4.2-FaaSBenchmarking,

Req-4.5-FaaSandIaaSMonitoring,
Req-4.2-CostAssociation

Type FUNC-Functional Appropriateness

Short name Benchmark measurements through REST API
Actors FaaS Platform
Description The mechanisms of T4.2 need to make performance and cost

estimations available through suitable REST APIs for other
components of the platform to retrieve them.

Additional
Information

Priority (MoSCoW) Must-have

M

Benchmark results need to be properly propagated to external components in order to
retrieve collective and meaningful statistics of benchmarks. Therefore either pull or push
methods need to be implemented that will cover metrics such as average times, deviation,
percentiles of values.

A
The requirement is achievable, following the availability of the raw measurement data from
the dependent requirements. After this stage, the API creation is a typical layer in front of the
measurements DB.

R

The goal of this requirement is to evaluate the performance of a FaaS/IaaS platform provider
and aid in the selection processes. It can also be used as a mean to evaluate resource
management practices by the provider, and it is related to Objective - 3: “Workflow distribution,
functional incorporation and runtime management across the continuum (optimization,
placement and reconfiguration)” and Objective - 4: “Provider-Local, fine grained runtime
management and adaptation through extension of relevant provider interfaces” of the project.

T
This activity is expected to have finalized at the second stage of the project due to the
dependencies from the depending requirements (M30 prototype-M32 Integration).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 74

 Req-4.4-elasticity

 Section Description
S ID Req-4.4-elasticity

Dependencies -
Type REL
Short name Elasticity
Actors -
Description Implement the distributed data management service elasticity for

both reducing and expanding the exploitation resource plane
available by the application.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement
M Plan and implement a verification process to check the correct elasticity of the in-memory state

service.

A This requirement is achievable, as it is one of the main goals of task T4.4.
R The aim of the requirement is to design and implement a mechanism to monitor the in-memory

state service and decide if it has to be scaled out or down to satisfy the SLOs

T D4.2 M30

 Req-4.5-CustomDockerImages

 Section Description
S ID Req-4.5-CustomDockerImages

Dependencies Req-3.1-WorkflowDef, Req-3.3-ParallelContainerExecution
Type PORT: Adaptability
Short name Execution of custom docker images
Actors FaaS platform
Description FaaS platform could allow the execution of custom docker images

from developers, with a specific structure, as a function.
Additional
Information

Priority (MoSCoW) Should-have
M This requirement will be identified as complete, if the FaaS platform can accept a custom

docker image, that is compliant with a specific spec, and execute it as a function no matter
the runtime.

A Many FaaS platforms(such as Openwhisk or OpenFaaS) support the usage of custom Docker
images as an action runtime to handle the issue of having external application dependencies
too large to deploy.

R The goal of this requirement is to allow application developers to freely develop their
applications without restricting them with supported runtimes. Furthermore, it eases
existing application migration to the FaaS paradigm for components that cannot be easily
ported to a function logic.

T This requirement should be taken under consideration for the FaaS platform selection in
Phase 1 of the project (M13 Prototype-M15 integration).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 75

 Req-4.5-FaaSandIaaSMonitoring

 Section Description
S ID Req-4.5-FaaSandIaaSMonitoring

Dependencies Req-4.2-FaaSBenchmarking
Type DATA: Data Requirements
Short name Benchmark functions monitoring data availability
Actors FaaS Platform, Orchestration Platform
Description The FaaS platform as well as the Container Orchestration platform

need to expose collected monitoring metrics from benchmark
functions execution.

Additional
Information

Priority (MoSCoW) Must-have
M FaaS Metrics: Function invocations, execution time, memory size, cold/warm start case

Container Metrics: I/O wait, cache hits, user time, memory size etc.
The aforementioned metrics should be made available based on REST endpoints from which
they can be retrieved.

A The majority of available platforms come with built-in mechanisms for collecting the needed
metrics. Thus, the requirement is deemed as achievable, if according plugins or interfaces are
used and exposed towards the benchmarking mechanisms.

R The goal of this requirement is to evaluate the performance of a FaaS platform provider and
aid in the selection processes. It can also be used as a mean to evaluate resource management
practices by the provider, and it is related to Objective - 3: “Workflow distribution, functional
incorporation and runtime management across the continuum (optimization, placement and
reconfiguration)” and Objective - 4: “Provider-Local, fine grained runtime management and
adaptation through extension of relevant provider interfaces” of the project.

T Addressed

 Req-4.5-FaaSRuntimeAdaptation

 Section Description
S ID Req-4.5-FaaSRuntimeAdaptation

Dependencies -

Type FUNC: Functional Appropriateness
Short name FaaS Platform runtime reconfiguration
Actors FaaS Platform
Description The selected FaaS platform needs to have means of setting

dynamically a number of parameters with relation to the operation of
the platform, especially with relation to the host cluster upon which it
operates.

Additional
Information

These parameters can be investigated by according mechanisms in
the context of T4.2 or 5.4 in order to optimize platform operation

Priority (MoSCoW) Should-have

M Parameters in question may be the cluster size, , autoscaling factors linked with application or
platform related metrics etc.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 76

A The requirement is achievable, provided a relevant selection of the baseline FaaS platform
takes this characteristic under consideration.

R The goal of this requirement is to enable mechanisms created in the context of various tasks
(e.g., T4.2, T4.5, T5.2, T5.4) to set parameters accordingly in order to optimize various aspects
of the platform operation and related outcomes (e.g., increase of number of hot/warm starts,
reduction of wait time etc.). It is related to Objective - 3: “Workflow distribution, functional
incorporation and runtime management across the continuum (optimization, placement and
reconfiguration)” and Objective - 4: “Provider-Local, fine grained runtime management and
adaptation through extension of relevant provider interfaces” of the project.

T Partially addressed.

 Req-4.5-placementDecision

 Section Description
S ID Req-4.5-placementDecision

Dependencies

Type FUNC
Short name Allow placement decisions of functions at a physical node level
Actors -
Description Design and implement an automated placement decision maker of

virtual resources at the physical node level and reducing the noisy
neighbour effect.

Additional
Information

Due to the relationship with T5.2 and T5.3 there might be
dependencies from these requirements.

Priority (MoSCoW) M: Must-have. Mandatory requirement.

M Validate that the placement decision component decision provides better performance
A This requirement is achievable, as it is one of the main goals of task T5.4.
R The aim of this requirement is to achieve an automated placement decision system taking into

account the AI models available at T5.2 and implemented at T5.3
T D5.2 M30

3.2.5 Use Case Requirements

 Req-6.1-stateless

 Section Description
S ID Req-6.1-stateless

Dependencies TBD
Type PORT
Short name Stateless Function
Actors TBD
Description Each function must be stateless.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.

M During the design phase is necessary to control that each developed function is not dependent
on any other one

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 77

A This requirement is achievable, but it must be taken into account from the beginning of the
development

R This requirement aims to satisfy the first principle of FAAS. If a function is designed in a way
that can hold state, it is using the wrong architecture.

T This requirement needs to be active through out the lifecycle of the project.

 Req-6.1-single action

 Section Description
S ID Req-6.1-single action

Dependencies Req-6.1-stateless
Type COMP

Short name Each function provides a single action
Actors TDB
Description Each function has to perform one and only one action. The

microservices based approach for creating an application requires the
refactoring of the application into a collection of modular
microservices easier to develop and deploy. In this vision, the
microservice performs only one action, defined as a function.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Plan to create a function in order that a single request yields a single response

A Given the complexity of the PHYSICS architecture, this requirement is achievable, but care
must be taken on each step so that the single function is incorporated by-design.

R This is a corollary of stateless
T This requirement needs to be active throughout the lifecycle of the project

 Req-6.1-lightweight

 Section Description

S ID Req-6.1-lightweight

Dependencies Req-6.1-single action

Type PERF

Short name Each function is lightweight.
Actors TBD

Description A very important aspect of FAAS is the load time that must be as short
as possible.

Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M It is relevant to use as few libraries as possible while writing a function: this fact will carry out

the use of less memory.
A Using simple and lightweight functions will reduce the complexity of the PHYSICS architecture.

This requirement is achievable but must be taken in account from the beginning of each step
of the development

R Keep it simple

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 78

T This requirement needs to be active through out the lifecycle of the project

 Req-6.1- OpenAPI

 Section Description

S ID Req-6.1-OpenAPI
Dependencies TBD

Type COMP/USE

Short name Function exposes an OpenAPI.

Actors TBD

Description The Function interoperability can be addressed using the OpenAPI
(e.g., through Swagger4) approach in order expose its functionality to
other functions.

Additional
Information

-

Priority (MoSCoW) C: Could have
M If all the functions that are designed and used to realize the PHYSICS-enabled application

workflow have a standard communication interface (such as OpenAPI), the application
workflow design will be easier

A The standardization of the interoperability can be achieved if all functions uses a standard
pattern defined in the PHYSICS architecture, but this requires having a clear vision of all use-
cases because some of them may not use a standard OpenAPI for their needs

R This approach is relevant for the interoperability and portability of the written functions

T This requirement needs to be active throughout the lifecycle of the project

 Req-6.1- Centralized logging system

 Section Description

S

ID “Req-6.1- Centralized logging system”

Dependencies Access log

Type MAINT/REL

Short name Centralized logging system

Actors FAAS platform

Description The solution must provide a way to centralize all logs from
all disturbed components in any location. This system
should be specific and lightweight

Additional Information -

Priority (MoSCoW) M: Must have

M If this system is in place, troubleshooting for the entire platform will be easier and faster

4 https://swagger.io/

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 79

A
All components within PHYSIC must conform to twelve-factor5 concepts, so the logs must be
redirected to stdout. This makes it very easy to take these logs and redirect them to a centralized
system

R This approach is relevant for the troubleshooting

T This requirement needs to be active throughout the lifecycle of the project

 Req-6.1- Backup/Restore platform
 Section Description

S

ID “Req-6.1- Backup/Restore platform”

Dependencies TBD

Type MAINT

Short name Backup system

Actors FAAS platform

Description The platform should implement a disaster recovery system
that allows to restore the correct functionality of the
platform in case of a catastrophic event

Additional Information -

Priority (MoSCoW) C: Could have

M
The backup system is crucial to recovery from unpredictable disaster events. In order to evaluate
how it is useful is important to define the RTO6 (Recovery Time Objectives) and RPO7 (Recovery Point
Objectives) values.

A Backup definition and planning for critical components

R It is relevant to the resilience of the platform

T This requirement needs to be active throughout the lifecycle of the project

 Req-6.1-Login functionality

 Section Description

S

ID “Req-6.1-Login functionality”

Dependencies TBD

Type SEC

Short name DE Legin

Actors DE

5 https://12factor.net/logs
6 The maximum allowable time to recovery after data loss. If the recovery time objective is five hours, then it must be
possible to restore data up to the recovery point objective within five hours.
7 The maximum allowable data loss as a point in time. If the recovery point objective is two hours, then the maximum
allowable amount of data loss that is acceptable is two hours of work.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 80

Description The design environment should implement a login
functionality to track the user activity and manage the
function authorization, like the build branch that can be
used

Additional Information -

Priority (MoSCoW) C: Could have

M The number of log with a indicated user

A
For the base idea to give at the user a portal for creating is own flow we need to protect its job with
the login functionality

R It is relevant for manage the distribution of the design enviroment to a multi users

T
The login functionality is a basic step for future integration in the DE, we think that the next milestone
MS 11 - 31/3/23 is the more appropriate for the integration of this requirement

 Req-6.2-Health

 Section Description

S ID Req-6.2-Health
Dependencies -
Type REL
Short name Health Check
Actors Function, Load Balancer, Environment

Description The architecture or orchestrator must be able to check the health of
the application or environment

Additional
Information

Priority (MoSCoW) Mandatory requirement
M If a function/application/environment doesn’t pass the health check the PHYSICS architecture

must notice this.
A Should be a core element in the PHYSICS architecture. Therefore, its mandatory to achieve the

goals of PHYSICS
R For use-case Smart Manufacturing, its required to redeploy functions, if the current one isn’t

healthy anymore
T Not required to provide this at the beginning, but should be achieved in the mid of the project

 Req-6.2-Load

 Section Description

S ID Req-6.2-Load
Dependencies -
Type PERF
Short name Load Balancing
Actors FaaS, Environment, Orchestrator

Description Balancing the load to multiple functions (edge/cloud) if required to
fulfill the performance

Additional
Information

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 81

Priority (MoSCoW) Should-have. Desirable requirement.
M If the CPU-load of an environment is >80%. The PHYSICS architecture must be able to deploy

a new function in a different environment and balance the load.
A Might be difficult, depending on the frameworks to do this between cloud and edge

environments
R Smart Manufacturing: E.g., increasing the production rate and still using the same application

e.g., for prediction of machine failures or visual inspection might result in too high load of the
FaaS

T Should be achieved until beginning of the implementation of the use-case.

 Req-6.2-Privacy

 Section Description
S ID Req-6.2-Privacy

Dependencies -
Type SEC

Short name All data must be secure and private
Actors Load-Balancer, Orchestrator, Edge or Cloud Server (Deployment

Location)

Description The handling of data must be secured, encrypted in all situations.
Additional
Information

-

Priority (MoSCoW) M: Must-have. Mandatory requirement.
M Encryption in transit and rest at all time

Current state of the art configuration in the deployed environment

A Is archivable if configuration of environment is done correct
R Highly relevant as data from manufacturing are highly sensible.
T This requirement needs to be active throughout the lifecycle of the project.

 Req-6.3-AccessLog

 Section Description
S ID Req-6.3-AccessLog

Dependencies Req-6.3-AuthorizedAccess
Type SEC-Non-repudiation
Short name Access Log

Actors -
Description The system must have a log in which every logon is recorded, failed

ones also.

Additional
Information

This is an internal regulatory requirement (REG-005), based on 21
CFR Part 11, Section 11.300 (d), and EU Annex 11, Section 8.

Priority (MoSCoW) Must-have

M A series of tests should be designed to perform successful and unsuccessful login attempts
throughout various endpoints of the platform – all attempts should be traceable to the log.

A This requirement is achievable.

R See 21 CFR Part 11, Section 11.300(d).
T To be determined

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 82

 Req-6.3-AlteredRecords

 Section Description
S ID Req-6.3-AlteredRecords

Dependencies -
Type SEC

Short name Find Altered Records
Actors -
Description The system shall be able to find all invalid and altered records

(changed by external applications or tools).
Additional
Information

This is an internal regulatory requirement (REG-002), based on 21
CFR Part 11, Section 11.10 (a).

Priority (MoSCoW) Must-have
M There should be a complete list of all types of data that fall under this regulation. This list of

data types should be mapped onto database records. Several test cases should be defined for
altering those relevant data types through internal/external means. All alterations should be
able to be retraced.

A This requirement is achievable.
R This requirement relates to privacy and security of personal (health) data. It is important to

know who modified critical health information and when.
T

 Req-6.3-AuditTrailExport

 Section Description

S ID Req-6.3-AuditTrailExport
Dependencies Req-6.3-AuditTrailLogs
Type FUNC
Short name Audit Trail Export
Actors Investigators, Organisation-Administrators

Description The system must be able to provide audit trail copies in a standard
electronic format (XML, PDF).

Additional
Information

This is an internal regulatory requirement (REG-024), based on 21
CFR Part 11, Section 11.10 (e), and EU Annex 11, Section 10.

Priority (MoSCoW) Must-have
M Authorized users of the web portal (Investigators, Organisation-Administrators) shall be able

to execute an export function that exports all relevant information related to their currently
assigned role (e.g., an Investigator within a specific Study shall be able to export all audit log
records related to that specific Study only).

A This requirement is achievable.

R See 21 CFR Part 11, Section 11.10 (e).
T To be determined

 Req-6.3-AuditTrailLogs

 Section Description

S ID Req-6.3-AuditTrailLogs

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 83

Dependencies Req-6.3-AlteredRecords
Req-6.3-AuthorizedAccess

Type SEC-Accountability
Short name Audit Trail Logs
Actors All
Description The system must provide automated audit trail logs. Inside them all

the information related to record creation, modification and deletion
must be recorded.
For each operation the system record, the following information shall
be used:
Username of the user
Date and time stamps
Type of action on records
Record values before and after the action was applied by the user

Additional
Information

This is an internal regulatory requirement (REG-020, REG-021),
based on 21 CFR Part 11, Section 11.10 (e), and EU Annex 11, Section
10.

Priority (MoSCoW) Must-have
M A series of tests should be designed that execute a number of information altering steps

through various paths in the system – all actions taken in these test routes should be traceable
through the Audit Log.

A This requirement is achievable.
R See 21 CFR Part 11, Section 11.10 (e).

T To be determined

 Req-6.3-AuthorizedAccess

 Section Description
S ID Req-6.3-AuthorizedAccess

Dependencies -
Type SEC-Confidentiality
Short name Authorized Access
Actors All
Description The system will be accessed only by authorized users providing a

username and password, or authorized external services.
Additional
Information

This is an internal regulatory requirement (REG-005), based on 21
CFR Part 11, Section 11.10 (d), and EU Annex 11, Sections 13 and 14.

Priority (MoSCoW) Must-have
M All platform endpoints must have the required authentication mechanisms in place.
A This requirement is achievable.

R The system stores personal and health-related data, so no unauthorized access should be able
to take place.

T To be determined

 Req-6.3-GenerateRecords

 Section Description
S ID Req-6.3-GenerateRecords

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 84

Dependencies -
Type FUNC
Short name Generate Records

Actors End-User, Investigator
Description The system shall be able to generate full copies of all stored electronic

records. All copies must be generated both in a readable form and in
a standard electronic format (PDF). All copies must be available for
inspection checking.

Additional
Information

This is an internal regulatory requirement (REG-003), based on 21
CFR Part 11, Section 11.10 (b), 11.10 (c), and EU Annex 11, Section 12.

Priority (MoSCoW) Must-have
M Primary End-Users as well as Investigators shall be able to request generation of all stored

electronic records (i.e., relevant personal and health information). These records shall be
delivered in PDF format.

A This requirement is achievable.
R For the PHYSICS use case, the primary reason for this requirement is the end-user’s GDPR right

to obtain all information stored about him/her.
T To be determined

 Req-6.3-TimeSynchronisation

 Section Description
S ID Req-6.3-TimeSynchronisation

Dependencies -
Type PORT-Adaptability

Short name Time Synchronisation
Actors -
Description Every component involved in the system must be time synchronized.
Additional
Information

This is an internal regulatory requirement (REG-026), based on 21
CFR Part 11, Section 11.10 (e), and EU Annex 11, Section 10.

Priority (MoSCoW) Must-have
M All events that fall under the audit trail requirement (Req-6.3-AuditTrailLogs) must be

timestamped. All timestamps originating from potentially distributed service components
must be synchronised with a degree of accuracy that ensures that the order of audit log events
is maintained.

A To be determined
R See 21 CFR Part 11, Section 11.10 (e).

T To be determined

3.3 Requirements Traceability Matrix
The requirements traceability matrix provides a high-level description of the defined
requirements, including:

- Status: dictates whether a new requirement has been added, an existing requirement has
been updated or an existing requirement maintained its properties as-is.

- MoSCoW: any changes that may have taken place regarding the prioritization of the
requirements.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 85

- Evaluation: This column describes the completion status of a requirement. More
specifically:

- Not continued: The requirement is no longer considered necessary.
- Pending: The processes that must be completed in order to fulfil the requirement are

in progress.
- Addressed: The requirement has been met, but there is room for more development

that will potentially contribute further in the completion of this requirement.
- To be extended: The scope of the requirement will be expanded.
- Completed: The requirement has already been met.

The matrix is presented through 5 tables, one for each corresponding category.

CLOUD ENVIRONMENT REQUIREMENTS

 STATUS MoSCoW EVALUATION

Req-3.1-WorkflowDef AS-IS Must have
Addressed through the Node-RED flow

orchestration mode, pending

Req-3.1-SupportedRuntimes AS-IS Should have

Addressed through the incorporation of

a generic runtime, pending to check if

other runtimes will be needed in the

course of the project

Req-3.1-UploadCustomImages AS-IS Won't have

Not continued due to the Custom

Dockerfile feature of the Design

Environment, f rom which the developer

can create their own base custom

image. Hence this requirement has been

deemed obsolete

Req-3.1-Multi-Tenancy NEW Must have
Completed based on the branch

separation

Req-3.1-LogsService NEW Must have

Addressed, to be extended with log info

f rom any needed component, including

platform services

Req-3.1-BuildsHistory NEW Should have Completed and available in the UI

Req-3.3-PatternDocumentation UPDATED Must have

Addressed up to now through

documentation and examples included

in the provided Node-RED subflows,

monitoring for future period to ensure

that any new patterns will also come with

documentation

Req-3.3-PatternApplication AS-IS Must have

Addressed since all patterns are

provided as Node-RED subflows,

monitoring in the next period for the

newly produced patterns

Req-3.3-

ParallelContainerExecution
AS-IS Could have

Completed through the SplitJoin and

SplitJoin Multiple patterns

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 86

Req-4.4-funcNode AS-IS Must have Pending

SEMANTICS REQUIREMENTS

 STATUS MoSCoW EVALUATION

Req-3.2-WorkflowCoverage AS-IS Must have

Completed, through the incorporation of

all main workf low features in the

Application ontology and the inclusion of

the Wfdesc external ontology

Req-3.2-RequirementsCoverage AS-IS Must have

Addressed for the requirements up to

now, method to easily extend

annotations has also been devised to

cater for new additions needed in the

following period

Req-3.2-ConstraintsCoverage AS-IS Must have Similar to the above

Req-3.2-LinkWithVocabularies AS-IS Should have

Addressed through the inclusion of the

Wfdesc ontology and the irao ontology

The following period a link to the

concepts of the resource ontology from

T5.1 is the goal.

Req-3.2-ReasoningCapability AS-IS Must have Pending

Req-3.2-ExpressivityRichness AS-IS Should have

Addressed. Currently, the resulting AR is

0.85 while the RR is 0.42. The

descriptive logic complexity of the

ontology is SROIQ (D), the maximum of

OWL2. We will also monitor these

metrics in the evolution of the ontology

Req-4.1-Adaptation AS-IS Must have
Pending. Implementation started during

the 2nd period of the project.

Req 4.1 - Inputs UPDATED Must have

Addressed. The update in this

requirement refers to an additional data

input f rom WP5 with deployment

information.

Req 4.1 - Latency AS-IS Should have

Addressed up to now, monitoring for

future period. Evaluation based on the

response time of the Reasoning

Framework during parallel requests.

Req 4.1 - ML_Reasoning UPDATED Could have

Pending. This requirement is not

needed, as semantic reasoning with

rules is sufficient for the platform needs.

Req 4.1 - Reasoning AS-IS Must have

Addressed. Semantic rules, ontologies

and knowledge graph are integrated in a

single service facilitating resource

f iltering.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 87

Req 5.1 - ResKnow UPDATED Must have

Addressed up to now. The component

extracts necessary information from the

Kubernetes API. Additional information

to be gathered such as energy

specifications in the future.

Req 5.1 - Interface AS-IS Could have
Completed. Resource Semantics can be
reached visually in the task’s 5.1
interface.

Req 5.1 - Compatibility AS-IS Must have

Addressed by enabling communication
with the reasoning framework. Further
adjustments will be implemented to
digest information from other
components.

Req 5.1 Portability AS-IS Should have

Addressed, the component has been

tested on testbeds deployed on two

dif ferent cloud providers. Future testing

needs to take place to ensure

compatibility with edge clusters.

Req 5.1 - GraphSeparability NEW Must have

Completed. The graphs can easily be

separated by the unique identifier of

each, which is assigned to the cluster

entity of the ontology.

Req-5.1-SemCap AS-IS Must have

Completed, the resource ontology is

fully fledged and encompasses the

necessary information for the operation

of reasoning framework and in turn

deployment optimization.

FAAS / CONTAINER PLATFORM REQUIREMENTS

 STATUS MoSCoW EVALUATION

Req-4.4-state AS-IS Must have

Initial version delivered at

M13. It will be updated at

M30

Req-4.4-interplay AS-IS Must have

Initial version delivered at

M13. It may be updated

at M30

Req-4.4-tradeOffs AS-IS Must have Pending

Req-4.4-perf AS-IS Must have Pending

Req-4.4-access AS-IS Must have

Initial version delivered at

M13. It will be updated at

M30

Req-4.5-PersStorage AS-IS Could have Pending

Req-5.4-optimization AS-IS Must have Pending

Req-5.4-co-allocation AS-IS Must have Initial version delivered at

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 88

M13. It will be updated at

M30

Req-5.4-workloads AS-IS Must have Pending

Req-5.4-AImodels AS-IS Must have Pending

Req-5.4-validation AS-IS Must have Pending

Req-5.4-UsageModellingOpt AS-IS Should have

Addressed in the context

of the Request

Aggregator model

presenting MAPE of

~11%, below the

threshold of 20% set in

the requirement metric.

To be extended to cover

for other cases of interest

(e.g. configuration of the

SJ pattern).

CROSS LAYER REQUIREMENTS

 STATUS MoSCoW EVALUATION

Req-3.4-Privacy AS-IS Must have Addressed

Req-3.4-CodeAnalysis AS-IS Could have Pending

Req-3.4-DeprMan AS-IS Could have Pending

Req-3.4-Encryption AS-IS Must have Addressed

Req-3.4-Secrets AS-IS Must have Addressed, to be extended

Req-3.4-SecureComms AS-IS Must have Addressed, to be extended

Req-4.2-FaaSBenchmarking UPDATED Must have

Completed through the

implementation of the PHYSICS

load generator function. Any

target function can be directly

benchmarked and measured

through a function invocation of

the Generator (benchmarking as

a service). The update relates to

the fact that any user function

and not just a pre-existing

benchmark function can be

used.

Req-4.2-CostAssociation AS-IS Should have

Pending. Cost association

depends on the execution time,

which was a dependency from

Req-4.2-FaaSBenchmarking.

The latter has been completed

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 89

so in the following period this

can be addressed.

Req-4.2-MeasurementPropagation UPDATED Must have

Partially addressed, the

PHYSICS load generator results

should be pushed to the

respective mechanisms (e.g.

RF) and populate directly the

performance semantics. The

update refers to the inclusion of

a way to push the data instead

of pulling them. Statistics

include the metrics foreseen

(averages, deviation etc)

Req-4.4-elasticity AS-IS Must have Pending

Req-4.5-CustomDockerImages AS-IS Should have Pending

Req-4.7-FaaSandIaaSMonitoring AS-IS Must have

Addressed with the usage of

Prometheus with Openwhisk in

the context of WP5, and the

statistics of the PHYSICS Load

Generator, including cold starts,

wait times, init times,duration,

latency etc.

Req-4.7-FaaSRuntimeAdaptation UPDATED Should have

Partially addressed. K8S

autoscalers have been applied

on the cluster, pending link

between cluster or app metric

and elasticity decisions. The

update refers to the type of

elasticity targeted (cluster

versus OW parameters, since

the latter need restart of the OW

setup)

Req-4.5-placementDecision AS-IS Must have Pending

Req-3.4-SmartContracts NEW Should have Addressed, to be extended

Req-3.4-SmartContractTemplates NEW Could have Addressed, to be extended

USE CASE REQUIREMENTS

 STATUS MoSCoW EVALUATION

Req-6.1-stateless

AS-IS

Must have

In fact, addressed FAAs created

by Openwhisk are stateless by

default

Req-6.1-single action

AS-IS

Must have

The function created always

has an action, but in some

cases it is necessary to

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 90

combine multiple functions to

create a complex action

Req-6.1-lightweight
AS-IS

Must have
The maximum code size for the

action is 48MB

Req-6.1-OpenAPI

AS-IS

Could have

Pending. We have planned to

implement a new API to extend

an OpenWhisk functionality, but

it has not yet been

implemented. Anyway we will

follow the OpenAPI

methodology

Req-6.1- Centralized logging system
NEW

Must have
To be evaluated at the end of

the 2nd implementation cycle

Req-6.1- Backup/Restore platform
NEW

Could have
To be evaluated at the end of

the 2nd implementation cycle

Req-6.1-Login functionality
NEW

Could have
To be evaluated at the end of

the 2nd implementation cycle

Req-6.2-Health AS-IS Must have Pending

Req-6.2-Load AS-IS Should have Pending

Req-6.2-Privacy AS-IS Must have Pending

Req-6.3-AccessLog AS-IS Must have Pending

Req-6.3-AlteredRecords AS-IS Must have Pending

Req-6.3-AuditTrailExport AS-IS Must have Pending

Req-6.3-AuditTrailLogs AS-IS Must have Pending

Req-6.3-AuthorizedAccess AS-IS Must have Pending

Req-6.3-GenerateRecords AS-IS Must have Pending

Req-6.3-TimeSynchronisation AS-IS Must have Pending

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 91

4 REQUIREMENTS DISCUSSION
All in all, the PHYSICS consortium has gathered 72 (previously 63 in D2.2) requirements, with a breakdown
of: 10 requirements for the cloud design environment, 17 requirements for the semantic framework, 12
requirements for the FaaS and container platform, 16 requirements that are cross-layer and 17
requirements for use cases. Furthermore, the number of requirements per category is the following:

⮚ FUNC – Functional Suitability Requirements: 17

⮚ USE – Usability Requirements: 10

⮚ SEC – Security Requirements: 14

⮚ DATA – Data Requirements: 9

⮚ PERF – Performance Efficiency Requirements: 10

⮚ PORT – Portability Requirements: 5

⮚ COMP – Compatibility Requirements: 3

⮚ REL – Reliability Requirements: 2
⮚ MAINT - Maintenance Requirements: 2

The evolution of the existing requirements and the addition of new ones, compared to the D2.2, are an
indication of the level of understanding of the project by the consortium. With this deliverable, we finalize
the requirements definition and lay strong foundations upon which the implementation and the
corresponding results will come to fruition.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 92

5 CONCLUSIONS
This deliverable extends D2.2, providing a complete version regarding the updated documentation of the
state-of-the-art analysis of certain technological axes of the PHYSICS project alongside the update of existing
and introduction of new functional and non-functional requirements, as they are envisioned by the
consortium of PHYSICS. In the state-of-the-art analysis, all major architectural components of PHYSICS are
analysed with major, well-known as well as novel technological solutions and research works. Through this
documentation, the PHYSICS project will be able to continue its course without any issues given the fact
that the foundational technologies that it will be based on is well understood and can be found in one place.
Furthermore, there is an analysis for the state of the art of security in the context of FaaS, a component that
although is not an architectural component of PHYSICS but it is an overlay-component that covers each
aspect and axis of PHYSICS since security and privacy is crucial not only for legal and regulation duties but
also for the ethical values and responsibilities to end users.
Furthermore, in the requirements elicitation section of this deliverable, there is the depiction of the process
behind the aggregation of requirements, a specification of each requirement and a quick overview of these
requirements. The methodology used to gather the requirements was based on the vision of each partner
of the PHYSICS project so that everyone has a saying for the development of the PHYSICS project at an early
stage (M4) so as to avoid any issues later in the project. The tracking and management of the requirements
is based on well-established standards, best practices and methodologies (S.M.A.R.T., ISO 25010 and
MoSCoW), something that will ensure that these requirements are well-established, relevant to the project,
achievable, measurable, timely, uniformly documented and trackable. Finally, the overview of these
requirements is acceptable and will allow the project to move forward on a strong basis.
This deliverable had the purpose of creating a strong foundational know-how and knowledge on both the
technologies and the requirements of the project. Given the presented thorough analysis of both of these
concepts in the context of the PHYSICS project, we aimed to ensure that the project is based on a strong
knowledge and understanding of the related technologies and the project as a whole. With this information
in hand, the following tasks and deliverables, especially the ones in work package 2 and 6, will be able to
proceed with their operations in a smooth and unobstructed manner, which will in turn build step -by-step
the envisioned PHYSICS architecture.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 93

REFERENCES
[1] “Home,” Apache Airflow. / (accessed Apr. 21, 2021).

[2] fission/fission-workflows. Fission, 2021.

[3] “Node-RED.” https://nodered.org/ (accessed Apr. 21, 2021).
[4] “Taverna - Apache Incubator.” https://incubator.apache.org/projects/taverna.html (accessed Apr.

21, 2021).

[5] “Workflow and Decision Automation Platform | Camunda.” https://camunda.com/ (accessed Apr.

21, 2021).

[6] admin, “Workflow Automation Software & Business Process Management,” Cflow.
https://www.cflowapps.com/ (accessed Apr. 21, 2021).

[7] “KNIME | Open for Innovation.” https://www.knime.com/ (accessed Apr. 21, 2021).

[8] “JSON-LD - JSON for Linking Data.” https://json-ld.org/ (accessed Apr. 02, 2021).

[9] G. Antoniou and F. Van Harmelen, “Web ontology language: Owl,” in Handbook on ontologies,

Springer, 2004, pp. 67–92.

[10] “Ontology for Cloud Computing Instances,” Ontology for Cloud Computing Instances.
http://cookingbigdata.com/linkeddata/ccinstances/.

[11] “Ontology for Service Level Agreement for Cloud Computing,” Ontology for Service Level

Agreement for Cloud Computing. http://cookingbigdata.com/linkeddata/ccsla/.

[12] “GeoJSON-LD.” https://geojson.org/geojson-ld/ (accessed Apr. 24, 2020).

[13] “Vocabulary for Regions and Zones on Cloud Computing,” Vocabulary for Regions and Zones
on Cloud Computing. http://cookingbigdata.com/linkeddata/ccregions/.

[14] G. Cretella and B. Di Martino, “A semantic engine for porting applications to the cloud and among

clouds: A SEMANTIC ENGINE FOR PORTING APPLICATIONS TO THE CLOUD AND AMONG

CLOUDS,” Softw. Pract. Exp., vol. 45, no. 12, pp. 1619–1637, Dec. 2015, doi: 10.1002/spe.2304.

[15] A. V. Dastjerdi, S. K. Garg, O. F. Rana, and R. Buyya, “CloudPick: a framework for QoS-aware
and ontology-based service deployment across clouds: CloudPick: a framework for QoS-aware and

ontology-based service deployment across clouds,” Softw. Pract. Exp., vol. 45, no. 2, pp. 197–231, Feb.

2015, doi: 10.1002/spe.2288.

[16] S. Ghazouani, H. Mezni, and Y. Slimani, “Bringing semantics to multicloud service

compositions,” Softw. Pract. Exp., vol. 50, no. 4, pp. 447–469, Apr. 2020, doi: 10.1002/spe.2789.
[17] “Web of Things (WoT) Architecture.” https://www.w3.org/TR/wot-architecture/ (accessed Apr.

22, 2020).

[18] “Web of Things (WoT) Thing Description.” https://www.w3.org/TR/wot-thing-description/

(accessed Apr. 22, 2020).

[19] “Web of Things (WoT) Binding Templates.” https://www.w3.org/TR/2020/NOTE-wot-binding-

templates-20200130/ (accessed Apr. 22, 2020).
[20] “The Wfdesc ontology,” The Wfdesc ontology. http://purl.org/wf4ever/wfdesc.

[21] “The Wfprov Ontology,” The Wfprov Ontology. http://purl.org/wf4ever/wfprov.

[22] “Workflow Invocation Ontology,” Workflow Invocation Ontology. http://purl.org/net/wf-

invocation.

[23] “The Workflow Motif Ontology,” The Workflow Motif Ontology. http://purl.org/net/wf-motifs.
[24] M. Sadowski and L. Frantzell, “Apache OpenWhisk–Open Source Project,” in Serverless Swift,

Springer, 2020, pp. 37–57.

[25] R. Pereira et al., “Ranking programming languages by energy efficiency,” Sci. Comput. Program.,

vol. 205, p. 102609, 2021.

[26] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi, “Evaluating MapReduce on Virtual Machines:
The Hadoop Case,” in Cloud Computing, Berlin, Heidelberg, 2009, pp. 519–528, doi: 10.1007/978-3-642-

10665-1_47.

[27] “Ad Hoc Big Data Processing Made Simple with Serverless MapReduce,” Amazon Web Services,

Nov. 04, 2016. https://aws.amazon.com/blogs/compute/ad-hoc-big-data-processing-made-simple-with-

serverless-mapreduce/ (accessed Apr. 02, 2021).

[28] d2si-oss/ooso. D2SI-OSS, 2020.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 94

[29] B. Congdon, bcongdon/corral. 2021.
[30] S. Pallickara, “Some Recent Advances in Utility and Cloud Computing,” Future Gener. Comput.

Syst., vol. 56, no. C, pp. 315–316, Mar. 2016, doi: 10.1016/j.future.2015.11.018.

[31] D. S. Jegan, L. Wang, S. Bhagat, T. Ristenpart, and M. Swift, “Guarding Serverless Applications

with SecLambda,” ArXiv Prepr. ArXiv201105322, 2020.

[32] S. Hong, A. Srivastava, W. Shambrook, and T. Dumitraș, “Go serverless: Securing cloud via
serverless design patterns,” 2018.

[33] “AWS Well-Architected - Build secure, efficient cloud applications,” Amazon Web Services, Inc.

https://aws.amazon.com/architecture/well-architected/ (accessed Mar. 30, 2021).

[34] “Security by Design - Amazon Web Services (AWS),” Amazon Web Services, Inc.

https://aws.amazon.com/compliance/security-by-design/ (accessed Mar. 30, 2021).
[35] “Patterns for scalable and resilient apps | Solutions,” Google Cloud.

https://cloud.google.com/solutions/scalable-and-resilient-apps (accessed Mar. 30, 2021).

[36] dragon119, “Security patterns - Cloud Design Patterns.” https://docs.microsoft.com/en-

us/azure/architecture/framework/security/security-patterns (accessed Mar. 30, 2021).

[37] D. Didone and R. J. de Queiroz, “Forensic as a service-FaaS,” in Proceedings of the Sixth

International Conference on Forensic Computer Science (ICoFCS), 2011, pp. 202–210.
[38] S. Nanda and R. A. Hansen, “Forensics as a service: Three-tier architecture for cloud based

forensic analysis,” in 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC),

2016, pp. 178–183.

[39] Y. Wen, X. Man, K. Le, and W. Shi, “Forensics-as-a-service (faas): computer forensic workflow

management and processing using cloud,” in The Fifth International Conferences on Pervasive Patterns and
Applications, 2013, pp. 1–7.

[40] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and gains of microservices: A

Systematic grey literature review,” J. Syst. Softw., vol. 146, pp. 215–232, 2018.

[41] A. Akbulut and H. G. Perros, “Performance analysis of microservice design patterns,” IEEE

Internet Comput., vol. 23, no. 6, pp. 19–27, 2019.
[42] “Go Fast by Going Micro: Microservices Design Patterns You Should Know -,” Visual Studio

Live!: Training Conferences and Events for Enterprise Microsoft .NET and Azure Developers.

https://vslive.com/blogs/news-and-tips/2018/02/go-fast-by-going-micro-microservices-design-patterns-

you-should-know.aspx (accessed Apr. 02, 2021).

[43] Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Serverless execution of scientific workflows,” in
International Conference on Service-Oriented Computing, 2017, pp. 706–721.

[44] dragon119, “Cloud design patterns - Azure Architecture Center.” https://docs.microsoft.com/en-

us/azure/architecture/patterns/index-patterns (accessed Apr. 02, 2021).

[45] G. Kousiouris et al., “Parametric design and performance analysis of a decoupled service-oriented

prediction framework based on embedded numerical software,” IEEE Trans. Serv. Comput., vol. 6, no. 4,

pp. 511–524, 2012.
[46] T. Rausch, W. Hummer, V. Muthusamy, A. Rashed, and S. Dustdar, “Towards a serverless

platform for edge ${$AI$}$,” 2019.

[47] A. Christidis, S. Moschoyiannis, C.-H. Hsu, and R. Davies, “Enabling serverless deployment of

large-scale ai workloads,” IEEE Access, vol. 8, pp. 70150–70161, 2020.

[48] “Horizontal Pod Autoscaler,” Kubernetes. https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/ (accessed Apr. 20, 2021).

[49] “Specifying a Disruption Budget for your Application,” Kubernetes.

https://kubernetes.io/docs/tasks/run-application/configure-pdb/ (accessed Apr. 20, 2021).

[50] twosigma/fastfreeze. Two Sigma, 2021.

[51] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-
centric networking,” IEEE Commun. Mag., vol. 50, no. 7, pp. 26–36, 2012.

[52] P. Barnaghi, W. Wang, C. Henson, and K. Taylor, “Semantics for the Internet of Things: early

progress and back to the future,” Int. J. Semantic Web Inf. Syst. IJSWIS, vol. 8, no. 1, pp. 1–21, 2012.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 95

[53] A. Gyrard, C. Bonnet, and K. Boudaoud, “Enrich machine-to-machine data with semantic web
technologies for cross-domain applications,” in 2014 IEEE world forum on internet of things (WF-IoT),

2014, pp. 559–564.

[54] P. R. Woznowski, E. L. Tonkin, and P. A. Flach, “Activities of daily living ontology for ubiquitous

systems: Development and evaluation,” Sensors, vol. 18, no. 7, p. 2361, 2018.

[55] L. Chen, C. D. Nugent, and H. Wang, “A knowledge-driven approach to activity recognition in
smart homes,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6, pp. 961–974, 2011.

[56] M. Strohbach, L. A. Saavedra, P. Smirnov, and S. Legostaieva, “Smart home crawler: Towards a

framework for semi-automatic IoT sensor integration,” in 2019 Global IoT Summit (GIoTS), 2019, pp. 1–6.

[57] “GraphDB Downloads and Resources.” https://graphdb.ontotext.com/ (accessed Apr. 01, 2021).

[58] “Blazegraph Database.” https://blazegraph.com/ (accessed Apr. 01, 2021).
[59] “The Enterprise Knowledge Graph Platform | Stardog.” https://www.stardog.com/ (accessed Apr.

01, 2021).

[60] “OpenLink Software: Virtuoso Homepage.” https://virtuoso.openlinksw.com/ (accessed Apr. 01,

2021).

[61] “JanusGraph.” https://janusgraph.org/ (accessed Apr. 01, 2021).

[62] “Apache Jena - Reasoners and rule engines: Jena inference support.”
https://jena.apache.org/documentation/inference/ (accessed Apr. 01, 2021).

[63] “AnzoGraph® DB.” https://www.cambridgesemantics.com/anzograph/ (accessed Apr. 01, 2021).

[64] “AllegroGraph.” https://allegrograph.com/ (accessed Apr. 01, 2021).

[65] “Pellet - Semantic Web Standards.” https://www.w3.org/2001/sw/wiki/Pellet (accessed Apr. 01,

2021).
[66] “RacerPro.” https://franz.com/agraph/racer/ (accessed Apr. 01, 2021).

[67] “HermiT Reasoner: Home.” http://www.hermit-reasoner.com/ (accessed Apr. 01, 2021).

[68] “RIF4J.” http://rif4j.sourceforge.net/ (accessed Apr. 01, 2021).

[69] “OWL : FaCT++.” http://owl.man.ac.uk/factplusplus/ (accessed Apr. 01, 2021).

[70] M. Ebrahimi, M. K. Sarker, F. Bianchi, N. Xie, D. Doran, and P. Hitzler, “Reasoning over RDF
knowledge bases using deep learning,” ArXiv Prepr. ArXiv181104132, 2018.

[71] M. Nickel, V. Tresp, and H.-P. Kriegel, “Factorizing yago: scalable machine learning for linked

data,” in Proceedings of the 21st international conference on World Wide Web, 2012, pp. 271–280.

[72] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin, “Relation extraction with matrix factorization

and universal schemas,” in Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2013, pp. 74–84.

[73] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor networks for

knowledge base completion,” in Advances in neural information processing systems, 2013, pp. 926–934.

[74] K.-W. Chang, W. Yih, B. Yang, and C. Meek, “Typed tensor decomposition of knowledge bases

for relation extraction,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2014, pp. 1568–1579.
[75] B. Yang, W. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and relations for learning and

inference in knowledge bases,” ArXiv Prepr. ArXiv14126575, 2014.

[76] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon, “Representing text for

joint embedding of text and knowledge bases,” in Proceedings of the 2015 conference on empirical methods

in natural language processing, 2015, pp. 1499–1509.
[77] T. P. Trouillon and G. M. Bouchard, “Complex embeddings for simple link prediction,” Nov. 23,

2017.

[78] A. Neelakantan, B. Roth, and A. McCallum, “Compositional vector space models for knowledge

base completion,” ArXiv Prepr. ArXiv150406662, 2015.

[79] B. Peng, Z. Lu, H. Li, and K.-F. Wong, “Towards neural network-based reasoning,” ArXiv Prepr.
ArXiv150805508, 2015.

[80] R. Das, A. Neelakantan, D. Belanger, and A. McCallum, “Chains of reasoning over entities,

relations, and text using recurrent neural networks,” ArXiv Prepr. ArXiv160701426, 2016.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 96

[81] D. Weissenborn, “Separating answers from queries for neural reading comprehension,” ArXiv
Prepr. ArXiv160703316, 2016.

[82] Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop reading in machine

comprehension,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2017, pp. 1047–1055.

[83] W. Xiong, T. Hoang, and W. Y. Wang, “Deeppath: A reinforcement learning method for
knowledge graph reasoning,” ArXiv Prepr. ArXiv170706690, 2017.

[84] R. Das, A. Godbole, S. Dhuliawala, M. Zaheer, and A. McCallum, “A Simple Approach to Case-

Based Reasoning in Knowledge Bases,” ArXiv Prepr. ArXiv200614198, 2020.

[85] J. Kuhlenkamp and S. Werner, “Benchmarking FaaS platforms: Call for community

participation,” in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion
(UCC Companion), 2018, pp. 189–194.

[86] R. Pellegrini, I. Ivkic, and M. Tauber, “Function-as-a-Service Benchmarking Framework,” ArXiv

Prepr. ArXiv190511707, 2019.

[87] R. Pellegrini, I. Ivkic, and M. Tauber, “Towards a security-aware benchmarking framework for

function-as-a-service,” ArXiv Prepr. ArXiv190507228, 2019.

[88] N. Mahmoudi and H. Khazaei, “SimFaaS: A Performance Simulator for Serverless Computing
Platforms,” ArXiv Prepr. ArXiv210208904, 2021.

[89] T. Back and V. Andrikopoulos, “Using a microbenchmark to compare function as a service

solutions,” in European Conference on Service-Oriented and Cloud Computing, 2018, pp. 146–160.

[90] E. Van Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A SPEC RG cloud group’s

vision on the performance challenges of FaaS cloud architectures,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 21–24.

[91] E. van Eyk and A. Iosup, “Addressing performance challenges in serverless computing,” Proc

ICT OPEN, 2018.

[92] R. Zeng, X. Hou, L. Zhang, C. Li, W. Zheng, and M. Guo, “Performance Optimization for Cloud

Computing Systems in the Microservice Era: State-of-the-Art and Research Opportunities.”
[93] J. Scheuner and P. Leitner, “Function-as-a-Service performance evaluation: A multivocal

literature review,” J. Syst. Softw., vol. 170, p. 110708, 2020.

[94] M. S. Aslanpour, S. S. Gill, and A. N. Toosi, “Performance evaluation metrics for cloud, fog and

edge computing: A review, taxonomy, benchmarks and standards for future research,” Internet Things, p.

100273, 2020.
[95] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A holistic evaluation of

docker containers for interfering microservices,” in 2018 IEEE International Conference on Services

Computing (SCC), 2018, pp. 33–40.

[96] A. P. Ferreira and R. Sinnott, “A performance evaluation of containers running on managed

kubernetes services,” in 2019 IEEE International Conference on Cloud Computing Technology and Science

(CloudCom), 2019, pp. 199–208.
[97] M. Schwarzkopf and P. Bailis, “Research for practice: cluster scheduling for datacenters,”

Commun. ACM, vol. 61, no. 5, pp. 50–53, 2018.

[98] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega, and Kubernetes:

Lessons learned from three container-management systems over a decade,” Queue, vol. 14, no. 1, pp. 70–

93, 2016.
[99] “Production-Grade Container Orchestration,” Kubernetes. https://kubernetes.io/ (accessed Apr.

16, 2021).

[100] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the data center.,” in

NSDI, 2011, vol. 11, no. 2011, pp. 22–22.

[101] “Introducing Container Runtime Interface (CRI) in Kubernetes,” Kubernetes, Dec. 19, 2016.
https://kubernetes.io/blog/2016/12/Container-Runtime-Interface-Cri-In-Kubernetes/ (accessed Apr. 16,

2021).

[102] “Container Storage Interface (CSI) for Kubernetes GA,” Kubernetes, Jan. 15, 2019.

https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/ (accessed Apr. 16, 2021).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 97

[103] containernetworking/cni. CNI, 2021.
[104] “Device Plugins,” Kubernetes. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-

storage-net/device-plugins/ (accessed Apr. 16, 2021).

[105] “kubernetes/community,” GitHub. https://github.com/kubernetes/community (accessed Apr. 16,

2021).

[106] KubeEdge, “KubeEdge,” KubeEdge. /en/ (accessed Apr. 16, 2021).
[107] virtual-kubelet/virtual-kubelet. virtual kubelet, 2021.

[108] “K3s: Lightweight Kubernetes.” https://k3s.io/ (accessed Apr. 16, 2021).

[109] “MicroK8s - Zero-ops Kubernetes for developers, edge and IoT | MicroK8s,” microk8s.io.

http://microk8s.io (accessed Apr. 16, 2021).

[110] kubernetes-sigs/kubefed. Kubernetes SIGs, 2021.
[111]: : “Submariner k8s project documentation website.” https://submariner.io/ (accessed Apr. 16,

2021).

[112] 15 Minute Read, “Deployment Models,” Istio. /latest/docs/ops/deployment/deployment-models/

(accessed Apr. 16, 2021).

[113] R. B. Bohn, C. A. Lee, and M. Michel, “The NIST Cloud Federation Reference Architecture,”

Feb. 2020, Accessed: Apr. 16, 2021. [Online]. Available: https://www.nist.gov/publications/nist-cloud-
federation-reference-architecture.

[114] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data stream processing and

edge computing: A survey on resource elasticity and future directions,” J. Netw. Comput. Appl., vol. 103,

pp. 1–17, 2018.

[115] H. Yuan, “Energy and performance-optimized scheduling of tasks in distributed cloud and edge
computing systems,” 2020.

[116] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “Optimized placement of

scalable iot services in edge computing,” in 2019 IFIP/IEEE Symposium on Integrated Network and Service

Management (IM), 2019, pp. 189–197.

[117] S. Wang, Y. Li, S. Pang, Q. Lu, S. Wang, and J. Zhao, “A Task Scheduling Strategy in Edge-
Cloud Collaborative Scenario Based on Deadline,” Sci. Program., vol. 2020, p. e3967847, Mar. 2020, doi:

10.1155/2020/3967847.

[118] E. Jonas et al., “Cloud programming simplified: A berkeley view on serverless computing,” ArXiv

Prepr. ArXiv190203383, 2019.

[119] A. Das, A. Leaf, C. A. Varela, and S. Patterson, “Skedulix: Hybrid Cloud Scheduling for Cost-
Efficient Execution of Serverless Applications,” in 2020 IEEE 13th International Conference on Cloud

Computing (CLOUD), Oct. 2020, pp. 609–618, doi: 10.1109/CLOUD49709.2020.00090.

[120] K. Rzadca et al., “Autopilot: workload autoscaling at Google,” in Proceedings of the Fifteenth

European Conference on Computer Systems, New York, NY, USA, Apr. 2020, pp. 1–16, doi:

10.1145/3342195.3387524.

[121] A. A. Da Silva et al., “Evaluating Computation and Data Placements in Edge Infrastructures
through a Common Simulator,” in 2020 IEEE 32nd International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD), 2020, pp. 67–74.

[122] A. Anderson da Silva, “Investigating Job Allocation Policies in Edge Computing Platforms,”

Master’s Thesis, Grenoble University.

[123] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and C. Kozyrakis, “Pocket: Elastic
ephemeral storage for serverless analytics,” in 13th ${$USENIX$}$ Symposium on Operating Systems

Design and Implementation (${$OSDI$}$ 18), 2018, pp. 427–444.

[124] “The Apache Crail (Incubating) Project: Overview.” https://crail.apache.org/ (accessed Apr. 01,

2021).

[125] “Redis.” https://redis.io/ (accessed Apr. 01, 2021).
[126] D. Barcelona-Pons, M. Sánchez-Artigas, G. París, P. Sutra, and P. García-López, “On the faas

track: Building stateful distributed applications with serverless architectures,” in Proceedings of the 20th

International Middleware Conference, 2019, pp. 41–54.

[127] “Infinispan.” https://infinispan.org/ (accessed Apr. 01, 2021).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 98

[128] A. Wang et al., “Infinicache: Exploiting ephemeral serverless functions to build a cost-effective
memory cache,” in 18th ${$USENIX$}$ Conference on File and Storage Technologies (${$FAST$}$ 20),

2020, pp. 267–281.

[129] “Amazon ElastiCache- In-memory data store and cache,” Amazon Web Services, Inc.

https://aws.amazon.com/elasticache/ (accessed Apr. 01, 2021).

[130] V. Sreekanti et al., “Cloudburst: Stateful functions-as-a-service,” ArXiv Prepr. ArXiv200104592,
2020.

[131] C. Wu, J. Faleiro, Y. Lin, and J. Hellerstein, “Anna: A kvs for any scale,” IEEE Trans. Knowl.

Data Eng., 2019.

[132] “Apache OpenWhisk is a serverless, open source cloud platform.” https://openwhisk.apache.org/

(accessed Apr. 22, 2021).
[133] “Home | OpenFaaS - Serverless Functions Made Simple.” https://www.openfaas.com/ (accessed

Apr. 16, 2021).

[134] “Knative,” Knative. https://knative.dev/ (accessed Apr. 20, 2021).

[135] “Workflows & Pipelines | Argo.” https://argoproj.github.io/projects/argo/ (accessed Apr. 28,

2021).

[136] “Kubeflow Overview,” Kubeflow. /docs/started/kubeflow-overview/ (accessed Apr. 27, 2021).
[137] “Autoscaling - OpenFaaS.” https://docs.openfaas.com/architecture/autoscaling/ (accessed Apr.

27, 2021).

[138] B. Di Martino, G. Cretella, and A. Esposito, “Towards a unified owl ontology of cloud vendors’

appliances and services at paas and saas level,” in 2014 Eighth International Conference on Complex,

Intelligent and Software Intensive Systems, 2014, pp. 570–575.
[139] F. Moscato, R. Aversa, B. Di Martino, T.-F. Fortiş, and V. Munteanu, “An analysis of mosaic

ontology for cloud resources annotation,” in 2011 federated conference on computer science and information

systems (FedCSIS), 2011, pp. 973–980.

[140] E. Brandtzæg, “CloudML: A DSL for model-based realization of applications in the cloud,”

Master’s Thesis, 2012.
[141] K. Sahlmann and T. Schwotzer, “Ontology-based virtual IoT devices for edge computing,” in

Proceedings of the 8th International Conference on the Internet of Things, 2018, pp. 1–7.

[142] G. Chen, T. Jiang, M. Wang, X. Tang, and W. Ji, “Modeling and reasoning of IoT architecture in

semantic ontology dimension,” Comput. Commun., vol. 153, pp. 580–594, 2020.

[143] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-Lite: a lightweight semantic
model for the Internet of Things,” in 2016 INTL IEEE conferences on ubiquitous intelligence & computing,

advanced and trusted computing, scalable computing and communications, cloud and big data computing,

internet of people, and smart world congress (uic/atc/scalcom/cbdcom/iop/smartworld), 2016, pp. 90–97.

[144] “Kubeless.” https://kubeless.io/ (accessed Apr. 16, 2021).

[145] “Kubernetes Scheduler,” Kubernetes. https://kubernetes.io/docs/concepts/scheduling-

eviction/kube-scheduler/ (accessed Apr. 01, 2021).
[146] “Volcano.” https://volcano.sh/en/ (accessed Apr. 16, 2021).

[147] “Welcome to Apache YuniKorn (Incubating) | Apache YuniKorn (Incubating).”

https://yunikorn.apache.org/ (accessed Apr. 16, 2021).

[148] apache/incubator-yunikorn-core. The Apache Software Foundation, 2021.

[149] IBM/kube-safe-scheduler. International Business Machines, 2021.
[150] IBM/multi-cluster-app-dispatcher. International Business Machines, 2021.

[151] “Scheduling Policies,” Kubernetes. https://kubernetes.io/docs/reference/scheduling/policies/

(accessed Apr. 16, 2021).

[152] kubernetes-sigs/scheduler-plugins. Kubernetes SIGs, 2021.

[153] “Scheduler Configuration,” Kubernetes. https://kubernetes.io/docs/reference/scheduling/config/
(accessed Apr. 16, 2021).

[154] “Configure Multiple Schedulers,” Kubernetes. https://kubernetes.io/docs/tasks/extend-

kubernetes/configure-multiple-schedulers/ (accessed Apr. 16, 2021).

[155] kubernetes-sigs/descheduler. Kubernetes SIGs, 2021.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 99

[156] G. Aumala, E. Boza, L. Ortiz-Avilés, G. Totoy, and C. Abad, “Beyond Load Balancing: Package-
Aware Scheduling for Serverless Platforms,” in 2019 19th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID), May 2019, pp. 282–291, doi: 10.1109/CCGRID.2019.00042.

[157] M. Stein, “The serverless scheduling problem and NOAH,” ArXiv Prepr. ArXiv180906100, 2018.

[158] A. Suresh and A. Gandhi, “Fnsched: An efficient scheduler for serverless functions,” in

Proceedings of the 5th International Workshop on Serverless Computing, 2019, pp. 19–24.
[159] A. James and D. Schien, “A Low Carbon Kubernetes Scheduler.,” 2019.

[160] J. Kim and K. Lee, “FunctionBench: A Suite of Workloads for Serverless Cloud Function

Service,” in 2019 IEEE 12th International Conference on Cloud Computing (CLOUD) , Jul. 2019, pp. 502–

504, doi: 10.1109/CLOUD.2019.00091.

[161] J. Kim and K. Lee, “Practical Cloud Workloads for Serverless FaaS,” in Proceedings of the ACM
Symposium on Cloud Computing, New York, NY, USA, Nov. 2019, p. 477, doi: 10.1145/3357223.3365439.

[162] T. Yu et al., “Characterizing serverless platforms with serverlessbench,” in Proceedings of the

11th ACM Symposium on Cloud Computing, New York, NY, USA, Oct. 2020, pp. 30–44, doi:

10.1145/3419111.3421280.

[163] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Versatile, Scalable, and

Accurate Simulation of Distributed Applications and Platforms,” J. Parallel Distrib. Comput., vol. 74, no.
10, p. 2899, Jun. 2014, doi: 10.1016/j.jpdc.2014.06.008.

[164] P.-F. Dutot, M. Mercier, M. Poquet, and O. Richard, “Batsim: a Realistic Language-Independent

Resources and Jobs Management Systems Simulator,” Chicago, United States, May 2016, Accessed: Apr.

16, 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01333471.

[165] “Thlr/master-memoir,” GitHub. https://github.com/Thlr/master-memoir (accessed Apr. 16, 2021).
[166] D. Ustiugov, P. Petrov, M. Kogias, E. Bugnion, and B. Grot, “Benchmarking, Analysis, and

Optimization of Serverless Function Snapshots,” ArXiv210109355 Cs, Feb. 2021, doi:

10.1145/3445814.3446714.

[167] “containerd – An industry-standard container runtime with an emphasis on simplicity, robustness

and portability.” https://containerd.io/ (accessed Apr. 29, 2021).
[168] “Firecracker.” https://firecracker-microvm.github.io/ (accessed Apr. 29, 2021).

[169] “Configure Multiple Schedulers,” Kubernetes. https://kubernetes.io/docs/tasks/extend-

kubernetes/configure-multiple-schedulers/ (accessed Apr. 20, 2021).

[170] openshift/cluster-kube-descheduler-operator. OpenShift, 2021.

[171] “Performance Addon Operator for low latency nodes | Scalability and performance | OpenShift
Container Platform 4.6.” https://docs.openshift.com/container-

platform/4.6/scalability_and_performance/cnf-performance-addon-operator-for-low-latency-nodes.html

(accessed Apr. 20, 2021).

[172] “kubernetes/enhancements,” GitHub. https://github.com/kubernetes/enhancements (accessed

Apr. 20, 2021).

[173] “ManageIQ.” http://manageiq.org/ (accessed Apr. 20, 2021).
[174] “Red Hat Advanced Cluster Management for Kubernetes.”

https://www.redhat.com/en/technologies/management/advanced-cluster-management (accessed Apr. 20,

2021).

[175] “Open Cluster Management,” GitHub. https://github.com/open-cluster-management (accessed

Apr. 22, 2021).
[176] “GitOps | GitOps is Continuous Deployment for cloud native applications.”

https://www.gitops.tech/ (accessed Apr. 20, 2021).

[177] “Argo CD - Declarative GitOps CD for Kubernetes.” https://argoproj.github.io/argo-cd/ (accessed

Apr. 20, 2021).

[178] “Kustomize - Kubernetes native configuration management.” https://kustomize.io/ (accessed Apr.
22, 2021).

[179] “Welcome | About | OpenShift Container Platform 4.7.” https://docs.openshift.com/container-

platform/4.7/welcome/index.html (accessed Apr. 01, 2021).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 100

[180] “Configuring the default scheduler to control pod placement - Controlling pod placement onto
nodes (scheduling) | Nodes | OpenShift Container Platform 4.7.” https://docs.openshift.com/container-

platform/4.7/nodes/scheduling/nodes-scheduler-default.html#nodes-scheduler-default (accessed Apr. 01,

2021).

[181] “Placing pods relative to other pods using pod affinity and anti-affinity rules - Controlling pod

placement onto nodes (scheduling) | Nodes | OpenShift Container Platform 4.7.”
https://docs.openshift.com/container-platform/4.7/nodes/scheduling/nodes-scheduler-pod-affinity.html

(accessed Apr. 23, 2021).

[182] “Assigning Pods to Nodes,” Kubernetes. https://kubernetes.io/docs/concepts/scheduling-

eviction/assign-pod-node/ (accessed Apr. 23, 2021).

[183] “Scheduler | Cluster Administration | OpenShift Container Platform 3.4.”
https://docs.openshift.com/container-platform/3.4/admin_guide/scheduler.html#infrastructure-topological-

levels (accessed Apr. 23, 2021).

[184] E. Van Eyk, A. Iosup, S. Seif, and M. Thömmes, “The SPEC cloud group’s research vision on

FaaS and serverless architectures,” in Proceedings of the 2nd International Workshop on Serverless

Computing, 2017, pp. 1–4.

[185] J. Michener, “Security Issues With Functions as a Service,” IT Prof., vol. 22, no. 5, pp. 24–31,
2020.

[186] “OWASP Serverless Top 10.” https://owasp.org/www-project-serverless-top-10/ (accessed Mar.

23, 2021).

[187] V. Yussupov, U. Breitenbücher, F. Leymann, and M. Wurster, “A systematic mapping study on

engineering function-as-a-service platforms and tools,” in Proceedings of the 12th IEEE/ACM International
Conference on Utility and Cloud Computing, 2019, pp. 229–240.

[188] S. Brenner and R. Kapitza, “Trust more, serverless,” in Proceedings of the 12th ACM

International Conference on Systems and Storage, 2019, pp. 33–43.

[189] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer, “Clemmys: Towards secure remote

execution in FaaS,” in Proceedings of the 12th ACM International Conference on Systems and Storage,
2019, pp. 44–54.

[190] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-faas: Trustworthy and

accountable function-as-a-service using intel SGX,” in Proceedings of the 2019 ACM SIGSAC Conference

on Cloud Computing Security Workshop, 2019, pp. 185–199.

[191] A. Al Omar, M. Z. A. Bhuiyan, A. Basu, S. Kiyomoto, and M. S. Rahman, “Privacy-friendly
platform for healthcare data in cloud based on blockchain environment,” Future Gener. Comput. Syst., vol.

95, pp. 511–521, 2019.

[192] C. Esposito, A. De Santis, G. Tortora, H. Chang, and K.-K. R. Choo, “Blockchain: A panacea for

healthcare cloud-based data security and privacy?,” IEEE Cloud Comput., vol. 5, no. 1, pp. 31–37, 2018.

[193] “Credential.” https://credential.eu/ (accessed Mar. 26, 2021).

[194] “MUSA Project Website.” https://www.musa-project.eu/ (accessed Mar. 26, 2021).
[195] qktheme, “PRISMACLOUD – PRIvacy and Security MAintaining services in the CLOUD.”

https://prismacloud.eu/ (accessed Mar. 26, 2021).

[196] “Secure Big Data Processing in Untrusted Clouds | SecureCloud Project | H2020 | CORDIS |

European Commission.” https://cordis.europa.eu/project/id/690111 (accessed Mar. 26, 2021).

[197] “Sereca Project.” https://www.serecaproject.eu/ (accessed Mar. 26, 2021).
[198] “Secure Provisioning of Cloud Services based on SLA management | SPECS Project | FP7 |

CORDIS | European Commission.” https://cordis.europa.eu/project/id/610795 (accessed Mar. 26, 2021).

[199] “SecUre iNFormatIon SHaring in federated heterogeneous private clouds – Servizi ed

Infrastrutture Cloud Avanzate.” http://www.sunfishproject.eu/ (accessed Mar. 26, 2021).

[200] “SWITCH.” http://www.switchproject.eu/ (accessed Mar. 26, 2021).
[201] “Home | Tredisec.” http://tredisec.eu/ (accessed Mar. 26, 2021).

[202] “UNICORN project.” http://unicorn-project.eu/ (accessed Mar. 26, 2021).

[203] “About Witdom | Witdom.” http://witdom.eu/ (accessed Mar. 26, 2021).

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 101

[204] S. Alansari, F. Paci, A. Margheri, and V. Sassone, “Privacy-Preserving Access Control in Cloud
Federations,” in 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), Jun. 2017, pp.

757–760, doi: 10.1109/CLOUD.2017.108.

[205] “AWS Secrets Manager | Rotate, Manage, Retrieve Secrets | Amazon Web Services (AWS),”

Amazon Web Services, Inc. https://aws.amazon.com/secrets-manager/ (accessed Mar. 29, 2021).

[206] “Secret Manager,” Google Cloud. https://cloud.google.com/secret-manager (accessed Mar. 29,
2021).

[207] “Key Vault | Microsoft Azure.” https://azure.microsoft.com/en-us/services/key-vault/ (accessed

Mar. 29, 2021).

[208] “Akeyless Vault for Secrets Management,” Akeyless. https://www.akeyless.io/product-secrets-

management/ (accessed Mar. 29, 2021).
[209] “Vault by HashiCorp,” Vault by HashiCorp. https://www.vaultproject.io/ (accessed Mar. 29,

2021).

[210] “Keywhiz.” https://square.github.io/keywhiz/ (accessed Mar. 29, 2021).

[211] “Confidant: Your secret keeper.” https://lyft.github.io/confidant/ (accessed Mar. 29, 2021).

[212] “Manage sensitive data with Docker secrets,” Docker Documentation, Mar. 26, 2021.

https://docs.docker.com/engine/swarm/secrets/ (accessed Mar. 29, 2021).
[213] pinterest/knox. Pinterest, 2021.

[214] M. A. Sotelo Monge, J. Maestre Vidal, and G. Martínez Pérez, “Detection of economic denial of

sustainability (EDoS) threats in self-organizing networks,” Comput. Commun., vol. 145, pp. 284–308, Sep.

2019, doi: 10.1016/j.comcom.2019.07.002.

[215] A. Shawahna, M. Abu-Amara, A. S. H. Mahmoud, and Y. Osais, “EDoS-ADS: An Enhanced
Mitigation Technique Against Economic Denial of Sustainability (EDoS) Attacks,” IEEE Trans. Cloud

Comput., vol. 8, no. 3, pp. 790–804, Jul. 2020, doi: 10.1109/TCC.2018.2805907.

[216] Silva, Paulo, Edmundo Monteiro, and Paulo Simoes. "Privacy in the cloud: A survey of existing

solutions and research challenges." IEEE Access 9 (2021): 10473-10497. (accessed Sep. 27,2022)

[217] Azeez, Nureni Ayofe, and Charles Van der Vyver. "Security and privacy issues in e-health cloud-based
system: A comprehensive content analysis." Egyptian Informatics Journal 20.2 (2019): 97-108.

[218] Tomás J, Rasteiro D, Bernardino J. Data Anonymization: An Experimental Evaluation Using Open-

Source Tools. Future Internet. 2022; 14(6):167. https://doi.org/10.3390/fi14060167

[219] Yussupov, Vladimir, et al. "On the serverless nature of blockchains and smart contracts." arXiv

preprint arXiv:2011.12729 (2020).
[220] Ghaemi, Sara, Hamzeh Khazaei, and Petr Musilek. "Chainfaas: An open blockchain-based serverless

platform." IEEE Access 8 (2020): 131760-131778.

[221] Jie, S. O. N. G., et al. "Research advances on blockchain-as-a-service: Architectures, applications and

challenges." Digital Communications and Networks (2021).

[222] Udokwu, Chibuzor, et al. "The state of the art for blockchain-enabled smart-contract applications in

the organization." 2018 Ivannikov Ispras Open Conference (ISPRAS). IEEE, 2018.
[223] E. Bisong, “Kubeflow and kubeflow pipelines,” in Building Machine Learning and Deep

Learning Models on Google Cloud Platform, pp. 671–685, Springer, 2019.

[224] Ristov, Sasko, Stefan Pedratscher, and Thomas Fahringer. "AFCL: An abstract function choreography

language for serverless workflow specification." Future Generation Computer Systems 114 (2021): 368-

382..
[225] Malawski, Maciej, et al. "Serverless execution of scientific workflows: Experiments with hyperflow,

aws lambda and google cloud functions." Future Generation Computer Systems 110 (2020): 502-514.

[226] John, Aji, et al. "SWEEP: accelerating scientific research through scalable serverless workflows."

Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing Companion.

2019..
[227] Zhang, Haoran, et al. "Fault-tolerant and transactional stateful serverless workflows." 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI20), 2020.

[228] Burckhardt, Sebastian, et al. "Serverless workflows with durable functions and netherite." arXiv

preprint arXiv:2103.00033 (2021

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 102

[229] Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and Simon Eismann. 2018.
A SPEC RG Cloud Group's Vision on the Performance Challenges of FaaS Cloud Architectures. In

Companion of the 2018 ACM/SPEC International Conference on Performance Engineering (ICPE '18).

Association for Computing Machinery, New York, NY, USA, 21–24.

DOI:https://doi.org/10.1145/3185768.3186308

[230] Barcelona-Pons, P. Garcıa-Lopez, ́A. Ruiz, A. Gomez-Gomez,G. Parıs, and M. Sanchez-
Artigas, “Faas orchestration of parallel workloads,” in Proc. of the 5th International Workshop on

Serverless Computing, pp. 25–30, 2019

[231] López, P.G., Sánchez-Artigas, M., París, G., Pons, D.B., Ollobarren, Á.R. and Pinto, D.A., 2018,

December. Comparison of faas orchestration systems. In 2018 IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC Companion) (pp. 148-153). IEEE
[232] Nilanjan Daw, Umesh Bellur, and Purushottam Kulkarni. 2021. Speedo: Fast dispatch and

orchestration of serverless workflows. Proceedings of the ACM Symposium on Cloud Computing.

Association for Computing Machinery, New York, NY, USA, 585–599.

DOI:https://doi.org/10.1145/3472883.3486982.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 103

ANNEX I. IDENTITY AND ACCESS MANAGEMENT SERVICES

Table 2 - Identity and access, policy and role management services of cloud providers

Iden
tity
and
Acce

ss
Man
age

ment

Amazon Web Services ⮚ AWS IAM

⮚ AWS for Microsoft Active Directory
o AD Connector
o Simple AD
o Managed Microsoft AD

⮚ Federation via Identity Providers (OIDC & SAML2)

Google Cloud Platform ⮚ Google Cloud Identity

⮚ Federation via third party IdPs (OIDC & SAML2)

⮚ Cloud Directory Sync via LDAP

Microsoft Azure ⮚ Azure Active Directory

⮚ Federation via IdPs (OIDC & SAML2)
Polic

y
and
Role
Man
age

ment

Amazon Web Services ⮚ AWS IAM

⮚ Access Policies configuration per user/group/role
Google Cloud Platform ⮚ Permissions assigned on a per project basis

⮚ Users can belong to multiple projects

⮚ All permissions are applied to all resources of the project

⮚ Standard roles can be customized and applied to users and
groups

Microsoft Azure ⮚ Permissions are applied on Subscriptions, resource groups and
individual resources. All resources belong to one group that in
turn can be configured in hierarchies.

⮚ Common roles exist but additional ones can be configured.
Acce

ss
Cont
rol

Man
age

ment

Amazon Web Services ⮚ Account keys – god key for account

⮚ Access keys

⮚ Temporary security credentials (OIDC & SAML)

Google Cloud Platform ⮚ Account keys – god key for account

⮚ Service account keys

⮚ Storage access token

⮚ API keys

⮚ User account tokens
Microsoft Azure ⮚ Account keys – god key for account

⮚ Storage access keys – root key for storage

⮚ Connection strings

⮚ AD auth

⮚ MSI tokens

⮚ SAS tokens

⮚ Mutual TLS

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 104

ANNEX II. QUESTIONNAIRE TEMPLATE

The template used and followed by all partners is the following.

 Section Description
S ID Req-TASK-x (unique id)

Where
TASK = task number
x = descriptive short identifier
Example: “Req-3.2-Priv” for a privacy requirement that maps to task
3.2

Dependencies Requirement ID of the dependencies that this requirement depends
on.

Type Choose from the list:
- FUNC: Functional Suitability
- DATA: Data
- USE: Usability
- REL: Reliability
- SEC: Security
- PERF: Performance Efficiency
- COMP: Compatibility
- MAINT: Maintainability
- PORT: Portability
(For examples see the table below)

Short name Meaningful and not too long

Actors The actors involved in this scenario

Description General description

Additional
Information

Priority (MoSCoW) This allow to identify the priority of the requirements; it can be
updated in the different iterations:
M: Must-have. Mandatory requirement.
S: Should-have. Desirable requirement.
C: Could-have. Optional requirement.
W: Will-not-have. Possible future enhancement

M Strong encouragement for defining concrete measures. Means of measuring the goal
achievement. Milestones, metrics etc.

A How achievable is the requirement? This will have to take into account the Objectives, the
Priority and any possible foreseen obstacles.

R Objectives of this requirement. Why is the goal worthwhile? What needs does it fulfill and
how relevant are they to the project and/or use-case scenario? Does it satisfy any future
dependencies (to be filled with the requirement IDs)?

T Strong encouragement for defining concrete timelines (Such as milestones, delivery
deadlines according to work plan etc.). When should this requirement be achieved? This
goes hand-in-hand with the future dependencies and their timelines.

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 105

The categories used within the template are the following. They are derived from the ISO25010 standard.

 Category Examples Name

Functional Functional
Suitability

⮚ Functional Completeness

⮚ Functional Correctness

⮚ Functional Appropriateness

FUNC

Data ⮚ Data requirements

⮚ Data preconditions

⮚ Data postconditions

DATA

Non-
functional

Usability ⮚ Appropriateness Recognizability

⮚ Learnability

⮚ Operability

⮚ User Error Protection

⮚ User Interface Aesthetics

⮚ Accessibility

USE

Reliability ⮚ Maturity

⮚ Availability

⮚ Fault Tolerance

⮚ Recoverability

REL

Security ⮚ Confidentiality

⮚ Integrity

⮚ Non-repudiation

⮚ Authenticity

⮚ Accountability

SEC

Performance
Efficiency

⮚ Time Behavior

⮚ Resource Utilization

⮚ Capacity

PERF

Compatibility ⮚ Co-existence

⮚ Interoperability

COMP

Maintainability ⮚ Modularity

⮚ Reusability

⮚ Analyzability

⮚ Modifiability

⮚ Testability

MAINT

Portability ⮚ Adaptability

⮚ Installability

⮚ Replaceability

PORT

H2020-ICT-40-2020 (RIA)PHYSICS - 101017047

D2.3 – STATE OF THE ART ANALYSIS AND REQUIREMENTS DEFINITION V2 Page | 106

DISCLAIMER
The sole responsibility for the content of this publication lies with the authors. It does not
necessarily reflect the opinion of the European Union. Neither the EASME nor the European
Commission is responsible for any use that may be made of the information contained therein.

COPYRIGHT MESSAGE
This report, if not confidential, is licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0); a copy is available here:
https://creativecommons.org/licenses/by/4.0/. You are free to share (copy and redistribute the
material in any medium or format) and adapt (remix, transform, and build upon the material for
any purpose, even commercially) under the following terms: (i) attribution (you must give
appropriate credit, provide a link to the license, and indicate if changes were made; you may do
so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use); (ii) no additional restrictions (you may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits).

